
Experimental Analysis of TCP Behaviors against Bursty Packet Losses

Caused by Transmission Interruption

Weikai Wang, Celimuge Wu, Satoshi Ohzahata, Toshihiko Kato

Graduate School of Information Systems

University of Electro-Communications

Chofu-shi, Tokyo, Japan

e-mail: ohigai@net.is.uec.ac.jp, clmg@is.uec.ac.jp, ohzahata@is.uec.ac.jp, kato@ is.uec.ac.jp

Abstract— Although TCP was originally designed to provide

the reliable data transfer over the Internet, packet losses

detected in TCP are considered as an indication of network

congestion due to the high quality of data transmission

provided by recent transmission technologies and media access

control technologies. However, packet losses can be caused by

transmission interruptions such as handoffs in the mobile

networks and protection switching in the transport networks.

These packet losses are bursty because the transmission

interruptions continue for tens of miliseconds through several

seconds. In this paper, we describe the experimental analysis

of TCP behaviors by inserting errors such that all packets are

lost during transmission interruptions. We have tested various

TCP versions including those in Linux, that in Windows and

that in Mac OS. This paper suggests (1) that the tested TCPs

in Linux follow the similar procedure and retransmit lost

packets quickly, (2) that TCP in Windows also behaves well

but the increase of congestion window seems to be limited, and

(3) that TCP in Mac OS has shown some problems in

retransmitting contiguously lost packets.

Keywords-TCP; Transmission Interruption; Bursty Packet

Losses; Retransmission; SACK Based Loss Recovery.

I. INTRODUCTION

Transmission Control Protocol (TCP) is widely used as a
transport protocol for the reliable data transfer. TCP
recovers from packet losses by retransmitting lost packets
and guarantees that the information sent is safely delivered to
the receivers. But, recent transmission technologies and
media access control technologies provide high quality of
data transmission, and so, packet losses detected in TCP are
considered as the indication of network congestion.

Although the possibility of packet losses caused by
random bit errors is extremely low, it is possible that data are
lost due to transmission interruptions. For example, packets
will be lost during a handoff among base stations in the 3rd
generation mobile telecommunication networks [1]. Similar
packet losses occur during a channel switch in the protection
switching systems [2], [3].

These packet losses are bursty, because such a
transmission interruption continues in the order of tens of
miliseconds through several seconds. TCP, of course, has
the functionality to recover from those bursty packet losses,
but it seems that the research activities on TCP performance
focus on the congestion control scheme during light

congestion situation where the number of lost packets is
limited [4].

This paper describes the results of experimental analysis
of TCP behaviors when a TCP data transmission suffers
from bursty packet losses during a transmission interruption.
We have tested several TCP versions; TCP implemented in
the Linux operating system [4], TCP in the Windows 7
operating system, and TCP in the Mac OS X operating
system. For those TCP versions, the TCP communication
traces are examined in detail. As a result, we suggest that
(1) the tested TCPs in Linux follow the similar procedure
and retransmit lost packets quickly, that
(2) TCP in Windows 7 also behaves well, but the increase of
congestion window seems to be limited compared with those
in Linux, and that
(3) TCP in Mac OS X sometimes takes longer time than the
others to retransmit the packets lost during a transmission
interruption.

So far, there have been some papers published focusing
on the TCP behaviors against packet losses [5] – [7]. In [5],
TCP over a 3G wireless system, IS2000, is discussed.
Especially, it describes the periodical data transmission
timing in IS2000 and its impact on TCP, and the
effectiveness of selective acknowledgment (SACK) [8] and
timestamp TCP options. In [6], TCP performance over
commercial WiMAX-based network is presented. It
compares New Reno, Cubic [9], Vegas and Veno TCP
variants in terms of throughput, rount-trip time and
retransmission rate, and points out that a WiMAX link is not
well-suited for the aggressive Cubic and window auto-tuning.
Zhu and Bai [7] compared the performance of Tahoe, Reno
and SACK TCP when multiple packets are dropped, and
shows that Reno suffers from performance problems at
multiple drops while SACK works well. On the contrary,
this paper gives the detailed packet level analysis of TCP
behaviors against burst errors using the timeline charts and
points out the problems in Mac OS X TCP which are not
discussed in the other papers.

The rest of this paper consists of the following sections.
Section 2 specifies the conditions of the transmission
interruption test. Section 3 gives the results of various TCP
versions. Section 4 describes a packet level behavior
analysis for the results of TCP Reno in the Linux operating
system and Mac OS X TCP. Section 5 gives the conclusions
of this paper.

136Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

II. TEST CONDITIONS

Fig. 1 shows the configuration of the experiment. The
TCP program to be tested is implemented in a personal
computer (PC under test in the figure). It is connected to a
wireless LAN (IEEE 802.11g) through an access point (AP),
which is connected to the bridge emulating transmission
interruptions through Gigabit Ethernet. The bridge injects a
200 milisecond interruption at every five second. During the
interruption, the bridge discards all packets transferred in
both directions. The bridge is connected the ftp server
through Gigabit Ethernet.

The TCP communication is traced using tcpdump. The
trace is taken in the PC under test and ftp server, and two
traces are examined for each experiment.

In this test, PC under test works as an ftp client and sends
a 10 megabyte file to the ftp server. The specification of the
equipment is listed in Table I.

The TCP versions adopted in this test are as follows:
 TCP Reno: a traditional additional increase and

multiplicative decrease (AIMD) control of congestion
window with fast recovery.

 Cubic TCP [9]: congestion window control as a cubic
function of time elapsed since a last congestion event.
It has been the default of Linux TCP suite since 2006.

 TCP Westwood [10]: designed for wireless network by
estimating the available bandwidth from ACK arrival
intervals.

 TCP in Windows 7: default TCP in the Windows 7
operating system. It is said to combine slow and
scalable way in the congestion window calculation
(compound TCP [11]).

 TCP in Mac OS X: default TCP in the OS X operating
system.

The configuration of TCP options, such as whether to use the
window scale option and the SACK option or not, follows
the default setting of the individual operating systems.

III. RESULTS OF EXPERIMENTS

We executed several test runs for each of TCP versions.
This section shows typical results for those test runs as the
graphs plotting the sequence number of transferred data
segments (transferred bytes) versus the elapsed time since
the SYN segment. The graph is generated by Wireshark [12]
using the trace captured at the PC under test.

Fig. 2 shows the result of TCP Reno. The figure shows
four discontinuous sections in the increase of sequence
number. Three of them are labeled as “Reno (1),” “Reno
(3)” and “Reno (4).” It is considered that they are caused by
bursty packet losses injected at the bridge. For confirmation,
Fig. 3 shows the similar graph generated from the trace
captured at the ftp server side. Fig. 3 shows that the
increasing status of the sequence number at the server side is
similar with that at the PC under test side, and that there are
parts where packets are lost contiguously in the four
discontinuous sections.

There are two types of discontinuous sections in Fig. 2.
One is the type for the first through the third sections. In this
type, packets are lost in the middle of a continuous data
sending in the TCP flow control. There is no time lag
between the normal data transmission and the retransmission.

Figure 2. Sequence number vs. time for TCP Reno

Figure 3. Sequence number vs. time for TCP Reno in ftp server side

Bridge for network
emulation

ftp server
PC under test

Access
Point

IEEE 802.11g
WLAN

Gigabit Ethernet link

Communication trace by tcpdump

Figure 1. Configuration of Experiment

TABLE I. SPECIFICATION OF EQUIPMENT

Node OS Hardware specification

PC under test Linux (Ubuntu
10.04)

Centrino2 CPU (2.53GHz) and
2GB memory

Windows 7

Mac OS X (10.7.5) MacbookPro with Core i7 CPU
(2.4Ghz) and 8GB memory

bridge Linux Pentium4 HT CPU (2.4 GHz)
and 2GB memory

ftp server Linux Core i5 CPU and 8GB memory

137Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

The other type is that for the fourth discontinuous section
(Reno (4)) in the figure. Packets are lost in the end of
continuous data sending and there is a time lag before the
retransmission starts. We will examine the packet level
behaviors of these two types in the next section.

Fig. 4 shows the result of Cubic TCP. The sequence
number versus time graph is similar with that of TCP Reno.
There are four discontinuous sections; the first, and the
second (Cubic (2)) and the fourth ones are of type with time
lag, and the third one (Cubic (3)) is of type without time lag.

Fig. 5 shows the result of TCP Westwood. The graph is
similar with those of TCP Reno and Cubic TCP. As the
results of our experiment, it can be said that the TCP
versions in the Linux operating system behave similarly for
bursty packet losses, although they have different congestion
control mechanisms.

Fig. 6 shows the result of TCP in Windows 7 operating
system. This graph is also similar with those of TCP
versions in the Linux operating system. But, there are only
discontinuous sections with type of time lag. Besides the
experiment described in Fig. 6, we executed three runs of the
experiment and obtained the result that all the discontinuous
sections are of type with time lag.

The reason for this difference is analyzed as follows. For

the discontinuous section without time lag, the data sending
needs to continue longer than the transmission interruption
injected by the bridge, i.e., 200 miliseconds. So, the window
size (advertised window and congestion window) needs to be
large enough to allow PC under test to keep sending data
segments. So, we have checked the advertised window size
in the TCP Reno case and the Windows case and show the
result in Fig. 7. In the case of TCP Reno, the advertised
window goes to 451,840, but it goes to only 55,488 in the
case of Windows TCP. It should be noted that the window
scale option is used in both cases and that it is possible to
specify a large window size. Generally, TCP receiver
adjusts its window size dynamically to twice of the
congestion window size which it estimated. This is called
auto-tuning or dynamic right sizing [13]. So, it is considered
that, in this experiment, the ftp server (receiver) estimated
the congestion window of Windows 7 TCP much smaller
than that of Linux TCP, and that Windows 7 TCP did not
continue data sending longer than the 200 milisecond
transmission interruption. So, all the discontinuous sections
were of type with time gap. However, Windows 7 TCP also
behaves well and recovers quickly from the bursty packet
losses caused by transmission interruption.

In the end, Fig. 8 shows the result of TCP in Mac OS X.

 Figure 4. Sequence number vs. time for Cubic TCP Figure 6. Sequence number vs. time for TCP in Windows

 Figure 5. Sequence number vs. time for TCP Westwood Figure 7. Advertized window for TCP Reno and Windows

138Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

The graph is different from those of other TCP versions. In
the second discontinuous section (OS X(2)), the graph is flat,
i.e., the data sending rate is low, and data segments are sent
intermittently. This section takes more than ten seconds and
is considered to be worse error recovery than the other TCP
versions described above. The detailed packet level analysis
is given in the next section.

IV. DETAILED ANALYSIS OF TCP TRACES

A. Packet Level Analysis of TCP Reno’s First

Discontinuous Section

Fig. 9 shows the timeline of segment exchanges at the
discontinuous section of Reno (1). This section is of type
without time lag. The figure is described based on the trace
at the PC under test side.

The data and ACK segments are specified according to
the text format of tcpdump. For a data segment, the figure
uses a representation such as “1967433:1968881(1448),”
which means that the sequence number specified in the
header of this segment is 1967433 (relative value from the
SYN segment) and the number of bytes in this segment is
1448. The number 1968881 is the sequence number
assigned the last byte in this segment plus 1, i.e., the
sequence number in the header of the next data segment. For
an ACK segment, this figure shows the acknowledgment
number in the style of “ack 1965985” and, in addition, the
other parameters such as a SACK option are also specified.

In this discontinuous section, 88 data segments are lost
during the transmission interruption (9(a) in the figure).
After that, the next data segment 2093409:2094857(1448) is
sent to the ftp server (9(b)). In response to that, the ftp server
returns an ACK segment 1967433 (SACK2094857-
2096305) (9(c)). This ACK segment says that the sequence
number of the next data which the receiver expects is
1,967,433, and that the receiver has received data from
2,094,857 to 2,096,304 [8]. Responding to this SACK
segment, PC under test retransmits the data from sequence
number 1,967,433. This is retransmitted because the ACK
segment with SACK option says that the receiver received
all of data up to 1,967,432 and that, in addition, it has

received some SACKed data segments [14]. This means that
it is possible that data from 1,967,433 to 2,094,856 are
missing.

Before PC under test receives this ACK segment, it sends
data segments up to 2416313:2417761(1448). Responding
to those data segments, the ftp server returns other ACK
segments with acknowledgment number set to 1967433 with
SACK option whose range is increasing incrementally. They
are duplicate ACKs with SACKs, and invoke the
retransmission similarly with ACK 9(c).

The ftp server returns another ACK segment (9(e))
invoked by the next data segment, 1970329:1971777(1448).
As described above, the information on newly received data
is included in the SACK option (Please confirm that the
range of SACK option becomes wider than that in ACK
9(c)). After receiving all original data segments up to
2416313:2417761(1448), the ftp server receives
retransmitted data segments, and responds to them by
sending ACK segments (new ACKs) one by one (e.g., 9(f)).
Since these ACKs include SACK options, PC under test
retransmits the next unacknowledged data segment one by
one, until all the lost data segments are retransmitted.

In summary, at the discontinuous section without time
lag, the receiver retransmits data segments just after it
receives the first ACK with SACK option indicating a
missing data gap. The retransmission seems to be based on
the SACK. The requirement for this type of section is that
the sender has a window size large enough to send data
longer than the period of a transmission interruption. Similar

Figure 8. Sequence number vs. time for TCP in OS X

PC under Test

3.286634
1967433:1968881(1448)

88 data
segments
are lost.

9(a)

ack 1965985

3.286649
1968881:1970329(1448)

3.386143 2093409:2094857(1448)

3.386157 2094857:2096305(1448)

3.618673

3.618710 2414865:2416313(1448)

3.618737 2416313:2417761(1448)

ack 1967433

(SACK2094857-2096305)3.623223

3.623278 1967433:1968881(1448) retransmitted

ack 1967433 (dup#1)

(SACK2094857-2097753)3.625429

3.625466 1968881:1970329(1448) retransmitted

4.248873 2041281:2042729(1448) retransmitted

ack 1974673 (new ACK)

(SACK2094857-2417761)4.253594

4.364411 2093409:2094857(1448) retransmitted

One data segment is retransmitted in
response to one or two duplicate ACKs.

One data segment is retransmitted in
response to one new ACK.

9(b)

9(c)

9(d)
9(e)

9(f)

Figure 9. Timeline of segment exchanges at Reno (1)

139Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

ones can be found in Reno (3), Cubic (3), Westwood (1), and
so on.

B. Packet Level Analysis of TCP Reno’s Fourth

Discontinuous Section

Fig. 10 shows the time line of segment exchanges at the
discontinuous section Reno (4) in Fig. 2. This section is of
type without time lag.

In this discontinuous section, 58 data segments and one
ACK segment are lost during the transmission interruption
(10(a) in the figure). A data segment 10058857:10060305
(1448) is delivered to the ftp server, but the correspondent
ACK segment (ack 10060305) is lost. The interruption
losses up to the last data segment in continuous data sent in
one TCP window. So, after an interruption, PC under test
has any segments to send, and it just waits. When the
retransmission timeout period passes, the sender retransmits
the oldest unacknowledged data segment (10(b)).

Then, the receiver receives this segment, and it returns a
corresponding ACK segment. But, the receiver already
received this data segment before. In order to inform the
sender of the duplicate receipt of this data segment, the
receiver specify the duplicate range in the first block of the

SACK option, as shown in the figure (10(c)). This
mechanism is called DSACK [15].

After receiving this ACK segment, the sender retransmits
two data segments following the last data segment which it
has sent (10(d)). For each of these data segments, the
receiver responds with an ACK segment, which will be a
duplicate ACK with a SACK option (10(e)). When PC
under test receives this ACK segment, it retransmits data
segments (10(f)). This is considered as the retransmission by
SACK option, which was also used in Fig. 9. These
retransmissions generate new ACKs with the SACK option
(10(g)), and again, they introduce the retransmissions (10(h)).

In summary, at the discontinuous section with time lag,
the receiver will start to retransmit data segments due to the
retransmission timeout. But, after the first retransmissions,
the continuing retransmissions are invoked by the SACK
based recovery. Similar discontinuous sections can be found
in Cubic (2), Westwood (2), Windows (1), and so on.

C. Packet Level Analysis of Mac OS X TCP’s Second

Discontinuous Section

The discontinuous section OS X (2) is different from the
others obtained in this experiment. Fig. 11 shows the time
line of segment exchanges at this section.

At first, 46 data segments are lost during the transmission
interruption (11(a) in the figure). Similarly with Fig. 10, the
interruption losses up to the last data segment in one TCP
window. So, the retransmission timeout occurs and the
oldest unacknowledged data segment, 3675809:3677257
(1448), is retransmitted (11(b)). Then, the receiver returns a
corresponding ACK segment for this data segment. It is a
new ACK segment without any SACK options (11(c)).
After receiving this ACK, the sender transmits a (new) data
segment following the last data segment it sent (11(d)). For
this data segment, the receiver responds an ACK segment
which will be a duplicate ACK with a SACK option (11(e)).

So far, the timeline is very similar with that of Reno (4).
But, when PC under test receives this ACK segment, it does
not retransmit any data segments immediately. That is, the
retransmit by the SACK option is not invoked. Instead, the
sender waits for the retransmission timeout period and
retransmits the oldest unacknowledged data segment (11(f)).

In the timeline, this sequence, a timeout retransmission, a
new ACK, a new data, a duplicate ACK, and another timeout
retransmission, is repeated. So, the intermittent data sending
occurs. The reason for this sequence is considered to be the
fact that the SACK based retransmission does not work well.

However, in the end of this sequence, PC under test
receives a new ACK with SACK option (11(g)), and it
retransmits next unacknowledged data segment (11(h)). In
this part, it seems that the SACK based loss recovery works
well. At another discontinuous section, OS X (3), the
behavior of type with time lag is observed. Here, it seems
that the SACK based retransmission is working.

In summary, Mac OS X TCP shows an intermittent type
discontinuous section for bursty packet losses in a
transmission interruption. The reason is that the loss
recovery based on the SACK option does not work well.
However, the SACK based loss recovery works in another

PC under Test

18.362579
10058857:10060305(1448)

58 data
segments
and one
ACK are
lost. 10(a)

ack 10060305

(SACK10058857-10060305)

18.365088
10060305:10061753(1448)

18.532041 10142841:10144289(1448)

18.917736 10058857:10060305(1448) retransmitted

18.921980

18.922016 10144289:10145737(1448)

18.922036 10145737:10147185(1448)

ack 10060305 (dup#1)

(SACK10144289-10145737)18.927494

18.927539 10060305:10061753(1448) retransmitted

ack 10061753(new ACK)

(SACK10144289-10147185)18.936381

18.936419 10064649:10066097(1448) retransmitted

18.936450 10066097:10067545(1448) retransmitted

ack 9977769
18.365051

retransmission timeout

One new ACK invokes two
retransmissions repeatedly.

19.087493 10142841:10144289(1448) retransmitted

18.927570 10061753:10063201(1448) retransmitted

18.927587 10063201:10064649(1448) retransmitted

ack 10060305 (dup#2)

(SACK10144289-10147185)18.935325

10(b)

10(c)

10(d)

10(e)
10(f)

10(g)

10(h)

ack 10058857
18.531982

18.532018 10141393:10142841(1448)

ack 10060305

Figure 10. Timeline of segment exchanges at Reno (4)

140Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

discontinuous section in Mac OS X TCP, so we cannot say
that it is not implemented in the Mac OS X.

V. CONCLUSIONS

This paper described the results of experimental analysis
of TCP retransmission behaviors against bursty packet losses
caused by transmission interruptions. We focused on several
TCP versions; TCP Reno as a standard congestion control,
Cubic TCP as a high speed version, TCP Westwood for a
wireless network, TCP in Windows 7 and TCP in Mac OS X.
The packet level detailed analysis for the TCP
communication traces found the followings.
(1) The tested TCPs in Linux seem to follow the similar
procedure and retransmit lost packets quickly. They behave
as recovery types with time lag and without time lag,
depending on whether timeout retransmission is used or not
for the first missing data segment.

(2) TCP in Windows 7 also behaves well, but discontinuous
sections caused by transmission interruptions are with type
of time lag. The reason seems to be that the increase of
congestion window of Windows 7 TCP much smaller than
that of Linux TCP, and that the receiver does not advertise a
large window size according to the dynamic right sizing.
(3) TCP in Mac OS X sometimes shows an intermittent type
of retransmission which takes longer time than the others. In
the experiment, it took several seconds to retransmit all the
lost packets. The reason seems to be that the loss recovery
based on the SACK option does not work well in Mac OS X.
But, in other retransmissions, Mac OS TCP uses SACK
based recovery, and so the clarification of Mac OS TCP
behaviors is for further study.

REFERENCES

[1] 3GPP TS 23.009 version 7.0.0 Release 7, “Digital cellular
telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Handover
procedures,” ETSI, Mar. 2007.

[2] IEEE Std 802.17, “Part 17: Resilient packet ring (RPR) access
method and physical layer specifications,” IEEE Standard
Association, May 2011.

[3] Recommendation ITU-T G.8031/Y.1342, “Ethernet linear
protection switching,” Telecommunication Standardization
Sector of ITU, June 2011.

[4] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-
to-Host Congestion Control for TCP,” IEEE Commun.
Surveys Tutorials, vol. 12, no. 3, 3rd quarter 2010, pp. 304-
340.

[5] F. Khafizov and M. Yavuz, “Running TCP over IS-2000,”
Proc. ICC 2002, April 2002, pp. 3444-3448 vol. 5.

[6] E. Halepovic, Q. Wu, C. Williamson, and M. Ghaderi, “TCP
over WiMAX: A Measurement Study,” Proc. IEEE
MASCOTS 2008, Sept. 2008, pp. 1-10.

[7] J. Zhu and T, Bai, “Performance of Tahoe, Reno, and SACK
TCP at Different Scenarios,” Proc. ICCT ’06, Nov. 2006, pp.
1-4.

[8] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgment Options,” IETF RFC 2018, Oct.
1996.

[9] I. Rhee and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” SIGOPS Operating Systems Review, vol. 42,
no. 5, July 2008, pp. 64-74.

[10] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R.
Wang, “TCP Westwood: Bandwidth estimation for enhanced
transport over wireless links,” Proc. ACM MOBICOM 2001,
July 2001, pp. 287-297.

[11] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound
TCP approach for high-speed and long distance networks,”
Procl IEEE INFOCOM 2006, April 2006, pp. 1-12.

[12] Wireshark Foundation, “WIRESHARK,” http://www.
wireshark.org/

[13] M. Fisk and W. Feng, “Dynamic Right-Sizing in TCP,” Proc.
Los Alamos Computer Science Institute Symposium, Oct.
2001.

[14] E, Blanton, M. Allman, L. Wang, I. Jarvinen, M. Kojo, and Y.
Nishida, “A Conservative Loss Recovery Algorithm Based on
Selective Acknowledgment (SACK) for TCP,” IETF RFC
6675, Aug. 2012.

[15] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An
Extension to the Selective Acknowledgment (SACK) Option
for TCP,” IETF RFC 2883, July 2000.

PC under Test

12.322729
3675809:3677257(1448)

46 data
segments
are lost.

11(a)

12.322731
3677257:3678705(1448)

12.409194 3739521:3740969(1448)

13.125117 3677257:3678705(1448) retransmitted

23.855845 3723593:3725041(1448) retransmitted

23.855874 3725041:3726489(1448) retransmitted

ack 3675809
12.409019

Repeats a sequence of new ACK, new data,
dup ACK and timeout retransmission.

12.409154 3737001:3738449(1448)

12.409164 3738449:3739521(1072)

12.724583 3675809:3677257(1448) retransmitted

retransmission timeout

ack 3677257
12.728708
12.728855 3740969:3742417(1448)

ack 3677257(dup#1)

(SACK3740969-3742417)12.733283

retransmission timeout

23.849968 3722145:3723593(1448) retransmitted

ack 3722145(dup#1)

(SACK3740969-3787305)23.557784

retransmission timeout

ack 3723593

(SACK3740969-3787305)23.855790

ack 3725041

(SACK3740969-3787305)23.855790

23.878048 3738073:3739521(1448) retransmitted

23.878092 3739521:3740969(1448) retransmitted

11(b)

11(c)
11(d)

11(e)

11(f)

11(g)
11(h)

Figure 11. Timeline of segment exchanges at OS X (2)

141Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

