
Delay-Conscious Defense Against Fingerprinting Attacks

Jingyuan Liang

Cleveland State University
Cleveland, Ohio, USA

Email: j.liang18@vikes.csuohio.edu

Chansu Yu

Cleveland State University
Cleveland, Ohio, USA

Email: c.yu91@csuohio.edu

Kyoungwon Suh

Illinois State University
Normal, Illinois, USA

Email: kwsuh@ilstu.edu

Abstract—In the past few years, many defense mechanisms have
been proposed against website fingerprinting attacks. Walkie-
Talkie (WT) built on top of Tor network is known to be one
of the most effective and efficient defense mechanisms. However,
we observed that WT significantly increases page loading times
(time overhead) while adding little bandwidth overhead compared
to other approaches. We analyze the cause of the increased
page loading time and present a defending approach called Tail
Timeout (TT), which addresses the problem, by introducing a
timeout mechanism limiting the maximum time for which a
pending request can block subsequent requests. Our experimental
results indicate that the proposed TT defense can significantly
reduce the page loading time while keeping similar defense
performance in terms of true positive and true negative ratios
achieved by WT.

Keywords–Website fingerprinting; Censorship; Tor; Machine
learning; User perceived experience.

I. INTRODUCTION

Internet censorship is on the rise [1]–[5]. Earlier, it was a
simple surveillance of information in plaintext [6], [7]. Then,
censors simply blocked the encryption layer when encryption
was not widely-deployed [8]. Now, censors face the choice of
what to do with the data that they cannot fully understand, and
they usually cannot afford a complete block [9]–[11].

One of the popular approaches adopted by censors is
known as website fingerprinting [12]–[14]. It uses features of
packets in a network communication to infer the contents in the
communication, or more precisely, to match the communication
to one of several known feature models. Most popular features
that have been exploited are: unique packet lengths, packet
length frequency, packet ordering, and interpacket timing [15].
Machine learning approaches, such as k-Nearest Neighbors [16]
can be used to conduct the fingerprinting attack. Once identified,
the censor may decide to block the network connection
completely. However, considering the fact that the identification
of such connections is not guaranteed to be accurate, it is also
possible that the censor may start deteriorating the quality
of service by, for example, randomly dropping packets, or
throttling the traffic [8], [17].

In this paper, we propose TT defense against website
fingerprinting attacks, as an extension of WT [18] defense,
which works on top of Tor [19]. WT is known to add little
bandwidth overhead compared to other approaches, while
keeping a moderate defending performance. We find that WT
increases webpage loading time substantially, which is already
high since it uses the Tor network. The page loading time may
get larger unbearably if the censor decides to randomly drop
packets as discussed earlier. TT defense addresses the problem

by limiting the resource wait time. Our experimental study
shows that WT increases page loading time by 50% or more
in 22% of top 100 websites. On the other hand, in the case of
TT of 1,000 msec, it occurs in only 7% of websites. Note that
the defense efficiency of TT is on par with WT, but alleviates
the time overhead problem.

This paper is organized as follows: Section II describes
background and related work on fingerprinting attacks and the
issues raised; Sections III and IV describe the TT defense
methodology, implementation and setup in our experiments,
respectively; Section V presents our experiment results; Sec-
tion VI provides conclusions and future work.

II. BACKGROUND

To combat against website fingerprinting attacks, many
efforts have been made on improving the Tor network itself or
developing ones on top of Tor [20]. This is because Tor itself is
already proven to be resilient to website fingerprinting attacks
to some degree [21], [22]. Although Tor itself is not a complete
standalone solution in combating website fingerprinting attacks,
the fact that Tor network traffics are packed into fixed-length
cells and sent over circuits built on-the-fly together with various
control cells provides some degree of defense. Major media
websites, such as BBC News, also adopted Tor, to ensure
that their contents can be distributed to audiences without
censorship [5]. Other defenses against website fingerprint
attacks are to reschedule the packets (or other transmission
units, such as Tor cells), or to insert padding units to confuse
the attacker. An example of defenses using the rescheduling
approach is Shmatikov’s adaptive padding [23], and one using
the inserting approach is Wright’s traffic morphing [24]. The
former approach adds a delay (“time overhead”) because a unit
can no longer be sent immediately once generated and needs
to wait for scheduling, and the latter approach wastes network
bandwidth (“bandwidth overhead”) because of the padded units
that do not carry useful information [25]. In addition, they
only defend in a single aspect and may not be able to stand
against modern attacks any more. More recent proposals for
defenses against website fingerprinting attacks (BuFLO [26],
Tamaraw [25], and WT [18]) use both rescheduling and padding.
For example, BuFLO renders different websites produce the
exact same packet sequence, defeating any possible classifier,
but it increases both bandwidth and time overhead as mentioned
above.

WT is known to be one of the most effective and efficient
defense mechanisms. It addresses the bandwidth overhead
problem by changing HTTP to a half-duplex communication
protocol, in which only one party transmits data until all data

15Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



held on this party get processed. With this modification, as much
as possible requests or responses are combined into a single
burst, within which there are only transmissions in the same
direction (i.e., either all requests or all responses), reducing the
total number of bursts and thus leading to a smaller amount
of padding units. Bandwidth overhead is less of a concern
when there exists a vast amount of bandwidth available. Rather,
time overhead in WT is a concern because it directly affects
the quality of service and is easily misinterpreted as service
unavailability.

III. DELAY-CONSCIOUS DEFENSE

WT works on top of Tor. With Tor, the adversary can
only see (or infer) a sequence of fixed-length cells and their
directions when users are browsing a website. The adversary
calculates the fingerprints of such cell sequences for a list of
popular websites and/or websites to be monitored, and stores
the fingerprints in advance. When users are browsing the web,
the adversary tries to match the cell sequence observed from
users against the dataset of known fingerprints, attempting
to identify the website users are browsing. Considering that
the cells are fixed-length and encrypted, what the adversary
can see are a number of alternating (as in direction) batches,
and the number of cells in each batch, as fingerprints. WT
combines some of the batches by delaying sending data (until
the responses to the previous batch are completely received),
reducing the number of batches. Furthermore, WT then adds
padding data to each batch, attempting to make cell sequences
more similar to each other. Since the number of batches is
already reduced, and padding is needed only for each batch,
the amount of padding data is limited.

The proposed mechanism, TT, is an improvement over
WT. It excludes the slow resources from WT scheduling, to
minimize the delay caused by such scheduling. However, the
time needed for a certain resource request is not known at
the time of request. What we can do is to remove it from the
pool of pending requests when it has stayed there for certain
tail time (t). Precisely speaking, the proposed mechanism is
that, as long as there is a previous request to the server with
pending response, which was sent no more than t seconds ago,
no further request is sent, and they are queued to be sent later;
as soon as all pending requests either get responses or become
older than t seconds, all queued requests can be sent at once in
one burst, then wait for the burst for their responses; and t is
a parameter, to be adjusted. Once the pool of pending requests
is empty, that is, requests either received a response, or have
been removed because it passed t, the next batch of requests
can be sent.

The number of such slow resources is usually less than
10% according to our study on top 100 websites. Considering
that only a small number of requests trigger such scenarios,
we expect that this change will not significantly increase the
number of bursts, thus not improving the fingerprintability as
demonstrated in our experimental evaluation.

A. WT and TT Implementation
We implemented WT and TT based on the Mozilla Firefox

browser using an browser add-on. The originally published
WT / half-duplex implementation was made by modifying
the Mozilla Firefox source code. The patch no longer applies
in current versions of Firefox because the relevant part in

Firefox code has been rewritten; we decided to keep the Firefox
platform, but reimplemented the procedure. To ensure that our
solution is future-proof, we made our implementation using the
webRequest WebExtensions API in Mozilla Firefox, instead
of patching the codebase of Mozilla Firefox itself. We also
included the support for a user-configurable tail timeout value.

We implement WT’s half-duplex communication by chang-
ing the way the client’s browser works. The destination server
does not need to make any change to accommodate the change
at the browser side; the client simply does not talk when the
destination server is talking. We use the webRequest API, which
allows extensions to attach event listeners to the various stages
of making an HTTP request, and the event listeners receive
detailed information about the request and can modify or cancel
the request. To achieve the half-duplex communication, the
add-on keeps track of all requests, and blocks requests from
being sent unless there are not any other requests on the way
according to the original WT half-duplex communication design.
In order to implement the TT as described in this section, we
record the timestamp for each request when a request is released
from the blocked status; when the current time goes past tail
timeout seconds after the recorded timestamp of a request, the
request is no longer considered on the way even if it is, and
does not block other requests anymore.

IV. EXPERIMENT SETUP

In our experiment with the defense implementation de-
scribed above, we accessed top 100 websites and captured
traces of Tor cell sequences during website accesses. We then
conducted attacks against the traces to compare the attack
accuracy between scenarios with WT or TT used, or TT with
different timeout values used. Further we also measured the
time needed to load those websites in the WT and TT scenarios,
and compared them with the loading time without defenses.

A. Data Set
We fetched Alexa’s top website list [27], which was also

used by Wang et. al. [18] in the WT research, as well
as other researchers working on the same area [28], as of
January 24, 2019, and removed duplicated subdomains (such
as tmall.com and login.tmall.com) and localization
domains (such as google.com and google.co.in) from
the list. We access the main page using HTTP protocol (which
redirects to the HTTPS version in many websites) to start the
browsing session for each site.

To build the Tor cell sequence data sets, from the list after
duplication removal, we use the top 100 websites as monitored
websites, with each website visited 50 times. Then we take
the next 5000 websites, each accessed once, as unmonitored
websites. We run the open world scenario in our experiment,
meaning that the attempted attack is trained on a part of
monitored data and tested on mixed unmonitored and another
part of monitored data; the attack is expected to identify whether
the tested traces are from the monitored websites and if one
trace is from a monitored website, which website it is from. In
contrast, a closed world scenario is when a the trace being tested
is always known to be from one of the monitored websites, and
all those monitored websites have been seen in the training set
by the attack. For each visit, we try one access with unmodified
Firefox, another with WT and three accesses using tail timeout
values of 1,000, 2,000 and 5,000 milliseconds, respectively.

16Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



For each access, we start a Firefox instance controlled by
Selenium [29] through geckodriver [30]. The Firefox instance
is configured by Selenium to use a SOCKS proxy listened by
a modified Tor instance, which emits cell information. The
Firefox instance also gets a WT/TT implementation extension
installed (other than the access without WT/TT), with tail time
value configured. At the same time, Tor cell capture and web
browsing to the intended target start together. After 15 seconds,
the Firefox instance is terminted and the captured cell sequence
is saved to a file as a part of the data set.

Note that in [18], the collection of Tor cells during web
browsing sessions with WT was done by doing TCP packet
captures. They then reassemble TCP packets into TCP streams,
and finally analyze TLS records and guess Tor cells based on
record lengths. This is also the approach an actual attacker have
to use, since all they can see are the packets, however there is
no guarantee that the original cells can perfectly reconstructed.
We adopted a different approach by modifying Tor and having it
emit individual cell information directly. Although this approach
is not practical for an attacker in real world, it would provide
the most accurate cell sequences, allowing us to focus on
evaluating the fingerprinting attacking and defending algorithms
operating on cell sequences. Note that we are working on a
higher layer before an outgoing SENDME is added and after
an incoming SENDME is removed, so we do not need to think
about SENDME removal. This would make attacking even
easier in the experiment, and eliminate noises that can occur
in real world attacking.

According to [18], there needs to be a padding step to
make traffic through WT actually not fingerprintable. There
were several factors to consider in the padding step, including
difficulties in implementation for real time packet streams, but
in consistence with the original research by Wang et. al., we
only do simulated padding on the cell sequence data set built
above to construct a “padded” data set. We follow the padding
procedure described by Wang et. al. [18] to align the cell
sequence being padded with a pre-selected decoy sequence by
bursts. Then, for each burst (incoming and outgoing), if the
number of cells is lower in the cell sequence to be padded than
the decoy sequence, we add padding cells in the cell sequence
to be padded inside the burst to make the number of cells equal
to the number of cells in the burst in the decoy sequence at the
same position. Specifically, we make the added cells uniformly
distrubuted between the first cell and the last cell in the burst
on the timeline, and for decoy sequence selection, we choose
the largest sequence in the same data set for all sequences in
the data set.

B. Performance Measures
To evaluate the defenses with and without the TT modifi-

cation, we follow the approach taken to evaluate the original
WT and measure the true positive rate (TPR), false positive
rate (FPR), true negative rate (TNR) and false negative rate
(FNR), on the cell sequences both before and after applying
the padding step.

We run k-Nearest Neighbors (k-NN) classifier-based at-
tack [16] on the cell sequences, which is shown in [18] by Wang
et. al. to achieve much better performance compared to previous
attack methodologies including SVM [12] and CUMUL [15].
There are also newer attacks, such as k-fingerprinting [31] and
p-FP [28], which outperforms k-NN, while we still chose k-NN

to ensure results comparable with the original WT research.
During the attack, 1,225 features are extracted for each trace,
and initial weights for those features are randomly chosen
between 0.5∼1.5.

To measure the page loading time, independent from
the 50 visits on each website collecting Tor cell sequences,
we access each of the 100 websites five times and record
the loading time values, and caluclate the average to build
a list of page loading time for the 100 websites, for each
TT configuration. For each access, we browse the website
and record the timestamps of navigationStart,
domInteractive and domComplete events in
window.performance.timing. If the page does
not finish loading within a certain time period, which is
120 sec when doing overall measurement and 300 sec
when inspecting individual websites, or an error occurs
during loading, the data is marked as such and may be
excluded from final processing. Otherwise, we calculate
(domComplete−navigationStart) as the page loading
time.

V. RESULTS AND DISCUSSION

As described above, evaluated data during experiments
include time needed to load the pages, and defense effectiveness,
as evidenced by attack accuracy on defensed datasets. To better
discuss the reason why page loading time is improved, we
further looked into two cases to identify the source of delay.

A. Page Loading Time
As described before, we measured website loading times

from experiments with 70 websites selected out of the top 100
websites. The 30 websites were excluded because of unstable
data and excessive amount of network errors, which usually
happen on foreign websites without a good connectivity to the
Internet. With each TT configuration, each site is accessed five
times and the average value of the loading time is taken.

Figure 1 shows the overview of the loading times of
websites before and after the TT change, and a significant
improvement can be observed. More specifically, WT increases
the website access time by 50% or more in 22% of the websites
in our dataset. On the other hand, in the case of TT of 1,000
milliseconds, it occurs in only 7% of websites.

For comparison, we also captured data in Figure 2 where the
domInteractive event is used in place of domComplete.
Unlike domComplete, which fires when the whole page com-
pletes loading including all the resources, domInteractive
comes earlier when the necessary information needed to
complete the DOM tree is ready, which is usually just the
document and synchronous scripts, but without any styling
information or media resources. It is expected that the slowdown
of WT compared to unmodified Firefox is less significant, since
the total amount of data and requests are both lower, which can
also been seen in the chart, while the use of TT still provides
some speed up. WT increases the website access time by 50%
or more in 12% of cases. On the other hand, in the case of TT
of 1,000 milliseconds, it occurs in only 2% of websites.

Looking into the data, we specifically noticed the ma-
jor improvement on some popular content-oriented websites.
For example, on cnn.com and nytimes.com, as well as
sina.com.cn, the loading times are reduced by a maximum

17Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



Figure 1. Page Loading Time Comparison (domComplete event used; page
loading time values in X-axis are normalized to unmodified Firefox, i.e.,

loading time of 1 in X-axis means an equal loading time of the same website
in unmodified Firefox, Y-axis shows the ratio of websites which finished
loading by the given loading time in each scenario; timeout = 1,000 ms)

Figure 2. Page Loading Time Comparison (domInteractive event used;
normalized to unmodified Firefox; timeout = 1,000 ms)

of 30∼50%, as shown in Table I. On nytimes.com, the
webpage could not finish loading within 300 seconds when
using WT and we terminated page loading at 300 seconds.
Also as expected, within the range of tail timeout values we
tested, smaller value reduces page loading time.

TABLE I. LOADING TIME (DOMCOMPLETE EVENT, SECONDS) OF CERTAIN
WEBSITES AT SOME DIFFERENT TAIL TIMEOUTS

Website Unmodified WT TT 1,000 TT 2,000 TT 5,000

cnn.com 46.758 123.441 59.231 67.160 121.596
nytimes.com 26.262 > 300 30.335 37.370 41.306
sina.com.cn 35.094 75.404 42.075 46.530 66.359

B. Waterfall Charts
To further identify the source of the delay, we captured the

timing information during page loading. For each request, we
capture the following four timestamps during page loading.

• Requested time: the time when the browser initially
wants to process the request

• Beginning time: the time when the request is released
by the add-on from the “blocked” status

• Ending time: the time when the request is taken out of
the “on-the-way” pool, or responded time, whichever
earlier

• Responded time: the time when the response of the
request is received, or the request is otherwise finished

The timing information is recorded into logging data in the
WT/TT implementation add-on to the Firefox browser when
requests are processed by the add-on. Between the beginning
time and ending time, requests are made by the browser with
its original scheduling mechanisms.

We tested nytimes.com and cnn.com for page loading,
and plotted the timing data for cnn.com in Figure 3 and that
for nytimes.com in Figure 4. For the sake of brevity, only
some requests may be shown for multiple requests in the same
half-duplex burst with similar timing characteristics, and only
first few bursts are shown.

We can notice that in Figures 3a and 4a, when no TT
is applied, certain requests, such as requests 7, 15 and 16 in
cnn.com and requests 6 and 7 in nytimes.com, took a
long time to finish, while other requests in the same burst
finished within one or two seconds. The slow requests held all
following requests so they cannot be sent, causing a significant
delay. Recall that in Table I, smaller tail timeout values result
in shorter overall page loading times. We see it here that when
a long loading time happens, only a few “bottleneck” requests
are blocking the whole browsing session. By using a smaller
tail timeout value, the maximum delay that can be caused by a
request is limited, and a shorter overall time can be expected.

We further tracked down the particular request 7 on
cnn.com. By looking at the page source code of cnn.com,
we noticed that request 7 was introduced in the HTML
document with a <script> tag with the async attribute
set. Request 7 points to https://native.sharethrough.com/assets/s
fp-creative-hub-listener.js and Sharethrough is an advertisement
platform. As we pointed out before, the resource fetched by
the request is exactly for advertisements, and should have a
relatively lower priority.

Web developers of cnn.com correctly specified the lower
priority for these resources by using the async attribute, then
by design, the browser tends to load these resources at a later
time, and gives priority to other resources. However with WT’s
half-duplex communication, no other requests can be sent. This
situation can be resolved only when the browser finishes the
low priority request, probably after an internal timeout, or with
the designed TT in the add-on, when the timeout passed, which
can be earlier than the internal timeout, saving some page
loading time. Similar results can be concluded from several
other requests in the same shape.

In addition to the lower priority requests, there can also
be requests to a slow remote server that take a relatively long
time. This scenario was not observed in our experiment, but
we can predict that such scenarios can happen and cause a
similar delay.

C. Defense Effectiveness
We also want to verify that TT does not increase the

fingerprintability on the traffic. We follow the approach taken
to evaluate the original WT, to run k-NN attacks on the cell
sequences using WT and TT, with padding (actual working
scenario) and without padding (as contrast), and measure the

18Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (seconds)

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
...

[15]
[16]
[17]
[18]
[19]
...

[42]
[26]
[44]
[46]
...

[71]
[72]
...

(a) Original WT

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (seconds)

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
...

[15]
[16]
[17]
[18]
[19]
...

[42]
[26]
[44]
[46]
...

[71]
[72]
...

(b) TT of 1 second

Figure 3. Loading cnn.com main page with original WT and with TT of 1 second. See [32] for URLs. (The beginning and the end of a slim line denote the
Requested time and Responded time, respectively. A black or white bar shows the beginning and end times of a request during the page loading process,

respectively. Neighboring requests with bars in the same color (e.g., [6]∼[16]) are in the same burst. In (b), the burst containing requests [18]∼[26] is not held by
requests [7], [15] and [16] for long time anymore.)

0 5 10 15 20 25
Time (seconds)

[1]
[2]
[3]
[4]
[6]
[5]
[7]
...

[20]
[21]
[22]
[23]
...

[30]
[31]
[6]
...

[34]
[36]
[38]
...
[2]

[45]
...

(a) Original WT

0 5 10 15 20 25
Time (seconds)

[1]
[2]
[3]
[4]
[5]
[6]
[7]
...

[20]
[21]
[22]
[23]
...

[30]
[32]
[6]

[34]
[36]
[38]
...
[2]

[45]
...

(b) TT of 2 second

Figure 4. Loading nytimes.com main page with original WT and with TT of 2 second. See [32] for URLs. (In (b), The burst containing requests [22]∼[30] is
not held by requests [6] and [7] for long time anymore.)

true positive rate (TPR), false positive rate (FPR), true negative
rate (TNR) and false negative rate (FNR).

In the evaluation, we count the number of true positives (TP),
false positives (FP), true negatives (TN), false negatives (FN)
given by the attack on the dataset, as well as total number of
actual positives (P) and actual negatives (N). We use TPR = TP
/ P, FPR = FP / N, TNR = TN / N, FNR = FN / P. For attempted
k-NN attacks against data sets, as described previously, we plot
the TPR in Figure 5 and the TNR in Figure 6. Note that tail
timeout value is applicable to TT (without and with padding)
only.

In Figure 5, it is observed that TT shows a comparable
defense to WT while padding improves the defense by 15∼21%
in both WT and TT. In Figure 6, it is observed TT (padding)
shows 3∼5% better defense than WT (padding) while they

perform worse than the Unmodified Firefox without padding,
which means to block more websites unnecessarily.

Considering TT is an extension to WT, and WT has
already been evaluated with other defenses and shown a decent
performance, we believe that TT is providing a good website
fingerprinting defense comparable to WT.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a new delay-conscious defense
mechanism based on WT against website fingerprinting attacks.
We demonstrated that WT could significantly increase the page
loading time for many popular websites, such as cnn.com
and nytimes.com in practice. By analyzing the websites
experiencing inflated page loading time under WT, we found
that the contents marked with low priority, such as online Ads

19Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



Figure 5. Attack accuracy - True Positive Rate (TPR)

Figure 6. Attack accuracy - True Negative Rate (TNR)

could incur such delays in practice. To address the problem of
increased page loading time, we proposed a TT defense as an
extension of WT. Our experimental results indicate that the TT
extension can significantly reduce the page loading time while
keeping similar defense performance in terms of true positive
and true negative ratios achieved by the original WT.

In our research, we arbitrarily selected the tail timeout values
to test (1,000, 2,000, etc. milliseconds). We demonstrated that
TT works with these values, while we have not identified an
approach to determine the optimum values. At the same time,
identifying the optimum values is currently not our goal. We
are leaving this as future work, as well as investigating the
trade-off between the defense effectiveness and user experience.

In the future, we also plan to try other attack models,
such as naı̈ve Bayes or the more trending deep learning
based classifiers [28], [33], or on larger datasets, to evaluate
the performance of TT. In addition, we plan to apply TT
extension to other defense mechanisms, such as LLaMa [34]
that potentially increase page load times due to the same head-
of-line issue.

REFERENCES

[1] R. Deibert, J. Palfrey, R. Rohozinski, J. Zittrain, and J. G. Stein,
Measuring Global Internet Filtering. MITP, 2008.

[2] C. S. Leberknight, M. Chiang, H. V. Poor, and F. Wong, “A taxonomy
of internet censorship and anti-censorship,” in Fifth International
Conference on Fun with Algorithms, 2010.

[3] P. Winter and S. Lindskog, How the Great Firewall of China is blocking
Tor. USENIX-The Advanced Computing Systems Association, 2012.

[4] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishnamurthy, “Your
state is not mine: a closer look at evading stateful internet censorship,”
in Proceedings of the 2017 Internet Measurement Conference. ACM,
2017, pp. 114–127.

[5] “Bbc news launches ’dark web’ tor mirror,” BBC News, Oct 2019.
[Online]. Available: https://www.bbc.com/news/technology-50150981

[6] J.-P. Verkamp and M. Gupta, “Inferring mechanics of web censorship
around the world.” in FOCI, 2012.

[7] R. Clayton, S. J. Murdoch, and R. N. Watson, “Ignoring the great firewall
of china,” in International Workshop on Privacy Enhancing Technologies.
Springer, 2006, pp. 20–35.

[8] S. Aryan, H. Aryan, and J. A. Halderman, “Internet censorship in iran:
A first look,” in Presented as part of the 3rd USENIX Workshop on
Free and Open Communications on the Internet, 2013.

[9] K. Ko, H. Lee, and S. Jang, “The internet dilemma and control policy:
political and economic implications of the internet in north korea,” The
Korean journal of defense analysis, vol. 21, no. 3, 2009, pp. 279–295.

[10] J. Holowczak and A. Houmansadr, “Cachebrowser: Bypassing chinese
censorship without proxies using cached content,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 70–83.

[11] C. Brubaker, A. Houmansadr, and V. Shmatikov, “Cloudtransport: Using
cloud storage for censorship-resistant networking,” in International
Symposium on Privacy Enhancing Technologies Symposium. Springer,
2014, pp. 1–20.

[12] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proceedings
of the 10th annual ACM workshop on Privacy in the electronic society.
ACM, 2011, pp. 103–114.

[13] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i
still see you: Why efficient traffic analysis countermeasures fail,” in 2012
IEEE symposium on security and privacy. IEEE, 2012, pp. 332–346.

[14] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods
for encrypted traffic classification and analysis,” International Journal
of Network Management, vol. 25, no. 5, 2015, pp. 355–374.

[15] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale,” in NDSS,
2016.

[16] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014, pp. 143–
157.

[17] R. Ensafi, J. Knockel, G. Alexander, and J. R. Crandall, “Detecting
intentional packet drops on the internet via tcp/ip side channels,” in
International Conference on Passive and Active Network Measurement.
Springer, 2014, pp. 109–118.

[18] T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against
passive website fingerprinting attacks,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 1375–1390.

[19] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Naval Research Lab Washington DC, Tech.
Rep., 2004.

[20] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an
efficient website fingerprinting defense,” in European Symposium on
Research in Computer Security. Springer, 2016, pp. 27–46.

[21] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in
Proceedings of the 12th ACM workshop on Workshop on privacy in the
electronic society. ACM, 2013, pp. 201–212.

[22] ——, “On realistically attacking tor with website fingerprinting,”
Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 4, 2016,
pp. 21–36.

[23] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix
networks: Attacks and defenses,” in European Symposium on Research
in Computer Security. Springer, 2006, pp. 18–33.

[24] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An
efficient defense against statistical traffic analysis.” in NDSS, vol. 9.
Citeseer, 2009.

20Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



[25] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 227–238.

[26] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 605–616.

[27] [Online]. Available: http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
[28] S. E. Oh, S. Sunkam, and N. Hopper, “p1-fp: Extraction, classification,

and prediction of website fingerprints with deep learning,” Proceedings
on Privacy Enhancing Technologies, vol. 2019, no. 3, 2019, pp. 191–209.

[29] “Selenium - web browser automation.” [Online]. Available: https:
//www.seleniumhq.org

[30] “mozilla/geckodriver: Webdriver for firefox.” [Online]. Available:
https://github.com/mozilla/geckodriver/releases

[31] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website fin-
gerprinting technique,” in 25th USENIX Security Symposium (USENIX
Security 16), 2016, pp. 1187–1203.

[32] J. Liang, C. Yu, and K. Suh, “Delay-conscious defense against finger-
printing attacks,” Cleveland State University, Tech. Rep., 2020.

[33] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 1928–1943.

[34] G. Cherubin, J. Hayes, and M. Juarez, “Website fingerprinting defenses at
the application layer,” Proceedings on Privacy Enhancing Technologies,
vol. 2017, no. 2, 2017, pp. 186–203.

21Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks


