
Experimental Analysis of TCP Behaviors against Bursty Packet Losses  

Caused by Transmission Interruption 

Weikai Wang,  Celimuge Wu,  Satoshi Ohzahata,  Toshihiko Kato 

Graduate School of Information Systems 

University of Electro-Communications 

Chofu-shi, Tokyo, Japan 

e-mail:  ohigai@net.is.uec.ac.jp, clmg@is.uec.ac.jp, ohzahata@is.uec.ac.jp, kato@ is.uec.ac.jp 

 

 
Abstract— Although TCP was originally designed to provide 

the reliable data transfer over the Internet, packet losses 

detected in TCP are considered as an indication of network 

congestion due to the high quality of data transmission 

provided by recent transmission technologies and media access 

control technologies.  However, packet losses can be caused by 

transmission interruptions such as handoffs in the mobile 

networks and protection switching in the transport networks.  

These packet losses are bursty because the transmission 

interruptions continue for tens of miliseconds through several 

seconds.  In this paper, we describe the experimental analysis 

of TCP behaviors by inserting errors such that all packets are 

lost during transmission interruptions.  We have tested various 

TCP versions including those in Linux, that in Windows and 

that in Mac OS.  This paper suggests (1) that the tested TCPs 

in Linux follow the similar procedure and retransmit lost 

packets quickly, (2) that TCP in Windows also behaves well 

but the increase of congestion window seems to be limited, and 

(3) that TCP in Mac OS has shown some problems in 

retransmitting contiguously lost packets.   

Keywords-TCP; Transmission Interruption; Bursty Packet 

Losses; Retransmission; SACK Based Loss Recovery.   

I.  INTRODUCTION 

Transmission Control Protocol (TCP) is widely used as a 
transport protocol for the reliable data transfer.  TCP 
recovers from packet losses by retransmitting lost packets 
and guarantees that the information sent is safely delivered to 
the receivers.  But, recent transmission technologies and 
media access control technologies provide high quality of 
data transmission, and so, packet losses detected in TCP are 
considered as the indication of network congestion.   

Although the possibility of packet losses caused by 
random bit errors is extremely low, it is possible that data are 
lost due to transmission interruptions.  For example, packets 
will be lost during a handoff among base stations in the 3rd 
generation mobile telecommunication networks [1].  Similar 
packet losses occur during a channel switch in the protection 
switching systems [2], [3].   

These packet losses are bursty, because such a 
transmission interruption continues in the order of tens of 
miliseconds through several seconds.  TCP, of course, has 
the functionality to recover from those bursty packet losses, 
but it seems that the research activities on TCP performance 
focus on the congestion control scheme during light 

congestion situation where the number of lost packets is 
limited [4].   

This paper describes the results of experimental analysis 
of TCP behaviors when a TCP data transmission suffers 
from bursty packet losses during a transmission interruption.  
We have tested several TCP versions; TCP implemented in 
the Linux operating system [4], TCP in the Windows 7 
operating system, and TCP in the Mac OS X operating 
system.  For those TCP versions, the TCP communication 
traces are examined in detail.  As a result, we suggest that  
(1) the tested TCPs in Linux follow the similar procedure 
and retransmit lost packets quickly, that  
(2) TCP in Windows 7 also behaves well, but the increase of 
congestion window seems to be limited compared with those 
in Linux, and that  
(3) TCP in Mac OS X sometimes takes longer time than the 
others to retransmit the packets lost during a transmission 
interruption.   

So far, there have been some papers published focusing 
on the TCP behaviors against packet losses [5] – [7].  In [5], 
TCP over a 3G wireless system, IS2000, is discussed.  
Especially, it describes the periodical data transmission 
timing in IS2000 and its impact on TCP, and the 
effectiveness of selective acknowledgment (SACK) [8] and 
timestamp TCP options.  In [6], TCP performance over 
commercial WiMAX-based network is presented.  It 
compares New Reno, Cubic [9], Vegas and Veno TCP 
variants in terms of throughput, rount-trip time and 
retransmission rate, and points out that a WiMAX link is not 
well-suited for the aggressive Cubic and window auto-tuning.  
Zhu and Bai [7] compared the performance of Tahoe, Reno 
and SACK TCP when multiple packets are dropped, and 
shows that Reno suffers from performance problems at 
multiple drops while SACK works well.  On the contrary, 
this paper gives the detailed packet level analysis of TCP 
behaviors against burst errors using the timeline charts and 
points out the problems in Mac OS X TCP which are not 
discussed in the other papers.   

The rest of this paper consists of the following sections.  
Section 2 specifies the conditions of the transmission 
interruption test.  Section 3 gives the results of various TCP 
versions.  Section 4 describes a packet level behavior 
analysis for the results of TCP Reno in the Linux operating 
system and Mac OS X TCP.  Section 5 gives the conclusions 
of this paper.   
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II. TEST CONDITIONS 

Fig. 1 shows the configuration of the experiment.  The 
TCP program to be tested is implemented in a personal 
computer (PC under test in the figure).  It is connected to a 
wireless LAN (IEEE 802.11g) through an access point (AP), 
which is connected to the bridge emulating transmission 
interruptions through Gigabit Ethernet.  The bridge injects a 
200 milisecond interruption at every five second.  During the 
interruption, the bridge discards all packets transferred in 
both directions.  The bridge is connected the ftp server 
through Gigabit Ethernet.   

The TCP communication is traced using tcpdump.  The 
trace is taken in the PC under test and ftp server, and two 
traces are examined for each experiment.   

In this test, PC under test works as an ftp client and sends 
a 10 megabyte file to the ftp server.  The specification of the 
equipment is listed in Table I.   

The TCP versions adopted in this test are as follows: 
 TCP Reno: a traditional additional increase and 

multiplicative decrease (AIMD) control of congestion 
window with fast recovery.   

 Cubic TCP [9]: congestion window control as a cubic 
function of time elapsed since a last congestion event.  
It has been the default of Linux TCP suite since 2006.   

 TCP Westwood [10]: designed for wireless network by 
estimating the available bandwidth from ACK arrival 
intervals.   

 TCP in Windows 7:  default TCP in the Windows 7 
operating system.  It is said to combine slow and 
scalable way in the congestion window calculation 
(compound TCP [11]).   

 TCP in Mac OS X: default TCP in the OS X operating 
system.    

The configuration of TCP options, such as whether to use the 
window scale option and the SACK option or not, follows 
the default setting of the individual operating systems.   

III. RESULTS OF EXPERIMENTS 

We executed several test runs for each of TCP versions.  
This section shows typical results for those test runs as the 
graphs plotting the sequence number of transferred data 
segments (transferred bytes) versus the elapsed time since 
the SYN segment.  The graph is generated by Wireshark [12] 
using the trace captured at the PC under test.   

Fig. 2 shows the result of TCP Reno.  The figure shows 
four discontinuous sections in the increase of sequence 
number.  Three of them are labeled as “Reno (1),” “Reno 
(3)” and “Reno (4).”  It is considered that they are caused by 
bursty packet losses injected at the bridge.  For confirmation, 
Fig. 3 shows the similar graph generated from the trace 
captured at the ftp server side.  Fig. 3 shows that the 
increasing status of the sequence number at the server side is 
similar with that at the PC under test side, and that there are 
parts where packets are lost contiguously in the four 
discontinuous sections.   

There are two types of discontinuous sections in Fig. 2.  
One is the type for the first through the third sections.  In this 
type, packets are lost in the middle of a continuous data 
sending in the TCP flow control.  There is no time lag 
between the normal data transmission and the retransmission.  

 
Figure 2.   Sequence number vs. time for TCP Reno 

 

 
Figure 3.   Sequence number vs. time for TCP Reno in ftp server side 
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Figure 1.   Configuration of Experiment 

 
TABLE I.   SPECIFICATION OF EQUIPMENT 

Node OS Hardware specification 

PC under test Linux (Ubuntu 
10.04) 

Centrino2 CPU (2.53GHz)  and 
2GB memory 

Windows 7 

Mac OS X (10.7.5) MacbookPro with Core i7 CPU 
(2.4Ghz) and 8GB memory 

bridge Linux Pentium4 HT CPU (2.4 GHz) 
and 2GB memory 

ftp server Linux Core i5 CPU and 8GB memory 
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The other type is that for the fourth discontinuous section 
(Reno (4)) in the figure.  Packets are lost in the end of 
continuous data sending and there is a time lag before the 
retransmission starts.  We will examine the packet level 
behaviors of these two types in the next section.   

Fig. 4 shows the result of Cubic TCP.  The sequence 
number versus time graph is similar with that of TCP Reno.  
There are four discontinuous sections; the first, and the 
second (Cubic (2)) and the fourth ones are of type with time 
lag, and the third one (Cubic (3)) is of type without time lag.   

Fig. 5 shows the result of TCP Westwood.  The graph is 
similar with those of TCP Reno and Cubic TCP.  As the 
results of our experiment, it can be said that the TCP 
versions in the Linux operating system behave similarly for 
bursty packet losses, although they have different congestion 
control mechanisms.   

Fig. 6 shows the result of TCP in Windows 7 operating 
system.  This graph is also similar with those of TCP 
versions in the Linux operating system.  But, there are only 
discontinuous sections with type of time lag.  Besides the 
experiment described in Fig. 6, we executed three runs of the 
experiment and obtained the result that all the discontinuous 
sections are of type with time lag.   

The reason for this difference is analyzed as follows.  For 

the discontinuous section without time lag, the data sending 
needs to continue longer than the transmission interruption 
injected by the bridge, i.e., 200 miliseconds.  So, the window 
size (advertised window and congestion window) needs to be 
large enough to allow PC under test to keep sending data 
segments.  So, we have checked the advertised window size 
in the TCP Reno case and the Windows case and show the 
result in Fig. 7.  In the case of TCP Reno, the advertised 
window goes to 451,840, but it goes to only 55,488 in the 
case of Windows TCP.  It should be noted that the window 
scale option is used in both cases and that it is possible to 
specify a large window size.  Generally, TCP receiver 
adjusts its window size dynamically to twice of the 
congestion window size which it estimated.  This is called 
auto-tuning or dynamic right sizing [13].  So, it is considered 
that, in this experiment, the ftp server (receiver) estimated 
the congestion window of Windows 7 TCP much smaller 
than that of Linux TCP, and that Windows 7 TCP did not 
continue data sending longer than the 200 milisecond 
transmission interruption.  So, all the discontinuous sections 
were of type with time gap.  However, Windows 7 TCP also 
behaves well and recovers quickly from the bursty packet 
losses caused by transmission interruption.   

In the end, Fig. 8 shows the result of TCP in Mac OS X.  

 
 Figure 4.   Sequence number vs. time for Cubic TCP Figure 6.   Sequence number vs. time for TCP in Windows 

 
 Figure 5.   Sequence number vs. time for TCP Westwood Figure 7.   Advertized window for TCP Reno and Windows 
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The graph is different from those of other TCP versions.  In 
the second discontinuous section (OS X(2)), the graph is flat, 
i.e., the data sending rate is low, and data segments are  sent 
intermittently.  This section takes more than ten seconds and 
is considered to be worse error recovery than the other TCP 
versions described above.  The detailed packet level analysis 
is given in the next section.   

IV. DETAILED ANALYSIS OF TCP TRACES 

A. Packet Level Analysis of TCP Reno’s First 

Discontinuous Section 

Fig. 9 shows the timeline of segment exchanges at the 
discontinuous section of Reno (1).  This section is of type 
without time lag.  The figure is described based on the trace 
at the PC under test side.   

The data and ACK segments are specified according to 
the text format of tcpdump.  For a data segment, the figure 
uses a representation such as “1967433:1968881(1448),” 
which means that the sequence number specified in the 
header of this segment is 1967433 (relative value from the 
SYN segment) and the number of bytes in this segment is 
1448.  The number 1968881 is the sequence number 
assigned the last byte in this segment plus 1, i.e., the 
sequence number in the header of the next data segment.  For 
an ACK segment, this figure shows the acknowledgment 
number in the style of “ack 1965985” and, in addition, the 
other parameters such as a SACK option are also specified.   

In this discontinuous section, 88 data segments are lost 
during the transmission interruption (9(a) in the figure).  
After that, the next data segment 2093409:2094857(1448) is 
sent to the ftp server (9(b)).  In response to that, the ftp server 
returns an ACK segment 1967433 (SACK2094857-
2096305) (9(c)).  This ACK segment says that the sequence 
number of the next data which the receiver expects is 
1,967,433, and that the receiver has received data from 
2,094,857 to 2,096,304 [8].  Responding to this SACK 
segment, PC under test retransmits the data from sequence 
number 1,967,433.  This is retransmitted because the ACK 
segment with SACK option says that the receiver received 
all of data up to 1,967,432 and that, in addition, it has 

received some SACKed data segments [14].  This means that 
it is possible that data from 1,967,433 to 2,094,856 are 
missing.   

Before PC under test receives this ACK segment, it sends 
data segments up to 2416313:2417761(1448).  Responding 
to those data segments, the ftp server returns other ACK 
segments with acknowledgment number set to 1967433 with 
SACK option whose range is increasing incrementally.  They 
are duplicate ACKs with SACKs, and invoke the 
retransmission similarly with ACK 9(c).   

The ftp server returns another ACK segment (9(e)) 
invoked by the next data segment, 1970329:1971777(1448).  
As described above, the information on newly received data 
is included in the SACK option (Please confirm that the 
range of SACK option becomes wider than that in ACK 
9(c)).  After receiving all original data segments up to 
2416313:2417761(1448), the ftp server receives 
retransmitted data segments, and responds to them by 
sending ACK segments (new ACKs) one by one (e.g., 9(f)).  
Since these ACKs include SACK options, PC under test 
retransmits the next unacknowledged data segment one by 
one, until all the lost data segments are retransmitted.   

In summary, at the discontinuous section without time 
lag, the receiver retransmits data segments just after it 
receives the first ACK with SACK option indicating a 
missing data gap.  The retransmission seems to be based on 
the SACK.  The requirement for this type of section is that 
the sender has a window size large enough to send data 
longer than the period of a transmission interruption.  Similar 

 
Figure 8.   Sequence number vs. time for TCP in OS X 

PC under Test

3.286634
1967433:1968881(1448)

88 data 
segments 
are lost.  

9(a)

ack 1965985

3.286649
1968881:1970329(1448)

3.386143 2093409:2094857(1448)

3.386157 2094857:2096305(1448)

3.618673

3.618710 2414865:2416313(1448)

3.618737 2416313:2417761(1448)

ack 1967433

(SACK2094857-2096305)3.623223

3.623278 1967433:1968881(1448) retransmitted

ack 1967433 (dup#1)

(SACK2094857-2097753)3.625429

3.625466 1968881:1970329(1448) retransmitted

4.248873 2041281:2042729(1448) retransmitted

ack 1974673 (new ACK)

(SACK2094857-2417761)4.253594

4.364411 2093409:2094857(1448) retransmitted

One data segment is retransmitted in 
response to one or two duplicate ACKs.  

One data segment is retransmitted in 
response to one new ACK.  

9(b)

9(c)

9(d)
9(e)

9(f)

 
Figure 9.   Timeline of segment exchanges at Reno (1) 
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ones can be found in Reno (3), Cubic (3), Westwood (1), and 
so on.   

B. Packet Level Analysis of TCP Reno’s Fourth 

Discontinuous Section 

Fig. 10 shows the time line of segment exchanges at the 
discontinuous section Reno (4) in Fig. 2.  This section is of 
type without time lag.   

In this discontinuous section, 58 data segments and one 
ACK segment are lost during the transmission interruption 
(10(a) in the figure).  A data segment 10058857:10060305 
(1448) is delivered to the ftp server, but the correspondent 
ACK segment (ack 10060305) is lost.  The interruption 
losses up to the last data segment in continuous data sent in 
one TCP window.  So, after an interruption, PC under test 
has any segments to send, and it just waits.  When the 
retransmission timeout period passes, the sender retransmits 
the oldest unacknowledged data segment (10(b)).   

Then, the receiver receives this segment, and it returns a 
corresponding ACK segment.  But, the receiver already 
received this data segment before.  In order to inform the 
sender of the duplicate receipt of this data segment, the 
receiver specify the duplicate range in the first block of the 

SACK option, as shown in the figure (10(c)).  This 
mechanism is called DSACK [15].   

After receiving this ACK segment, the sender retransmits 
two data segments following the last data segment which it 
has sent (10(d)).  For each of these data segments, the 
receiver responds with an ACK segment, which will be a 
duplicate ACK with a SACK option (10(e)).  When PC 
under test receives this ACK segment, it retransmits data 
segments (10(f)).  This is considered as the retransmission by 
SACK option, which was also used in Fig. 9.  These 
retransmissions generate new ACKs with the SACK option 
(10(g)), and again, they introduce the retransmissions (10(h)).   

In summary, at the discontinuous section with time lag, 
the receiver will start to retransmit data segments due to the 
retransmission timeout.  But, after the first retransmissions, 
the continuing retransmissions are invoked by the SACK 
based recovery.  Similar discontinuous sections can be found 
in Cubic (2), Westwood (2), Windows (1), and so on.   

C. Packet Level Analysis of Mac OS X TCP’s Second 

Discontinuous Section 

The discontinuous section OS X (2) is different from the 
others obtained in this experiment.  Fig. 11 shows the time 
line of segment exchanges at this section.   

At first, 46 data segments are lost during the transmission 
interruption (11(a) in the figure).  Similarly with Fig. 10, the 
interruption losses up to the last data segment in one TCP 
window.  So, the retransmission timeout occurs and the 
oldest unacknowledged data segment, 3675809:3677257 
(1448), is retransmitted (11(b)).  Then, the receiver returns a 
corresponding ACK segment for this data segment.  It is a 
new ACK segment without any SACK options (11(c)).  
After receiving this ACK, the sender transmits a (new) data 
segment following the last data segment it sent (11(d)).  For 
this data segment, the receiver responds an ACK segment 
which will be a duplicate ACK with a SACK option (11(e)).   

So far, the timeline is very similar with that of Reno (4).  
But, when PC under test receives this ACK segment, it does 
not retransmit any data segments immediately.  That is, the 
retransmit by the SACK option is not invoked.  Instead, the 
sender waits for the retransmission timeout period and 
retransmits the oldest unacknowledged data segment (11(f)).   

In the timeline, this sequence, a timeout retransmission, a 
new ACK, a new data, a duplicate ACK, and another timeout 
retransmission, is repeated.  So, the intermittent data sending 
occurs.  The reason for this sequence is considered to be the 
fact that the SACK based retransmission does not work well.   

However, in the end of this sequence, PC under test 
receives a new ACK with SACK option (11(g)), and it 
retransmits next unacknowledged data segment (11(h)).  In 
this part, it seems that the SACK based loss recovery works 
well.  At another discontinuous section, OS X (3), the 
behavior of type with time lag is observed.  Here, it seems 
that the SACK based retransmission is working.   

In summary, Mac OS X TCP shows an intermittent type 
discontinuous section for bursty packet losses in a 
transmission interruption.  The reason is that the loss 
recovery based on the SACK option does not work well.  
However, the SACK based loss recovery works in another 

PC under Test

18.362579
10058857:10060305(1448)

58 data 
segments 
and one 
ACK are 
lost. 10(a)

ack 10060305

(SACK10058857-10060305)

18.365088
10060305:10061753(1448)

18.532041 10142841:10144289(1448)

18.917736 10058857:10060305(1448) retransmitted

18.921980

18.922016 10144289:10145737(1448)

18.922036 10145737:10147185(1448)

ack 10060305 (dup#1)

(SACK10144289-10145737)18.927494

18.927539 10060305:10061753(1448) retransmitted

ack 10061753(new ACK)

(SACK10144289-10147185)18.936381

18.936419 10064649:10066097(1448) retransmitted

18.936450 10066097:10067545(1448) retransmitted

ack 9977769
18.365051

retransmission timeout

One new ACK invokes two 
retransmissions repeatedly.  

19.087493 10142841:10144289(1448) retransmitted

18.927570 10061753:10063201(1448) retransmitted

18.927587 10063201:10064649(1448) retransmitted

ack 10060305 (dup#2)

(SACK10144289-10147185)18.935325

10(b)

10(c)

10(d)

10(e)
10(f)

10(g)

10(h)

ack 10058857
18.531982

18.532018 10141393:10142841(1448)

ack 10060305

 
Figure 10.   Timeline of segment exchanges at Reno (4) 
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discontinuous section in Mac OS X TCP, so we cannot say 
that it is not implemented in the Mac OS X.   

V. CONCLUSIONS 

This paper described the results of experimental analysis 
of TCP retransmission behaviors against bursty packet losses 
caused by transmission interruptions.  We focused on several 
TCP versions; TCP Reno as a standard congestion control, 
Cubic TCP as a high speed version, TCP Westwood for a 
wireless network, TCP in Windows 7 and TCP in Mac OS X.  
The packet level detailed analysis for the TCP 
communication traces found the followings.   
(1) The tested TCPs in Linux seem to follow the similar 
procedure and retransmit lost packets quickly.  They behave 
as recovery types with time lag and without time lag, 
depending on whether timeout retransmission is used or not 
for the first missing data segment.   

(2) TCP in Windows 7 also behaves well, but discontinuous 
sections caused by transmission interruptions are with type 
of time lag.  The reason seems to be that the increase of 
congestion window of Windows 7 TCP much smaller than 
that of Linux TCP, and that the receiver does not advertise a 
large window size according to the dynamic right sizing.  
(3) TCP in Mac OS X sometimes shows an intermittent type 
of retransmission which takes longer time than the others.  In 
the experiment, it took several seconds to retransmit all the 
lost packets.  The reason seems to be that the loss recovery 
based on the SACK option does not work well in Mac OS X. 
But, in other retransmissions, Mac OS TCP uses SACK 
based recovery, and so the clarification of Mac OS TCP 
behaviors is for further study.   
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Figure 11.   Timeline of segment exchanges at OS X (2) 
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