
OpenFlow Networks with Limited L2 Functionality

Hiroaki Yamanaka, Eiji Kawai, Shuji Ishii, and Shinji Shimojo
Network Testbed Research & Development Promotion Center

National Institute of Information and Communications Technology
KDDI Otemachi Bldg. 21F, 1-8-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan

Email: {hyamanaka, eiji-ka, shuji, sshinji}@nict.go.jp

Abstract—OpenFlow enables flexible control of network traffic
with arbitrary flow definitions. On carrier access networks,
OpenFlow can be used to provide customized network settings
for each client for virtual private network (VPN), Internet
Protocol television (IPTV), and content delivery network (CDN)
services, etc. Since there is a massive amount of traffic in
carrier access networks, high performance switches are necessary.
However, costs tend to increase due to the number of switches.
An OpenFlow switch processes wide-range of header fields and
supports wildcard matching. Large spaces for ternary content
addressable memory (TCAM) and application-specific integrated
circuits (ASICs) are used for high performance lookups. Cur-
rently proposed techniques reduce the amount of energy that is
consumed by reducing the frequency of TCAM usage in switches.
However, these techniques require complex functionality in order
to manage matching in the switches. As a result, switches are still
expensive. In this paper, we propose a technique that enables the
construction of OpenFlow networks using switches that require
little more than L2 switch functionality. The functionalities that
are required for the switches include an OpenFlow interface
for handling the flow table externally and a simple matching
function for the MAC header. Arbitrary flow definitions from an
OpenFlow controller are translated to the flow definitions by the
MAC address at the external proxy.

Keywords-OpenFlow; TCAM; L2 switch; carrier access
network

I. I NTRODUCTION

Software Defined Networking (SDN) technologies (e.g.,
OpenFlow [1]) ease network management, service manage-
ment, and quality of service (QoS) provisioning. SDN tech-
nologies are being considered for use in carrier-grade net-
works. One possible model for applying SDN technologies
in carrier networks involves the control of fined-grained flows
using OpenFlow in carrier access networks and multi-protocol
label switching (MPLS) tunnels (i.e., relatively simple logic
for packet forwarding) in core networks [2].

When OpenFlow is deployed in carrier access networks, the
costs for infrastructure are relatively high. There are two rea-
sons for high costs. The first is that there are many OpenFlow
switches in carrier access networks. The second reason is that
hardware OpenFlow switches are costly. The ternary content
addressable memory (TCAM) significantly increases the costs
that are associated with a hardware-based OpenFlow switches.
TCAM is a special type of memory that enables matching
on the headers of received data packets during one clock
cycle, regardless of the number of entries in memory. This

capability of TCAM is preferable in carrier access networks
because it enables high performance for the forwarding of high
volumes of data packets. However, TCAM is power hungry
and expensive [3]. It has been noted that TCAM is up to
80 times more expensive than static random access memory
(SRAM) [4]. In an OpenFlow switch, the required TCAM
space is large due to the wide range of header fields that are
supported in OpenFlow [5].

Techniques have been proposed in the research community
for reducing the amount of power that is consumed by TCAM
in an OpenFlow switch. The basic idea is to decrease the
frequency of the usage of TCAM. Only the first data packet
in a flow is matched using TCAM and subsequent data
packets that have the same header fields are matched using
SRAM or binary content addressable memory (BCAM). In
DevoFlow [6], SRAM is used in conjunction with the hash
method in order to match the subsequent data packets. The
hash method improves the performance as far as possible when
SRAM is used. Generally, when the TCAM is avoided in a
switch, it is necessary to include chipsets in the switch for
complex packet processing (e.g., applying the hash function)
in order to obtain high performance packet forwarding.

In this paper, we propose a technique that retains the
high performance of during packet forwarding and lowers the
cost of switches for OpenFlow infrastructure through the use
of relatively simple and inexpensive devices. The idea is to
restrict the matching fields in the memory of a switch to the
source MAC header and allow the switch to perform matches
in a simple manner using the single source MAC header.
Meanwhile, the proposed technique enables an OpenFlow con-
troller and the end-hosts to use all of the header fields that are
supported in OpenFlow. The external proxy that is between an
OpenFlow controller and the switches translates the matching
fields that were originally defined by the controller to the
matching fields for the source MAC addresses. Furthermore,
the proxy manages the edge switches in order to modify the
source MAC addresses for data packets and forward them to
the network. In the network, the source MAC address of a
data packet represents all of the original header fields. As a
result, the switches in the network only need to match on the
single source MAC header. The proposed technique enables
the construction of an OpenFlow network with switches that
are implemented using similar chipsets of L2 switches.

The remainder of this paper is organized as follows.
Section II describes the mechanism and the limitations of

221Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

the current technique for reducing TCAM usage. Section III
describes the concept and the architecture of our proposal. Sec-
tion IV describes the detailed implementation of the proposal.
Section V evaluates the overheads that are associated with the
proposal. Section VI contains remarks about related work and
Section VII presents the conclusion.

II. REDUCING TCAM COST IN OPENFLOW

A typical hardware-based OpenFlow switch contains
TCAM for high performance data packet processing in a net-
work. An OpenFlow [1] network is composed of a controller
and a group of OpenFlow switches. The controller and the
OpenFlow switches communicate through a control plane on
the network in order to maintain flow entries in the switches.
The OpenFlow switches transfer data packets on the data
plane of the network based on their flow entries. A flow
entry includes definitions of the flows that are referred to as
the matching fields. The matching fields include the ingress
port number and the header fields from layers 2–4 that are
specified in the OpenFlow switch specification [5]. Wildcards
are allowed for any of the matching fields. An OpenFlow
switch searches the flow entries that need to be matched in
the header fields of each data packet that is received. TCAM
enables searching during one clock cycle, regardless of the
number of the entries in the TCAM and regardless of whether
wildcards are included or not included in the matching fields.

Since TCAM is power hungry and expensive, it increases
the infrastructure costs for OpenFlow networks tremendously.
State-of-the-art techniques have been proposed academic pa-
pers in order to reduce the frequency of the usage of TCAM
(i.e., energy consumption) in switches. These techniques allow
TCAM to only be used for matching for the first data packets
that arrive, while subsequent data packets are matched using
SRAM or BCAM. A switch sees all of the header fields for
the first data packet that are matched using TCAM. Then, it
sets up the matching fields for the subsequent data packets
using SRAM or BCAM. When SRAM is used, matching can
be implemented using the hash method for subsequent data
packets in a constant time, which is not one clock cycle of
central processing unit (CPU). When BCAM is used, matching
can be implemented for subsequent data packets in one clock
cycle of CPU.

In the section below,“wildcard matching fields” refers to
matching fields in which at least one header field is a wildcard.
For an IP header, it may be the IP prefix.“Exact matching
fields”, on the other hand, refers to matching fields in which
there is no header field with wildcards or IP prefixes.

A. Setting Exact Matching Fields

This section summarized the method for reducing the
frequency of TCAM usage. This method is found in De-
voFlow [6]. This method determines the exact matching fields
inheriting from the wildcards using the header fields of the
data packets that are arriving at the switch. The procedure for
setting the exact matching fields and the data packet processing
is as follows (Figure 1).

1) The wildcard matching fields that are originally set
by the OpenFlow controller are memorized in TCAM
in the switch.

OpenFlow controller

Switch

BCAM or SRAM TCAM

1)Se!ng the wildcard

matching fields.

Ports

Data packet

2)Matching.

If matched,

go to 5).

5)Ac#on.

3)Matching in TCAM.

4)If matched,

se!ng exact

matching

fields.

4’)If not matched, sending a

packet-in message. Go to 1).

Figure 1. The basic procedure of setting exact matching fields.

2) When a data packet arrives, its header fields are
matched to the exact matching fields in BCAM or
SRAM. If the header fields are matched, the data
packet is processed based on the flow entry (go to
5)).

3) If they are not matched to any of the exact matching
fields in memory, then the header fields are matched
to the wildcard matching fields in TCAM.

4) If the header fields are matched using TCAM, then
the corresponding exact matching fields (Figure 2)
are stored in BCAM.
4′) If they are not matched, then the data packet is
forwarded as a packet-in message to the OpenFlow
controller in order to query about the proper method
for processing the data packet.

5) The data packet is processed using the action that is
specified in the matching flow entry.

B. Limitations

Generally, there is a trade-off between the level of packet
forwarding performance and the complexity of the chipsets for
switches when TCAM is not used. Even if it is possible for
a switch to process only the exact matching fields, BCAM
is still necessary in order to obtain line-rate performance for
packet forwarding. Because there are fewer circuits in BCAM
than in TCAM [3], the prices for BCAM devices are lower
and the devices also consume less energy. However, BCAM
is still more costly than SRAM. Current techniques propose
methods for obtaining high performance levels with limited
BCAM space.

In DevoFlow [6], the exact matching fields are stored in
SRAM and the hash method is used to search the flow entries
that need to be matched for a data packet. The chipset for
DevoFlow is relatively simple. However, the performance is
limited because the matching process largely depends on the
CPU.

Congdon et al. [7] utilized BCAM to match against the
exact matching fields. BCAM stores the small size data of
a partial header field or a hash value of the exact matching

222Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

src MAC

00:11:22:33:44:55

dst MAC

*

src IP

192.168.12.1

dst IP

*

src TCP/UDP

*

dst TCP/UDP

80

The wildcard matching fields

The header fields of the arriving data packet

src MAC

00:11:22:33:44:55

dst MAC

00:66:77:88:99:AA

src IP

192.168.12.1

dst IP

192.168.12.100

src TCP/UDP

2020

dst TCP/UDP

80

The corresponding exact matching fields

matched matched matchedcompliment compliment compliment

src MAC

00:11:22:33:44:55

dst MAC

00:66:77:88:99:AA

src IP

192.168.12.1

dst IP

192.168.12.100

src TCP/UDP

2020

dst TCP/UDP

80

Figure 2. An example of the wildcard matching fields and the exact matching fields.

OpenFlow controller

Network infrastructure

Matching fields

in OpenFlow

Matching field

translator

Matching fields

in OpenFlow

End-host

Ma"ng field used in the

network infrastructure

Figure 3. Limiting the matching fields in the network infrastructure.

fields. Along with the small data, BCAM stores the pointer
to the original matching fields stored in SRAM. When the
partial value or the hash value of the data packet header is
matched to the data in BCAM, the correctness of the matching
is confirmed by referencing the original exact matching fields
in SRAM. This method requires a chipset that is capable of
performing a certain amount of complex logic.

III. PROPOSAL OFOPENFLOW DEPLOYMENT USING THE
L2-BASED SWITCHES

We propose a technique that enables deployments of Open-
Flow networks using simple, low-cost switches. The main idea
of this technique is to limit the use of matching fields to
the single source MAC header inside the network (Figure 3).
Switches inside the network simply match on the source MAC
header fields of the data packets. Meanwhile, the technique
enables an OpenFlow controller and the end-hosts to use all
of the matching fields that are normally supported in OpenFlow
as the matching fields. As a result, this technique retains the
programmability of OpenFlow for an OpenFlow controller.
Because the single MAC header is the only matching field
for single flow entries in a switch, more flow entries can be
stored in BCAM. Furthermore, the switch simply matches on
the MAC header. As a result, the chipset for the switch requires
only minor extension beyond what is required in an L2 switch.

A. Summary of the proposed technique

The technique maps the matching fields that the OpenFlow
controller and end-host manage to the corresponding MAC
addresses that are manged by switches inside the network.

Correspondence

manager

OpenFlow controller

End-host

Matching field translator

Flow entry

translator

Matching fields Flow entry

Packet header

translator

Switches

Handling flow entries

originally set by the

OpenFlow controller.

Se#ng edge

switches to translate

data packet headers.

Figure 4. The architecture of the matching field translator.

The matching fields for the OpenFlow protocol messages are
mapped for the OpenFlow controller. The header fields of data
packets are mapped for end-hosts. In the section below, we
refer to the translated MAC addresses that are managed by
switches inside the network handle asMAC ID address.

There is a manager for the correspondence between the
exact matching fields and the MAC ID addresses. The cor-
respondence is global throughout the network. Based on this
correspondence, the exact matching fields that are specified by
the OpenFlow controller are translated into the source MAC
ID addresses and the source MAC ID addresses are stored in
the BCAM of the switch. For the wildcard matching fields, the
exact matching fields are determined using the header fields
in actual data packets that arrive, and then, the exact matching
fields are translated into the MAC ID addresses.

At a network ingress switch, the source MAC header in
the data packet is replaced with the MAC ID address, which
corresponds to all of original header fields in the data packet.
At a network egress switch, the original header fields from the
data packet are recovered based on the correspondence with
the source MAC ID address in the data packets and the data
packet is transferred to the end-host.

B. Architecture

There is a proxy between the switches and the OpenFlow
controller that is referred to as a “matching field translator”.
For the OpenFlow controller, the matching field translator
behaves like an OpenFlow switch. For the switches, the

223Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

TABLE I. A N SIMPLE EXAMPLE OF THE CORRESPONDENCE OF THE

ORIGINAL MATCHING FIELDS AND THE MAC ID ADDRESSES.

Original L2–L4 headers MAC ID address
L2 L3 L4

00:11:BB:CC:DD:EE 192.168.1.1 80 00:00:00:00:00:01
00:11:BB:CC:DD:EE 192.168.1.1 22 00:00:00:00:00:02
00:01:BB:CC:DD:FF 192.168.1.100 80 00:00:00:00:00:03

matching field translator behaves like an OpenFlow controller.
As shown in Figure 4, there are the correspondence manager,
the flow entry translator, and the packet header translator in
the matching field translator.

1) The correspondence manager:The correspondence
manager handles the correspondences between the exact
matching fields and the MAC ID address. For the exact
matching fields, the correspondence manager allocates a 48-
bit ID in the form of a MAC address. Table I shows a simple
example of the correspondence between the matching fields
and the MAC ID addresses. The matching fields and the IDs
are in a one-to-one correspondence. There are two modules that
search the correspondence: the flow entry translator and the
packet header translator. If the correspondence manager has not
allocated IDs to the matching fields yet, it allocates a new ID
and returns it as the MAC ID address. This ID allocation can
be implemented by allocating sequential numbers to the new
exact matching fields. Searching can be implemented using the
hash method in a constant time.

Note that the MAC ID address always serves as the basis
for the matching fields that are specified by the OpenFlow
controller or for the header fields in the data packets that are
sent and received by end-hosts. As a result, when the original
matching fields are searched using the MAC ID address, the
corresponding matching fields always exist.

2) The flow entry translator:The flow entry translator
modifies and relays the OpenFlow protocol messages between
the OpenFlow controller and the switches. For a flow entry in-
stallation for the exact matching fields, the flow entry translator
simply replaces them with the corresponding MAC address and
forwards the message to the switch.

For a flow entry installation for the wildcard matching
fields, the flow entry translator determines the corresponding
exact matching fields when the new data packet arrives at the
switch. Then, the flow entry translator obtains the correspond-
ing MAC ID address, and sends the flow entry installation
message for the MAC ID address.

For a flow statistics request, from the OpenFlow controller,
for the flow entry of the wildcard matching fields, the flow
entry translator collects the flow statistics from the switch,
at first. The objectives of the collection are the flow entries
of the exact matching fields that correspond to the wildcard
matching fields. Then, the flow entry translator responds with
the aggregated value as the statistics for the requested flow
entry.

3) The packet header translator:The packet header trans-
lator modifies the header fields of data packets that are
transferred through the edge ports (i.e., the ports that connect
directly to the end-hosts) of the edge switches. For a data
packet that is sent from an end-host, the packet header trans-
lator simply replaces the source MAC header with the MAC ID

Backbone

network

ISP’s OpenFlow controller

Career access

network

Matching field translator

Edge switch

Switch inside

the network

Figure 5. Deployment in a carrier access network.

address corresponding to the original header fields in the data
packet. For a data packet that is sent from the switch to the end-
host, all of the header fields are set to the values in the exact
matching fields that correspond to the source MAC ID address
of the data packet. Note that header fields other than the source
MAC header are modified at an egress switch because the
OpenFlow controller may have modified other header fields.

C. Deployment Scenario

The proposed architecture can reduce the capital expendi-
ture (CAPEX) and operational expenditure (OPEX) for infras-
tructure in a carrier access network deployment scenario [2].
On the carrier access network, an ISP’s controller manages
flows for clients in order to provide customized networks
settings for virtual private network (VPN), Internet Protocol
television (IPTV), content delivery network (CDN) services,
etc. As shown in Figure 5, an ISP’s controller manages
switches in central offices and data centers in the carrier access
network via the matching field translator. Edge switches for
packet header translation exist in each homes. Although the
edge switches need to match all of the header fields, the cost
of edge switches is not high. Since the amount of traffic is
relatively low in individual home, software-based switches are
sufficient for meeting the demands that are replaced on edge
switches.

IV. D ETAILED IMPLEMENTATION

In this section, we describe the detailed implementation
of packet header translation at ingress and egress switches,
and the handling of flows (i.e., translations for flow entry
installations, obtaining flow statistics, and managing packet-
out messages). These scenarios involve translations of the
matching fields into the MAC ID addresses.

A. Translation of data packet headers

Edge switches rewrite the headers of data packets that
are sent directly from and to end-hosts. The edge switches
include OpenFlow functionality, i.e., they can manage all of the
supported header fields. An edge switch has at two ports. One
is connected to an end-host in a home network. The other is

224Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

connected to the central office, i.e., the carrier access network.
The packet header translator is configured in advance with
information that specifies the port that connects to the end-
host or the central office.

When an unknown data packet (i.e., no matching flow entry
is set) arrives at the port in the edge switch that connects to an
end-host, the switch sends a packet-in message to the packet
header translator. Then, the packet header translator obtains
the corresponding MAC ID address for the header fields in
the data packet. Finally, the packet header translator sets the
flow entry in the edge switch. The matching fields for the flow
entry include the header fields of the data packet. The actions
that are performed include modifying the source MAC header
to the corresponding MAC ID address and sending out the
data packet from the other port. Subsequent data packets for
the same header fields are simply matched. Then, flow entry
actions are applied and the data packets are transferred.

When an unknown data packet arrives at the port of an
edge switch that connects to the central office, the switch
obtains the flow entry from the packet header translator. The
flow entry is used for recovering the original data packet
header and transferring the data packet from the other port.
The matching fields in the flow entry include the source MAC
ID address, which corresponds to the original header fields.
The actions that are performed include the modification of all
of the header fields to the original header fields. Note that
the OpenFlow controller may modify arbitrary header fields
in data packets in the network. Since only the source MAC
header is managed in the network, other header fields are
left unchanged. However, the source MAC ID address of the
arriving data packet corresponds to the header fields when the
data packet arrives at the switch. This is guaranteed by the
translation of the flow entry installation that is described in
Section IV-B2.

B. Flow Entry Installation

In order to manage flows, the flow entry translator manages
the correspondence of the original flow entries and the exact
matching fields for the flow entries that have actually been
installed (Table II). The original flow entries are for the wild-
card or exact matching fields that were set by the OpenFlow
controller. The installed flow entries are for the exact matching
fields, which are the same as the original exact matching
fields or the exact matching fields that were specified by the
data packet that actually arrived. The flow entry installation
process is described in the section below. In this process, the
correspondence database (i.e., Table II) is updated when a flow
entry is installed into, or removed from the switch.

For the installation of a flow entry whose matching fields
are the exact ones, the flow entry translator simply translates
the flow entry whose matching fields are the source MAC ID
address, and installs (“FI-iii” in Figure 6). For the installation
of a flow entry whose matching fields are the wildcard values,
the flow entry translator installs possible flow entries in the
switch first in order to preserve the consistency of the priorities
in the switch’s flow table (“FI-i” in Figure 6). Then, the flow
entry translator determines the corresponding exact matching
fields (“FI-ii” in Figure 6) and installs the flow entry (“FI-iii”
in Figure 6) .

Are the

matching fields

wildcard?

Receiving a flow_mod

message.

(FI-ii) Determining the exact

matching fields by the every

arriving unknown data packets.

(FI-iii) Replacing the matching

fields with the source MAC

address corresponding to the

exact matching fields.

Sending the flow_mod

message to the switch.

(FI-i) Se#ng the possible flow

entries to avoid the conflict of

the priority in the flow table.

Yes

No

Figure 6. Summarized process of flow entry installation.

1) Maintaining the priorities in the flow table (FI-i):As
described in Section IV-B2, for a flow entry for the wildcard
matching fields, the flow entry translator does not immediately
install the flow entry when it receives the flow entry installation
message, i.e., a flowmod message. Due to the time lag that is
associated with the installation of a flow entry, an arriving data
packet can be matched inappropriately to another flow entry
whose priority is lower than that of the original one.

For instance, in Table II, let us assume that a flow en-
try for switch 0x1 (the priority is 65536 and the matching
fields are “00:11:22:33:44:55, 192.168.10.2, 80”) is not in-
stalled. Meanwhile, let us assume that another flow entry for
switch 0x1 (the priority is 65534 and the matching fields
are “00:11:22:33:44:55, 192.168.10.2, 80”) is installed. Subse-
quently, a data packet that arrives with header field values of
“00:11:22:33:44:55, 192.168.10.2, 80” should be matched to
the flow entry with priority 65536. However, the data packet
matches to the one with priority 65534, and the switch fails to
send a packet-in message. This conflicts with the OpenFlow
controller because the OpenFlow controller assumes that the
data packet matches to the flow entry with priority 65536.

In order to avoid this conflict, the flow entry transla-
tor installs the possible flow entries for the exact matching
fields corresponding to the flow entry (denoted by “E”) for
the wildcard matching fields. First, the flow entry manager
compares the wildcard matching fields forE and the exact
matching fields for the flow entries that have already been
installed for the lower priorities in the flow table. Then, for
the installed flow entries that are found, whose exact matching
fields overlap with the matching fields ofE, the flow entry
translator immediately installs the flow entries that correspond
to E. The exact matching fields of the installed flow entries
are the same as the matching fields for the flow entries that
were found. The priority of the flow entries are the same as
the priorities forE. The actions for the installed flow entries
are the same as the actions forE. The specified flow entries
are translated and installed by the same process that is found
in “install-iii” in Figure 6.

2) Determining the matching fields and installing the flow
entry (FI-ii): The flow entry translator determines the corre-
sponding exact matching fields based on the data packets that

225Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

TABLE II. A N EXAMPLE OF THE FLOW ENTRY CORRESPONDENCE DATABASE.

Switch ID Original matching fields Priority Installed exact matching fields
0x1 00:11:22:33:44:55,∗, 80 65536 00:11:22:33:44:55, 192.168.10.1, 80

65536 00:11:22:33:44:55, 192.168.10.2, 80
0x1 00:11:22:33:44:55, 192.168.10.2, 23 65535 00:11:22:33:44:55, 192.168.10.2, 23
0x1 00:11:22:33:44:55, 192.168.10.2, 80 65534 00:11:22:33:44:55, 192.168.10.2, 80
0x2 00:11:22:33:44:55, 192.168.10.1,∗ 65536 00:11:22:33:44:55, 192.168.10.1, 23

65536 00:11:22:33:44:55, 192.168.10.1, 80
0x2 00:11:22:33:44:55, 192.168.10.2, 23 65535 00:11:22:33:44:55, 192.168.10.2, 23

OpenFlow controller

Matching field translator

1)Se"ng flow

entry

Inside switch

End-host

Edge switch

Used header

fields

4)Matching of

original fields

*
*

ac$on3)recovery
5)transla$on

Correspondence

manager
Flow entry translator

3)

5)

2)packet-in (6)Installing the flow entry

ac$on

Figure 7. Installing a physical flow entry based on an arriving data packet.

Ac�on
Modify:

L4=F

The matching

fields

L2

A

L3

B

L4

C

Original flow entry
Correspondence of the

matching fields

L2

A

L3

B

L4

F
L2

Y

L2

A

L3

B

L4

C

L2

X

MAC ID

address
Original

Modify:

L2=Y

L2

X

Flow entry in the switch

Figure 8. Translation of header modification.

are arriving. When the flow entry translator receives a packet-in
message from the switch (#2) in Figure 7), it first recovers the
original L2–L4 headers from the source MAC ID address of
the data packet (#3) in Figure 7). Then, the flow entry translator
compares the L2–L4 headers with the wildcard matching fields
from the entries in the flow entry correspondence database (#4)
in Figure 7). If there is the flow entry for the wildcard matching
fields to be matched to, a flow entry translator generates a flow
entry using the exact matching fields that correspond to the
source MAC ID address in the packet-in message. Then, the
flow entry is translated and installed into the switch by the
same process that is described in “install-iii” (#5) and #6) in
Figure 7). If there is no flow entry to be matched to, the header
fields in the data packet are recovered using the original ones
from the source MAC ID address and the packet-in message
is transferred to the OpenFlow controller.

3) Translation of a flow entry (FI-iii):For an original flow
entry whose matching fields are exact, the flow entry translator
simply replaces the original matching fields with the source
MAC ID address corresponding to the original matching fields,
and installs the flow entry.

When the flow entry translator installs a flow entry into
the switch, the action for modifying the header field is also
replaced. When an OpenFlow controller modifies the header
field of a data packet, only the partial header field that is

to be modified is specified in the message. The flow entry
translator translates the action field so that only the source
MAC ID address is replaced (Figure 8). This translation
enables switches to modify only the source MAC header while
the source MAC ID address of the data packet in the network
always represents the original header fields that should be at
the given position in the network at that time. The translated
source MAC ID address is the one that corresponds to the
combination of the values of all header fields resulting from the
modification. The combination of the resulting header fields
can be determined by replacing the value of the partial header
in the matching fields with the value that is specified in the
action of the flow entry.

C. Other processes of flow handling

1) Obtaining flow statistics:If the OpenFlow controller
sends a message to obtain the flow statistics from the flow
entry for the exact matching fields, the flow entry translator
simply replaces the original matching fields to the source MAC
ID address. The MAC ID address corresponds to the original
exact matching fields.

If the request is for the flow statistics for the wildcard
matching fields, the flow entry translator collects the flow
statistics from the switch, sums them up, and responds with the
sum for the flow statistics from the original flow entry. Since
the flow statistics represent the number of data packets that
were matched to the flow entry, the sum of the flow statistics
for the corresponding flow entries that were installed for the
exact matching fields is returned.

2) Packet-out:A packet-out message is for sending out a
data packet from the OpenFlow switch. In the message, the
data packet that is being sent is specified by the buffer ID
or by the data packet included in the message. If the data
packet is included in the message, the flow entry translator
replaces the source MAC header with the MAC ID address
that corresponds to the original header fields in the data packet.
Then, the message is forwarded to the switch and the switch
sends out a data packet with MAC address that corresponds to
the original header fields.

V. EVALUATION

The proposed technique enables simple, low-cost imple-
mentations of hardware-based switches for OpenFlow infras-
tructures. However, the matching field translator adds over-
heads. The overhead is especially critical for the data trans-
mission performance. The overheads that are caused by the
matching field translator are caused by the latencies for flow
entry settings. In our proposal, the corresponding matching
fields are determined for each new data packet.

226Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

In order to evaluate the latency from the flow entry installa-
tions, we measured the lost data size due to installations by the
flow entry translator. For comparison purposes, we measured
the lost data size on a network that was controlled directly by
an OpenFlow controller. The parameter that affects the delay
of the flow entry installation process is the number of original
flow entries for the wildcard matching fields that are set by the
OpenFlow controller. The number of original flow entries for
the wildcard matching fields directly affects the delay because
the matching to the wildcard matching fields is implemented
by software, i.e., linear searching.

A. Settings

We assumed a simple network whose data plane was
composed of two end-hosts, two edge switches, and a switch.
On the control plane, there was an OpenFlow controller and
a matching field translator. There was no matching field
translator and the software edge switches functioned as the
switching hubs when measurement were being performed in
the network without the proposed technique. The OpenFlow
controller and the matching field translator ran on systems
with an Intel Xeon E5520 processor and 6GB RAM. The edge
switches used systems with Intel Celeron Dual-Core T3330
processors with 2GB RAMs that ran Open vSwitch [8]. We
used the USB Network Interface Cards (NICs) as the ports of
the edge switches. The end-hosts ran on systems with Intel
Celeron Dual-Core T3330 processors and 2GB RAMs. In the
experiments, the operating system on the all hosts was Ubuntu
12.04 LTS.

The switch inside the network was NEC PF 5240 switch.
Based on the switch specification that we confirmed, the
switch supported a maximum buffer size of 544 packets, i.e.,
the maximum number of new data packets with the same
header fields that can be buffered in the switch is 544. Note
that our proposed technique does not require TCAM in a
switch, but does require the BCAM space for the source
MAC headers. Unfortunately, we did not have a hardware-
based switch that incorporates the required and necessary
functionality for the proposed technique. As a result, we used
the hardware-based OpenFlow switch that includes TCAM
when we ran the matching field translator. The exact matching
fields of the source MAC ID addresses for the flow entries
installed by the matching field translator were processed using
TCAM. However, since the matching performance of TCAM
and BCAM is same for the exact matching fields, the switch
used in this experiment did not affect the results in terms of
the packet forwarding performance of a switch in the network.

The OpenFlow controller set the number flow entries for
the wildcard matching fields when it connected to the switch.
When we used the matching field translator, the flow entries
were stored in the matching field translator at first. However,
if we did not use the matching field translator, the flow entries
were installed immediately into the switch.

We used iperf to send data packets between the end-hosts.
The UDP packets were sent at a rate of 75.40 Mbps because
that is the maximum throughput for environment that was used
in the experiment. The maximum throughput was low due to
the USB NICs. However, it was sufficient because we assumed
that the edge switches were home router-class switches. In the
experiments, the size of a UDP datagram was 1.47 KB.

0.00

5.77
6.11 5.95

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Without the

matching

field

translator

100 wildcard

entries

1000

wildcard

entries

5000

wildcard

entries

S
iz

e
 o

f
Lo

st
 D

a
ta

 (
M

B
)

Figure 9. Lost data size vs. the wildcard entries in the flow entry translator.

B. Results

We measured the total lost data size for the first 1 seconds
of sending UDP packets. Note that, regardless of the number
of the wildcard flow entries, packet loss ended within 1 second
in our experiment. Figure 9 shows the sizes of the lost data
based on the numbers of wildcard entries in the flow entry
translator and also for the cases where the OpenFlow controller
was connected directly to the switch. The average for 10
experiments is shown.

As expected, a certain amount of data was lost when the
flow entry translator was used. In this experiment, the size
of the lost data was in the range of 5.77–6.11 MB. At most,
the data for1.47KB ∗ 544packets= 799.68KB was buffered
in the switch. Note that it was not possible to measure the
precise size of the buffered data because the buffer was in the
shared memory in the switch. The sum of the lost data and
the rough estimate for the size of the buffered data is less
than 7 MB. This is comparable with the buffer sizes in current
top-of-rack (ToR) switches, e.g., the HP 5900 has 9MB of
buffer space [9]. In general, the necessary buffer size depends
on the throughput and the rate at which data packets with new
header fields are arriving. Larger buffer sizes may be necessary.
However, since buffers can be implemented using SRAM, we
believe that the technique that we have proposed is capable of
enabling low cost switches for the OpenFlow infrastructure.
The cost is lower than the cost of using TCAM and complex
chipsets.

VI. RELATED WORK

Other than the approach that is described in Section II for
reducing TCAM power, there are also approaches that reduce
the cost of OpenFlow switches.

A. Software switch implementation

Software-based OpenFlow switch implementations uses
general purpose processors (GPP) and DRAM or SRAM
devices. The software implementation reduces the CAPEX and
the OPEX of the infrastructure significantly. Open vSwitch [8]
is the most widely used software for OpenFlow switch func-
tionality on Linux systems. Dedicated hardware is not required
when Open vSwitch is being used. It is designed for edge
switches for virtual machines in data centers. Matsumoto et

227Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

al. [10] proposed a hash searching method for high speed
matching to flow entries in RAM. For the exact matching fields
for a flow entry, the hash value is calculated immediately when
it is installed. For the wildcard matching fields for a flow entry,
matching for the packet that arrives first is performed using
one-by-one comparisons to flow entries in RAM. Then, the
hash value of the header in the first data packet is calculated
and the value is used for matching the subsequent data packets.
A software switch is not suitable for forwarding the massive
volumes of data packets in carrier access networks.

B. Product OpenFlow switches

Hybrid OpenFlow switches from NEC, HP, IBM, and
Juniper use combination of general purpose and dedicated
hardware devices. There are various patterns of combinations.
Examples include combinations of application-specific inte-
grated circuits (ASICs) and SRAM, combinations of TCAM
for a limited number flow entries and SRAM for other flow
entries, etc. The hybrid implementations can obtain high
performance levels and reduce costs slightly. We propose a
technique that would dramatically reduce the complexity of
an OpenFlow switch implementation and also achieve line-rate
packet forwarding performance levels.

C. IP source routing-like approach

Source flow [11] proposes an IP source routing-like ap-
proach. This technique embeds the action lists for data packets
from intermediates switches in the network into the header
fields at the ingress switches. Switches inside the network base
their actions on the pointers in the header fields. As a result,
the number of entries in the switch is the same as the number
of actions in the switch. Because the number of flow entries
is typically lower than of the number of actions that have
been performed in the switch, the technique can reduce the
number of entries in switches. The action list for the switch
is retrieved from a centralized controller like an OpenFlow
controller. The constraint on this approach is that all of the
actions have to be supplied for the data packet at the ingress
switch at once. Our proposal, on the other hand, virtualizes an
OpenFlow network completely, i.e., an OpenFlow controller
can see flows by obtaining the flow statistics at every hop in
the network. As a result, the proposed functionality offers a
higher level of control of the network than the source flow
technique.

D. Label switching

The label switching techniques enable all switches in the
network to match using only a single header that is referred
to as the label. At the ingress switch of the network, the
label for the data packet is added to the header fields of the
data packet or the header fields are replaced using the value
from the label. Inside the network, switches do not need to
have TCAM. Furthermore, the length of the matching field is
short. As a result, less BCAM space is sufficient. MPLS [12]
is widely used in carrier core networks. The MPLS label
is added at the ingress switch based on the destination IP
address. In the network, switches forward data packets based
simply on the label. However, MPLS does not have the same
level of programmability as OpenFlow because it has two
constraints: inflexible flow definitions (i.e., the label is based

on the destination IP address) and a lack of a global view of
the network.

PortLand [13] is designed to control routing for data center
communications using the MAC header as the label in order to
support the communications for many hosts at different sites
using a large space for a MAC addresses. For every data packet
that is destined for another site in the data center, the MAC
header is replaced at the gateway. The new MAC address
corresponds to the original MAC address and the ID of the
destination site. This correspondence is managed globally. The
MAC address is recovered at the gateway of the destination
site. The difference between PortLand and our proposal is that
PortLand is not designed to virtualize an OpenFlow network,
but is designed for construction of a large-scale L2 network
without the ARP broadcast overhead. On the other hand, our
proposal supports arbitrary flow definitions in the network.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper proposed a technique that enables construction
of OpenFlow networks using switches that have little more
than L2 switch functionality. Arbitrary flow definitions from
an OpenFlow controller are translated into flow definitions that
are based on the MAC ID address at the external matching
field translator and the flow entries are installed into the
switch. For the wildcard matching fields in the flow entry,
the corresponding exact matching fields are determined and
the flow entry is installed into the switch after the first
arrival of the matching data packet in order to avoid using
TCAM. For translations in the data plane, the matching field
translator manages the edge switches in order to modify the
MAC headers of data packets. In our proposal, the OpenFlow
interface is required in the switches inside the network in order
to manage the flow table externally and enable simply matches
on the MAC header. We believe that this type of switch can
be assembled as an extension of an L2 switch.

A future work will focus on a distributed implementation
for the matching field translator for scalability in carrier access
networks. In the architecture of the proposed technique, the
single matching field translator manages all of the switches
in the network. The functions of the packet header and the
matching field translators involve independent processes for
individual switches in the network. As a result, they can be
implemented easily in a distributed manner. Furthermore, the
global correspondence of the original header fields and the
MAC ID address can be managed easily by a distributed
lookup system, e.g., a distributed hash table. However, we need
to explore fast sharing schemes for the correspondence data
because the distributed version of the matching field translator
will be deployed at geographically remote sites. The time that
is required in order to reference the correspondence is critical
for the performance of the packet header and the matching
field translators.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-
son, J. Rexford, et al., “OpenFlow: Enabling innovation in campus
networks,” in Proceedings of the ACM SIGCOMM 2008 Conference,
vol. 38, no. 2, 2008, pp. 69–74.

[2] “SPARC deliverable d2.1: Initial definition of use cases and carrier
requirements,” 2010, [retrieved: Dec. 2013]. [Online]. Available:
http://www.fp7-sparc.eu/home/deliverables/

228Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

[3] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 3, 2006, pp. 712–727.

[4] J. Liao, “SDN system performance,” 2012, [retrieved: Dec. 2013].
[Online]. Available: http://pica8.org/blogs/?p=201

[5] “OpenFlow switch specification version 1.3.0 (wired pro-
tocol 0x04),” 2012, [retrieved: Dec. 2013]. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf

[6] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” in Proceedings of the ACM SIGCOMM 2011
Conference, 2011, pp. 254–265.

[7] P. Congdon, P. Mohapatra, M. Farrens, and V. Akella, “Simultane-
ously reducing latency and power consumption in openflow switches,”
IEEE/ACM Transactions on Networking, 2013, to appear.

[8] “Open vSwitch,” [retrieved: Dec. 2013]. [Online]. Available: http:
//openvswitch.org/

[9] “QuickSpecs HP 5900 Switch Series,” [retrieved: Dec. 2013].
[Online]. Available: http://h18004.www1.hp.com/products/quickspecs/
14252 div/14252 div.pdf

[10] N. Matsumoto and M. Hayashi, “Performance improvements of flow
switching with automatic maintainance of hash table assisted by wild-
card flow entries,” in Proceedings of the 10th International Conference
on Optical Internet (COIN 2012), 2012.

[11] Y. Chiba, Y. Shinohara, and H. Shimonishi, “Source flow: handling
millions of flows on flow-based nodes,” in Proceedings of the ACM
SIGCOMM 2010 conference, 2010, pp. 465–466.

[12] “RFC 2031: Multiprotocol label switching architecture,” 2001,
[retrieved: Dec. 2013]. [Online]. Available: http://tools.ietf.org/html/
rfc3031

[13] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, et al., “PortLand: A scalable fault-tolerant layer 2
data center network fabric,” in Proceedings of ACM SIGCOMM 2009
Conference, 2009, pp. 39–50.

229Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

