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Abstract—To improve highway traffic safety and traffic flow, it
is important to properly manage merging at junctions. Accurate
vehicle positions and velocities are necessary to achieve this, but
existing sensors have both advantages and disadvantages. Road-
side vehicle detectors are very accurate, but only available at fixed
points. By contrast, in-vehicle Global Navigation Satellite System
(GNSS) sensors can be used anywhere except in tunnels, but are
less accurate. However these sensors can compensate for each
other’s weak points. In this paper, we proposed a vehicle position
estimation method that combines roadside vehicle detector and in-
vehicle sensors. This gathers data from roadside vehicle detector
and in-vehicle sensors via different wireless networks, applies
Kalman filters to calculate accurate position and velocity. When
exchanging information over wireless networks, communication
delays occur and data arrival sequence is not guaranteed. Our
method can retroactively calculate vehicle position in the presence
of delays below a maximum acceptable threshold. The results
of simulation experiments show that our method can estimate
vehicle positions more accurately than using data from either
sensor alone.

Keywords–Sensor fusion, Position estimation, Communication
delays, DSRC, Intelligent transportation system.

I. INTRODUCTION

At highway junctions, vehicles merging into the main lane
are increasingly causing the traffic congestion in that lane
[1], and the 20-30% of highway truck accidents occur at or
near junctions [2]. Thus, appropriately managing traffic and
controlling merging at junctions is important for improving
both highway safety and traffic flow.

Several previous studies have investigated proper traffic
management and merging control at junctions. Cui et al. [3]
proposed a system for detecting collisions by estimating the
vehicle arrival time at junctions. Their system obtain the vehi-
cle positions and velocities from a monocular camera installed
at the junction and uses these to estimate the arrival times. Mi-
lanes et al. [4], local control system installed near the junction
receives position and velocity information from approaching
vehicles and send them a low-risk merging strategies. Chou et
al. [5] proposed a merging method based on Vehicle-to-Vehicle
(V2V) communication. Vehicles approaching the junction use
this to exchange their positions and velocities, then the vehicles
in the main lane create gaps for entering vehicles before they
have even reached the merging point. Hirai et al. [6] proposed
such a system that used roadside vehicle detection sensors,
installed before merging points. Roadside vehicle detection
sensors are often used to get presence of vehicles and vehicles’

Figure 1. Roadside vehicle detection sensor.

Figure 2. General-purpose GNSS sensor.

velocities on the lane in order to estimate traffic flows (see Fig-
ure 1). In Hirai’s approach, these are used to acquire vehicles’
velocities and estimate their arrival times at the merging points.
When a vehicle on the on–ramp will arrive at almost the same
time as a vehicle in the main lane, the system alerts the vehicle
in main lane, enabling to prepare for merging even if its driver
has not seen the vehicle on the on–ramp. Giving drivers longer
to prepare makes the process safe. Japan’s government started
the field tests of autonomous driving in Tokyo waterfront area
[7] and roadside vehicle detection sensors’ information can
be available in the filed tests. Proper traffic management and
merging control at junctions are considered by participating
companies in the filed tests.

All of these merging methods depend on vehicle position
and velocity information to properly manage traffic and control
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Figure 3. Existing approach1: Using GNSS sensors.
Figure 4. Existing approach2: Using roadside vehicle detection sensors.

Figure 5. Proposed approach: Combining both sensors.

Figure 6. Merging support system overview.

merging at junctions. The location estimation method using
a camera needs to be installed so that occlusion does not
occur, so the place where it can be used is limited. Although
accurate vehicle velocities can be obtained from speed sensors,
vehicle positions can be incorrect. These are often acquired
from position estimation methods using a Light Detection and
Ranging (LiDAR) or in-vehicle Global Navigation Satellite
System (GNSS) sensors. Since the position estimation method
using a LiDAR can estimate the position more accurately
than GNSS sensors, autonomous vehicles often use it for
position estimation. However, a cost of LiDAR is much
higher than general-porpose GNSS sensors and a LiDAR
will not be installed immediately in conventional vehicles.
GNSS sensors are often used to get position and accurate
time by receiving signals emitted from satellites. These can
function anywhere except in tunnels. Signals received from
satellites contain noise. Since high-precision GNSS sensors
can correct noise [8], they can obtain accurate positions but
they are very expensive. GNSS sensors mounted on vehicles
are almost general-purpose products (see Figure 2). They are
cheep but positions measured via them can, depending on
the location, differ from the true position by more than 10
meters. It has been confirmed that properly manage traffic
and control merging control at junctions cannot be performed
when vehicles’ position errors are large [5]. The system using
roadside vehicle detection sensors’ estimates the vehicle arrival
times accurately when the sensor is close to the merging point.
However, the error increases with the distance between the
sensor and the merging point. Moreover, establishment cost
is high and multiple installations are not reasonable because
roadside vehicle detection sensors are usually attached to poles
installed at roadsides and gates across the road (see Figure 1).

The errors in GNSS-based vehicle positions are almost
constant, except in areas where the environment is changing
rapidly. On the other hand, the errors in the positions estimated
by roadside vehicle detection sensors are small, as long as
the sensor is close to the merging point, but they increase

with the sensor’s distance from the merging point, leading
to large errors in the estimated vehicle arrival times. Thus,
we consider an approach that combines the positions obtained
from GNSS and roadside vehicle detection sensors. In this
way, we obtain accurate positions near the roadside vehicle
detection sensors but the error does not increase too much
when the roadside vehicle detection sensor is further from the
merging points. Position estimation method using both GNSS
and roadside vehicle detection sensors has not been considered
because roadside vehicle detection sensors are infrastructure
sensors and cannot be easily used unlike GNSS sensors. For
example, these have been managed by National Police Agency
in Japan and data from these can only be acquired at specific
authorized locations.

In addition, Dedicated Short-Range Communications
(DSRC) or Long Term Evolution (LTE) are used for V2V
and Vehicle-to-Infrastructure (V2I) communications. However,
exchanging information via such wireless networks leads to
communication delays. According to Dey et al. [9], these
are approximately 1.5[s] for LTE and 100[ms] for DSRC
(for communication between a vehicle traveling at 80[km/s]
and a roadside unit). These delays also mean the data arrival
times are not guaranteed. Thus, we believe that we obtain
more accurate vehicle positions by combining data from GNSS
and roadside vehicle detection sensors and compensating for
communication delays.

In this paper, we propose a vehicle position estimation
method that combines data from roadside vehicle detector
and in-vehicle sensors. This can retroactively calculate prior
vehicle positions in the presence of delays below the maximum
acceptable threshold. This paper makes the following two main
contributions.

1) A vehicle position estimation method that combines
data from roadside vehicle detector and in-vehicle
sensors.

2) A communication delays compensation method.
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1) In our system, a vehicle detection sensor is installed
before the merging point and a roadside unit is installed near
the junction. In-vehicle sensor information is used to estimate
its position and velocity. In addition, a roadside vehicle detec-
tion sensor is also used to estimate the vehicle position based
on the sensor position and vehicle velocity. The two estimates
are combined using a statistical approach proposed by Duffin
[10]. Previous studies used only one of position information
obtained from GNSS and roadside vehicle detection sensors
(see Figures 3 and 4). However, our method estimates positions
using both position information (see Figure 5).

2) Vehicle positions at earlier times are retroactively cal-
culated when older data arrives, up to the predetermined max-
imum communication delay. When the roadside unit does not
receive information from a vehicle, it estimates the vehicle’s
position based on the most recent information received from it.
Modified Kalman filters that take communication delays into
accounts has been proposed [11]. The second contribution of
this paper is applying the modified Kalman filter to the scene
of merging support.

This paper is organized as follows. Section II describes
the assumptions made in this study. Section III introduces
the proposed method. Section IV evaluates the method using
simulations, and then Section V presents results. Section VI
concludes the paper.

II. ASSUMPTIONS

In this study, vehicle detection sensors (mounted in gates)
are installed before the merging point and a roadside unit is
located near the junction (see Figure 6). All vehicles have
GNSS devices, speed sensors, and DSRC communication
devices. The communication range of DSRC is fixed. Its
communication area is limited in a hot spot. On the other
hand, DSRC has the advantage that the number of vehicles
simultaneously communicated with a roadside unit does not
become overcapacity because of the limited communication
area. Vehicles approaching the junction send their current
position and velocity, as well as the time the data was acquired,
to the roadside unit via DSRC. This information is repeatedly
sent at regular intervals within DSRC range and started to send
before the vehicle passes through the gate.

The vehicle positions and velocities are given in terms of
the average value and standard deviation. The vehicle detection
sensors are assumed to obtain the positions of the vehicle’s
center. The system clocks in the vehicles, roadside vehicle
detector, and roadside units are assumed to be synchronized.
There is some delay in the communications between vehicles
and roadside units. On the other hand, the communication
delays between the roadside vehicle detector and roadside
unit are assumed to be negligible because the communication
between them is via wire and dedicated connection. Finally,
we consider lateral movement but not vertical movement.

Figure 7 shows the environmental model used in this study.
Here, the vehicle drives from the start point toward the merging
point. A roadside vehicle detector is installed at x = xrvd

0 [m].
The vehicle sends information about its position (namely the
average xgps

t [m] and standard deviation σgps
t [m]) and velocity

(average vt[km/s] and standard deviation σvt
[km/s]) to the

roadside unit. Meanwhile, the roadside vehicle detector sends
the position of the vehicle’s center (average xrvd

0 [m] and
standard deviation σrvd

0 [m]) and the detection time t0[s] to
the roadside unit when the vehicle passes through the gate.

Figure 7. Illustration of the position estimation model and variable
definitions.

The roadside unit estimates the vehicle’s position, both us-
ing the information received from the vehicle (average x̂odo

t|t [m]
and standard deviation σ̂odo

t|t [m]) and using that from the
roadside vehicular detector (average x̂rvd

t|t−1[m] and standard
deviation σ̂rvd

t|t−1[m]). Then, it combines these two estimates to
obtain the final vehicle position (average x̂fsn

t [m] and standard
deviation σ̂fsn

t [m]).
The assumptions in this study came from actual field test

of Japan [7]. Support for autonomous driving by providing
information for automatically adjusting the speed and timing
of entering the main line at highway junctions has been consid-
ered in the field tests [12]. These information is provided from
roadside units installed near the vehicle detection sensors via
DSRC. Roadside units estimate the speed and timing to safely
join the main lane from the vehicle velocity obtained from
the vehicle detection sensors. Furthermore, there are already
previous studies on time synchronization [13]. Therefore, these
assumptions are realistic.

III. PROPOSED METHOD

In this section, we described our proposed position estima-
tion approach, followed by our method of compensating for
communication delays.

A. Position Estimation
Vehicle approaching the merging point send their position

and velocity information to the roadside unit via DSRC. This
applies Kalman filters to the data to estimate each vehicle’s
position before it passes through the gate. When the vehicle
passes through the gate, the roadside unit also receives the
estimated position of vehicle’s center from roadside vehicle
detector. The roadside unit produces a final estimate of vehi-
cle’s position by combining its estimated center and velocity
with the Kalman filters’ prediction using a statistical approach
proposed by Duffin [10].

Figure 8 presents a flow diagram showing the steps
performed to estimate the vehicle’s position when it passes
through the gate at time t0[s]. Here, the vehicle’s position
is estimated by applying Kalman filters to the position and
velocity information received from it until passes through the
gate. Kalman filters are often used to estimates the exact state
based on inaccurate, noisy information, hence, we use it here to
estimate the vehicle position from noisy position and velocity
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information.
Kalman filters are divided into prediction and correction

steps. During the prediction step, the vehicle’s position is
estimated based on the estimate from the previous time step
and the current vehicle velocity information. The correction
step adjusts this estimated position using the current vehicle
position information. The specific equations are as follows.

Prediction step:

x̂odo
t|t−1 = x̂odo

t−1|t−1 +
5

18
vtdt, (1)(

σ̂odo
t|t−1

)2

=
(
σ̂odo
t−1|t−1

)2

+

(
5

18
σvtdt

)2

. (2)

Correction step:

x̂odo
t|t = x̂odo

t|t−1 + kt

(
xgps
t − x̂odo

t|t−1

)
, (3)(

σ̂odo
t|t

)2

= (1− kt)
(
σ̂odo
t|t−1

)2

, (4)

kt =

(
σ̂odo
t|t−1

)2

{(
σ̂odo
t|t−1

)2

+ (σgps
t )

2

} . (5)

where x̂odo
t|t−1[m] and σ̂odo

t|t−1[m] are the average and standard
deviation of the vehicle position, respectively, generated by
the prediction step for timestep t [s], x̂odo

t|t [m] and σ̂odo
t|t [m]

are the average and standard deviation of the vehicle position,
respectively, generated by the correction step for timestep t [s],
vt[km/s] and σvt [km/s] are the average and standard deviation
of the vehicle velocity, respectively, generated by the correction
step for timestep t [s], kt is the Kalman gain at timestep t[s],
and 5

18 is a term to convert the vehicle velocity from [km/h]
to [m/s].

The roadside unit receives the position of the vehicle’s
center from the roadside vehicle detector at time t0[s], then
combines this with the velocity information received from the
vehicle, and the Kalman filters’ prediction step in order to
estimate the vehicle’s position. The specific equations are as
follows.

Position estimation:

x̂rvd
t = x̂rvd

t−1 +
5

18
vtdt, (6)(

σ̂rvd
t

)2
=

(
σ̂rvd
t−1

)2
+

(
5

18
σvtdt

)2

. (7)

where x̂rvd
t|t−1[m] and σ̂rvd

t|t−1[m] are the average and standard
deviation of the vehicle position predicted by the Kalman filters
at timestep t [s], and vt [km/s], σvt [km/s] are average and
standard deviation of the vehicle velocity at timestep t [s],
and 5

18 is a term to convert a vehicle velocity from [km/h] to
[m/s].

The vehicle position (average x̂rvd
t0 [m] and standard de-

viation σ̂rvd
t0 [m]) at timestep t0[s] is defines as the position

received from the roadside vehicle detector, and hence is given
by

x̂rvd
t0 = xrvd

0 , (8)

σ̂rvd
t0 = σrvd

0 . (9)

Figure 8. Flow diagram showing the steps performed to estimate the
vehicle’s position.

where xrvd
0 [m] and σrvd

t0 .[m] are average and standard devi-
ation, respectively, of the vehicle position received from the
roadside vehicle detector.

Finally, the two vehicle position estimates are combined
using a statistical approach proposed by Duffin [10], which
is based on Bayes’ Rule and Kalman filters. This approach
simply combines the two Gaussian distribution as follows.

Estimate combination:

x̂fsn
t = x̂odo

t|t +

(
σ̂odo
t|t

)2

(
σ̂odo
t|t

)2

+
(
σ̂rvd
t

)2 (
x̂rvd
t −x̂odo

t|t

)
, (10)

(
σ̂fsn
t

)2

=

1−

(
σ̂odo
t|t

)2

(
σ̂odo
t|t

)2

+
(
σ̂rvd
t

)2


(
σ̂odo
t|t

)2

. (11)

where x̂fsn
t [m] and σ̂fsn

t [m] are average and standard devi-
ation of the vehicle position obtained by combining the two
estimates.
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Figure 9. Overview of our communication delays compensation method.

B. Communication delays compensation

Since communication delays inevitable occur when ex-
changing information over wireless networks, it is neces-
sary to take account for them when estimating the vehicle
positions. Here, we use Kagami et al.’s approach, which
involves modified Kalman filters that accounts for communi-
cation delays [11]. This method retroactively calculates prior
positions and velocities when older data is received, up to
a predetermined maximum communication delay. However,
the modified Kalman filters’ model Kagami et al.’s proposed
is a multidimensional state space model. In this study, the
communication delays compensation is only used the concept
and Kalman filters’ model was changed to a one-dimensional
CV (Constant Velocity) model.

Figure 9 illustrates our method of compensating for com-
munication delays. Here, L [s] is the maximum communication
delay, t−L [s] is L timesteps after the vehicle passed through
the gate, and the roadside units did not receive any position
and velocity information from the vehicle at timesteps t − 1
and t [s]. The data is received at timestep t − 2[s], and the
roadside unit uses this to retroactively calculate the vehicle
positions and velocities at timesteps t − 1 and t [s], working
back from the present time to the predetermined maximum
communication delay.

The vehicle position is estimated using (1)–(11) at each
time. The vehicle’s position is estimated based on the estimate
from the previous time step and the each time vehicle position
and velocity information. Finally, the two vehicle position
estimates are combined.

IV. EVALUATION EXPERIMENTS

In this section, our vehicle position estimation method is
evaluated using a series of simulations, conducted both with

TABLE I. SPECIFICATIONS OF THE PC USED FOR THE
SIMULATIONS.

CPU Intel Core i9-9900X @ 3.50GHz
Memory 64 GB
Storage Samsung MZVLB1T0HALR-00000

TABLE II. PARAMETERS OF THE GAUSSIAN WHITE NOISE MODEL.

GNSS error σw

Low 3
Medium 6

High 9

TABLE III. SPECIFICATIONS OF THE GNSS USED IN THE
EXPERIMENT.

GNSS chip UBX-M8030-KT (u-blox)
Receiver type GPS, QZSS, GLONASS
Tracking sensitivity -167[dBm]
Horizontal position accuracy 2.0[m]
Internal antenna Dielectric antenna (25x25x4[mm])

TABLE IV. PARAMETERS OF THE GAUSS–MARKOV RANDOM
PROCESS MODEL.

σg σr β
Case 1 0.2020 0.0027 1/600
Case 2 0.1030 0.3160 1/600

and without communication delays. Here, we used Matlab
R2019a. Table I shows that the specifications of PC used for
simulation.

A. Environment without communication delays
In this experiment, the position estimation accuracy was

evaluated in an environment where the communication delays
were assumed to be negligible. Here, our proposed method
(labeled as “Fusion” below) was compared with one that
simply applies Kalman filters to the in-vehicle sensor data
(labeled as “GNSS only”).

In this simulation, a vehicle drove from the start point at
x = −100[m] toward the merging point at a speed of 80
[km/h]. The roadside vehicle detector was installed at x =
0[m]. The standard deviations of the vehicle’s center position
and velocity were set to s σrvd

0 = 0.5[m] and σvt = 5[km/s].
The vehicle sent its position and velocity to the roadside
unit every 100[ms], and the roadside unit also estimated the
vehicle’s position every 100[ms]. The vehicle acquired its
position from a GNSS device, and we considered the two
models of GNSS position error, namely a Gaussian white noise
model and a Gauss–Markov random process model, as used
by a previous study [5]. There are described below, and the
simulation was repeated six times for each GNSS position error
models.

1) Gaussian white noise model: This is given by

xgps
t = xt + wt. (12)

where xt is the actual vehicle position and wt is Gaussian
white noise, i.e., wt ∼ N(0, σw). Here σw set as in Table II.
σw in Table II are set from a trial experiment using a general-
purpose GNSS sensor. The specifications of the GNSS used in
the experiment is Table III. When position data were acquired
using the sensor at multiple points in Nagoya University, the
most low value was σw ≈ 3, the most high value was σw ≈ 9.
Thus the σw is set as 3 in the low GNSS error and the σw

is set as 9 in the high GNSS error. As an intermediate value
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TABLE V. COMPARISON OF POSITION ESTIMATION METHODS.

Gaussian white noise model
(Low GNSS position error) Average [m] Standard

deviation [m]
GNSS only 0.298 0.182
Fusion 0.238 0.030

Gaussian white noise model
(Medium GNSS position error) Average [m] Standard

deviation [m]
GNSS only 0.360 0.290
Fusion 0.260 0.052

Gaussian white noise model
(High GNSS position error) Average [m] Standard

deviation [m]
GNSS only 0.467 0.461
Fusion 0.274 0.085

Gauss–Markov random process
model (Case 1) Average[m] Standard

deviation[m]
GNSS only 1.681 0.907
Fusion 1.280 0.591

Gauss–Markov random process
model (Case 2) Average [m] Standard

deviation [m]
GNSS only 0.691 0.467
Fusion 0.477 0.315

Figure 10. Position error versus true position (Gaussian white noise model
with low GNSS position error).

Figure 11. Position error versus true position (Gaussian white noise model
with medium GNSS position error).

between the high and low GNSS error, σw is set as 6 in the
medium GNSS error.

2) Gauss–Markov random process model: This is given by
the following equations [14]:

mt = e−βdtmt−1 + gt, (13)
nt = mt + rt, (14)

xgps
t = xt + 0.9nt. (15)

Figure 12. Position error versus true position (Gaussian white noise model
with high GNSS position error).

Figure 13. Position error versus true position(Gauss–Markov random process
model, Case 1).

Figure 14. Position error versus true position(Gauss–Markov random process
model, Case 2).

Here, represents time–correlated noise with time constant β
and Gaussian white noise gt, i.e., gt ∼ N(0, σg). In addition,
nt is the total noise , composed of mt and uncorrelated noise
rt, i.e., rt ∼ N(0, σr). As in the previous study [5], σg , σr,
and β were set as in Table IV. The case2 GNSS error is worse
than the case1 in the paper [5].

B. Environment with communication delays
In this experiment, our communication delays compensa-

tion method is evaluated by comparing the performance our
method (called “Fusion with DC” below) with those of two
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TABLE VI. EVALUATION OF OUR COMMUNICATION DELAYS
COMPENSATION METHODS.

Average [m] Standard
deviation [m]

GNSS only without DC -2.420 0.612
Maximum communication
delay of 0.10[s] Average [m] Standard

deviation [m]
GNSS only with DC -0.471 0.527
Fusion with DC -0.248 0.065

Maximum communication
delay of 0.12[s] Average [m] Standard

deviation [m]
GNSS only with DC -0.410 0.411
Fusion with DC -0.246 0.059

Maximum communication
delay of 0.14[s] Average [m] Standard

deviation [m]
GNSS only with DC -0.380 0.362
Fusion with DC -0.234 0.063

Figure 15. Evaluation of our communication delays compensation method
(maximum communication delay of 0.10[s]).

Figure 16. Evaluation of our communication delays compensation method
(maximum communication delay of 0.12[s]).

Figure 17. Evaluation of our communication delays compensation method
(maximum communication delay of 0.14[s]).

other methods.
The first method (labeled as “GNSS only without DC”)

estimates the vehicle’s position by applying Kalman filters to
the in-vehicle sensor data without compensating for commu-
nication delays. This only uses the most recent position and
velocity information received, ignoring older, delayed data.
The second method (labeled as “GNSS only with DC”) is
similar, but adds communication delay compensation.

Here, the communication delays were represented by Gaus-
sian white noise, i.e., N(d̄, σ2

d̄
) d̄ was set to 96.130[ms]

(following previous study [9]) and σd̄ was set to 2[ms]. We
considered three possible maximum communication delays,
namely 0.10, 0.12, and 0.14[s], and repeated each simulation
six times.

V. RESULTS

A. Position estimation

The simulation results are shown in Table V, and Fig-
ures 10-14 shows how the position error changed with the
vehicle’s position. Here, the horizontal axis represents the
true vehicle position, while the vertical axis represents the

position error, namely the difference between the true and
estimated vehicle positions. When the position error is positive
(negative), the vehicle’s estimated position is ahead of (behind)
its true position.

As Table V shows the average and standard deviation of the
position error are both lower for our “Fusion” method than for
“GNSS only.” In Figures 10-14, we see that , when the vehicle
passed through the gate and it became possible to obtain its
position accurately, the position error of the “Fusion” method
dropped sharply, becoming much lower than that of “GNSS
only.” This demonstrates that the proposed position estimation
method can be significantly more accurate than “GNSS only.”

B. Communication delays compensation
The simulation results are shown in Table VI, while

Figures 15-17 show how the position error changed with
the vehicle’s position, the horizontal axis represents the true
vehicle positions, while the vertical axis represents the position
error, defined as before.

As Table VI shows, both the average and standard deviation
of the position error were lower for our “Fusion with DC”
method than for the other approaches. In addition, the errors
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were lower for “GNSS only with DC” than for “GNSS
only without DC,” and were significantly lower for “Fusion
with DC” than for the other methods when the maximum
communication delay time was 0.14 [s]. We believe this is
because the amount of data that had to be discarded, due to
not being received within the maximum communication delay
time, decreased as the maximum communication delay time
increased.

In Figures 15-17, the position error is always negative
for the “GNSS only without DC” method because the latest
information received from the vehicle was out-of-data due to
communication delays. The fact that the errors are smaller
for both “GNSS only with DC” and “Fusion with DC”
confirms that our communication delays compensation method
performed well. In addition, the fact that the position errors
are lower for our “Fusion with DC” method than for “GNSS
only with DC” confirms that our proposed method can estimate
the vehicle position more accurately than “GNSS only” in an
environment with communication delays.

VI. CONCLUSION

In this paper, we have proposed a vehicle position esti-
mation method that combines roadside vehicle detector and
in-vehicle sensors. We have demonstrated that the proposed
method can estimate vehicle positions more accurately than
only using in-vehicle sensors. We have also confirmed that our
communication delay compensation method can perform well.
Since our method can estimate vehicle positions accurately in
environments with communication delays, it is more suitable
for managing traffic and controlling merging at junctions.

In future work, we will explore several topics. First, in
order to evaluate our proposed method in practice, we will have
to consider vertical movement. Since LTE introduces longer
communication delays than DSRC does, we will also need to
confirm that our communication delay compensation technique
can perform well for LTE. Third, communication delays are
influenced by various factors, such as the number of vehicles,
building, and so on, so we will need to confirm that our
communication delay compensation method is also effective
in practice. Finally, the proposed method can be applied while
the delay occurs according to a specific distribution. The
communication delay distribution tendency changes drastically
with the number of increasing vehicles. Thus, it is necessary to
consider a method that can handle it even if the communication
delay distribution tendency is changed.
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