
Provisioning Using Opendaylight OVSDB Into Openstack: Experiments 

 
 

Alexandru Eftimie,  
University POLITEHNICA of Bucharest, Bucharest, 

Romania 

Department of Telecommunication, University 

”Politehnica” of Bucharest, , Romania 

E-mail: alexandru.eftimie@gmail.com 

 

Eugen Borcoci 
University POLITEHNICA of Bucharest, Bucharest, 

Romania 

Department of Telecommunication, University 

”Politehnica” of Bucharest, , Romania 

E-mail: eugen.borcoci@elcom.pub.ro

 
Abstract – Network function virtualization (NFV) and 

Software Defined Networking (SDN) are complementary 

technologies that support flexible development or virtual 

machines in various environments, e.g., multi-tenant / multi- 

domain. While SDN separates the architectural control plane, 

versus data plane, NFV implements a lot of functions (that 

traditionally have been performed by dedicated boxes), by 

software – using virtualized network functions (VNF). There 

are still open research issues in both SDN and NFV, especially 

related to their cooperation and integration. This paper 

presents an experiment of deploying networks and virtual 

machines (VMs) using Openstack and Open vSwitch 

Database Management Protocol (OVSDB) from 

Opendaylight project. The study is oriented towards 

implementation aspects. Its main objective is to deploy an 

Openstack controller, an Opendaylight controller and two 

compute nodes and to create on top of existing infrastructure 

several networks and illustrate how this is automatically 

achieved and how overlay networks can coexist. The paper 

describes step by step how to configure controllers, how 

connectivity is achieved and how OpenFlow is used to 

forward packets. 

 
Keywords-Openstack; Network Function Virtualization; 

Software Defined Network; OpenFlow. 

 

 

I. INTRODUCTION 

In traditional networking architecture, the IP 

datagrams are carried and processed by network nodes that 

are individual boxes, each performing a specific function, 

such as forwarding, switching, filtering, firewall. These 

network boxes bring costs, capital expenditure (CAPEX) 

and operating expenses (OPEX), and there is no flexibility 

in using them as the network is growing and, most 

important, changing.  

Software Defined Networking (SDN) separates 

network control and data forwarding functions leading to 

centralized and programmable network control. SDN 

architecture has several main components such as: data 

plane consisting in network resources for forwarding 

traffic; control plane implemented as SDN controller, 

which manages the network resources; network 

applications plane. The interface between the forwarding 

and the control plane is the “southbound” interface, and the 

interface between the control plane and applications is the 

“northbound” [1]. 

Network function virtualization (NFV) aims to 

implement by software many functions, that traditionally 

have been implemented as expensive hardware-software 

combinations. Recent standards define the NFV 

architecture and also how to implement different 

virtualized network functions (NFV) in a virtual 

environment – to replace the traditional dedicated boxes 

which performed individual functions. The SDN and NFV 

are complementary techonologies, usable independently or 

in cooperation.  While NFV replaces hardware network 

elements, SDN deals with replacement of network 

protocols, bringing centralized control. [2] 

By decoupling the two planes (SDN) and by using the 

function virtualization (NFV) many borders of traditional 

networks can be overcome. All functions that are currently 

delivered by hardware boxes will be implemented in 

software, the deployments can be done automatically, on 

demand or by reacting to network changes. 

This paper is organized in three sections. Section 

number II is an introduction to the main technologies used 

and is describing the relevance of NFV and SDN. Section 

III will go thorugh all the implementation steps and details 

demonstrating the cooperation between the technologies 

and describing the results. 

II. NETWORK FUNCTION VIRTUALIZATION 

(NFV) and SOFTWARE DFINED NETWORK 

(SDN) INTEGRATION 

This section will summarize some aspects of Network 

Function Virtualization and Software Defined Network 

and introduce the SDN-NFV approach. 

A. Network Function Virtualization 

In traditional networks that do not yet benefit from 

virtualization, network features are implemented as a 

combination of software and hardware that are specific to 

a manufacturer; these are called network nodes. 

Virtualization of network functions is a step forward in the 

telecommunications environment by introducing 

30Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



differences in the way services are delivered compared to 

the current practice. These differences can be described as 

the following: 

• Decoupling hardware from software; 

• Flexible implementation of network feature; 

• Dynamic operations. 

Implementation, control and management of network 

functions are required in the context of NFV-enabled 

network nodes for various optimization purposes. Thus, 

many challenges relate to the algorithm and design of the 

system in terms of implementation of functions. One of 

these challenges is the automatic provision of network and 

processing resources based on the use of the underlying 

resources involved. A similar and probably the most 

important challenge is the placement and automatic 

allocation of VNFs, because their placement and allocation 

significantly influence service performance. Both 

automatic supply and placement require a global view of 

resources and a unified control and optimization system 

with various optimization engines running in it [2].  

 

Figure 1: Example of end-to-end network service using VNFs and 

forwarding graph [2] 

The end-to-end network services  can be composed of 

several VNFs, organized in  forwarding graphs (VNF-FG),   

as depicted in Figure 1. Terminals and network functions 

are nodes and correspond to equipment, applications, or 

even physical servers. 

B. Software Defined Network 

By separating control plane from data plane, the 

network switches become mainly forwarding devices. 

However, the SDN flow concept (and the flow tables 

installed in the SDN switches by the controller), allows a 

large range of processing actions to be executed upon the 

packets of a flow matching the flow tables. So, an SDN 

switch can be more powerful than a traditional router. A 

simplified view of SDN architecture is shown in Figure 2. 

 

Figure 2: SDN Arhitecture [3] 

The Opendaylight project [4]  is an open source SDN 

platform that uses open protocols to provide centralized 

control and monitor of network devices. Like many other 

SDN controllers, Opendaylight supports OpenFlow, 

offering network ready solutions for installation as part of 

the platform. 

The core of the Opendaylight platform is the Model-

Drive Service Abstraction Layer (MD-SAL). In 

Opendaylight, network-based devices and network 

applications are represented as objects or models; SAL is a 

mechanism for data exchange and adaptability between 

YANG models, representing network devices and 

applications. YANG models provide generalized 

descriptions of capabilities of a device or application 

without the need to know specific details of their 

implementation [5] [4]. 

C. Integration 

In the SDN-NFV approach the network functions are 

implemented as software modules, running on virtual 

machines with the control of a hypervisor, which allows 

the flexibility of supplying computing and network 

resources. Thus, because the computational capacity can be 

increased when needed, there is no need for over-

provisioning. . On the other hand, service chaining in SD-

NFV benefits from from improvement. For geographically 

spread networks, updating devices requires a high cost. 

Additionally, errors may occur in update operations, and 

reconfiguration may lead to disruption of the entire 

network.  

 

 

Figure 3: Openstack – Opendaylight integration  [6] 

However, with SD-NFV, service providers can create 

new connections without radically changing hardware. 

31Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



With intelligent service linkages, the complexity of 

resource delivery is significantly reduced. The SD-NFV 

architecture is still in the research phase; one possible 

integration is represented in Figure 3; a single control and 

orchestration framework is required to integrate the SDN 

controller, routing elements and virtual network functions. 

Moreover, due to the functionality dynamic feature and the 

provision of resources, this SD-NFV framework must 

provide coordinated control status [1] [7]. The Modular 

Layer 2 (ML2) plugin is a framework allowing OpenStack 

Networking to simultaneously utilize the variety of layer 2 

networking technologies found in real-world data centers. 

 

 

III. OVSDB WITH OPENSTACK USE CASE 

Openstack offers open APIs to support a wide range of 

applications and infrastructures, including Neutron API 

and Neutron / Multi-Layer 2 (ML-2) for networking. 

Neutron offers a "low-level" interface and was not 

designed to manage the data center substrates. The ML-2 

Neutron has been designed to expose data center switch 

capabilities, but there is currently a limitation to some 

virtual and physical switches. (Opendaylight - Cloud and 

NFV) 

Opendaylight is an open source framework for migrating 

to a SDN network architecture [8]. 

This section will cover all the steps done to configure 

and deploy an Openstack environment using OVSDB 

project from Opendaylight. This environment will be used 

to deploy network and instances on various compute node 

and to show how tunnels are automatically configured and 

how OpenFlow is used for forwarding the traffic [6]. 

A. Arhitcture and IP addressing schema 

For this experiment, a Fedora 32-bit image was used, 

with an average resource allocation as there will be several 

machines in place. For the experiment creating and 

managing the network using an Openstack controller and 

ODL controller through OpenFlow, 3 virtual machines 

were chosen. A virtual machine will act as a controller and 

two will be compute nodes. The used hypervisor is the 

Oracle Vm Virtual Box that was configured with two 

private networks, VirtualBox Host-Only Ethernet Adapter 

and VirtualBox Host-Only Ethernet Adapter 2, that are 

allocating IP addresses via DHCP from 192.168.56.0/24 

and 192.168.57.0/24. The addressing scheme is described 

in Table 1 and the interconnect and each machine role is 

depicted in Figure 4. 

After booting the VM’s the IP addressing is the 

following along with the roles inside the Openstack/ODL 

architecture: 

 

 

TABLE I ADDRESSING SCHEME OF THE THREE VMS 

VM Role Interface p7p1 Interface p8p1 

Fedora 

1 

Controller 

node 

192.168.56.117 192.168.57.113 

Fedora 

2 

Compute 

node 

192.168.56.118 192.168.57.114 

Fedora 

3 

Compute 

node 

192.168.56.119 192.168.57.115 

 

 

 

 

 

 

 

 

 

Figure 4: Roles of VMs 

To prepare the setup for deployment, there are 

several steps required: 

a) Start the OVS service - although this service 

should start automatically when running the 

devstack configuration script of Openstack, we 

can start the service using the following 

command: 

[fedora@fedora1 ~]$ sudo /sbin/service 
openvswitch start 
Redirecting to /bin/systemctl start  
openvswitch.service 

b) Configure the /etc/hosts file to reflect the host and 

IP addressing of the lab. This file will look the 

same on all three machines: 

[fedora@fedora1 ~]$ sudo vi /etc/hosts 
127.0.0.1   fedora1 localhost 
localhost.localdomain localhost4 
localhost4.localdomain4 
192.168.56.117 fedora1 
192.168.56.118 fedora2 
192.168.56.119 fedora3 
::1         localhost localhost.localdomain 
localhost6 localhost6.localdomain6 

c) Change the hostname on the VMs and reboot for 

the changes to take effect: 

[fedora@fedora1 ~]$ cat /etc/hostname 
[fedora@fedora1 ~]$ sudo hostname -b 
fedora2 
[fedora@fedora1 ~]$ sudo shutdown -r now 
 
 
 

Fedora 1 

Openstack 

controller 

Opendaylight 
controller 

Fedora 2 Fedora 3 

32Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



B. Starting the Opendaylight controller on the 

Openstack controller 

Configuration must be checked to be sure that the 

OpenFlow version used is 1.3 as all the scripts will ask for 

this version: 

[fedora@fedora1 ~]$ cd opendaylight/ 
[fedora@fedora1 opendaylight]$ grep 
ovsdb.of.version configuration/config.ini 
ovsdb.of.version=1.3 
 
Next action required is to launch the Opendaylight 

controller, using: 

 ./run.sh -XX:MaxPermSize=384m -virt ovsdb 
-of13 
Once started the deployment is done automatically and it 

will be finished when the FlowConfiv provider, 

GroupConfig provider, MeterConfig Provider and the 

Statistics Provider are started 

2019-05-07 12:21:34.153 CEST [pool-2-
thread-5] INFO  
o.o.controller.frm.flow.FlowProvider – Flow 
Config Provider started. 
2019-05-07 12:21:34.159 CEST [pool-2-
thread-5] INFO  
o.o.c.frm.group.GroupProvider - Group 
Config Provider started. 
2019-05-07 12:21:34.226 CEST [pool-2-
thread-5] INFO  
o.o.c.frm.meter.MeterProvider - Meter 
Config Provider started. 
2019-05-07 12:21:34.247 CEST [pool-2-
thread-4] INFO  
o.o.c.m.s.manager.StatisticsProvider - 
Statistics Provider started. 
The controller will start listen on TCP port 6633: 

[fedora@fedora1 ~]$ lsof -iTCP | grep 66 
java    1223 fedora   41u  IPv6  20211      
0t0  TCP *:6633 (LISTEN) 
java    1223 fedora   57u  IPv6  20216      
0t0  TCP *:6653 (LISTEN) 
 

C. Configure Openstack controller 

Openstack must be configured and the controller 

must be started using Devstack tool. It is required to keep 

the ODL controller started and a new SSH connection is 

made to Fedora 1. On Fedora 2 and 3 it can be done from 

same command line.  

a) Edit the local.conf file according to our IP 

addressing schema – I will copy here only the 

most important elements that need configuration: 

[[local|localrc]] 
LOGFILE=stack.sh.log 

SCREEN_LOGDIR=/opt/stack/data/log 
LOG_COLOR=False 
OFFLINE=True 
#RECLONE=yes 
HOST_IP=<IP-ADDRESS-OPENSTACK-CONTROLLER> 
HOST_NAME=fedora1 
SERVICE_HOST_NAME=${HOST_NAME} 
SERVICE_HOST=<IP-ADDRESS-OF-OPENSTACK-
CONTROLLER> 
url=http://<IP-ADDRESS-OF-ODL-
CONTROLLER>:8080/controller/nb/v2/neutron 
 

[fedora@fedora1 devstack]$ grep 192.168.56 
local.conf 
HOST_IP=192.168.56.117 
SERVICE_HOST=192.168.56.117 
url=http://192.168.56.117:8080/controller/
nb/v2/neutron 
 

SERVICE_HOST and the IP address from the url will 

always point to the controller, all other elements will be 

configured with local information. Having these changes 

made, Openstack can be started by running the stack.sh 

script and the installation is done automatically. During the 

installation it can be observed that in the ODL command 

line there are several messages showing the 

communication between ODL and Openstack [9]: 

 

2019-05-07 12:35:54 Starting Neutron 
2019-05-07 12:35:56 Waiting for Neutron to 
start... 
2019-05-07 12:36:04 {"versions": 
[{"status": "CURRENT", "id": "v2.0", 
"links": [{"href": 
"http://192.168.56.117:9696/v2.0", "rel": 
"self"}]}]}Added interface d0ced68a-2350-
4516-9908-a073fe208af2 to router 9a89b604-
750f-4f7b-a440-ce22e78321e1. 
 

osgi> 2019-05-07 12:35:59.978 CEST [http-
bio-8080-exec-1] INFO  
o.o.c.u.internal.UserManager - Local 
Authentication Succeeded for User: "admin" 
2019-05-07 12:35:59.980 CEST [http-bio-
8080-exec-1] INFO  
o.o.c.u.internal.UserManager - User "admin" 
authorized for the following role(s): 
[Network-Admin] 
 
Open vSwitch after the compute nodes are stacked: 

[fedora@fedora1 devstack]$ sudo ovs-vsctl 
show 
3cc9dac3-9fa6-4c69-acc1-a2d463396fc8 
    Manager "tcp:192.168.56.117:6640" 
        is_connected: true 

33Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



    Bridge br-int 
        Controller 
"tcp:192.168.56.117:6633" 
            is_connected: true 
        fail_mode: secure 
        Port "vxlan-192.168.56.118" 
            Interface "vxlan-
192.168.56.118" 
                type: vxlan 
                options: {key=flow, 
local_ip="192.168.56.117", 
remote_ip="192.168.56.118"} 
 

One thing to note is that the manager is configured 

automatically, and it always points to the ODL controller. 

The connection is done to OVSDB socket 192.168.56.117: 

6640. Also, the br-int bridge is created on all 3 instances - 

the controller is the same machine as the IP address 

192.168.56.117, but the connection is made on port 6633 

that indicates the connection to OpenFlow. During tests it 

has been noticed that it is mandatory to have the status of 

“is_connected” to be true. If it is not present, OVS is 

configured, but the connection is not available (no errors 

are being throwned, needs manual check). Same procedure 

needs to be done on Fedora 2 and Fedora 3. 

D. Provisioning 

Before starting to provision the infrastructure it must be 

checked if there are three hypervizors registered with 

Nova: 

• Populate the proper Keystone credentials for 

service client commands using the openrc file:  

[fedora@fedora1 devstack]$../openrc admin 
admin 

• Check hypervizor’s list: 

[fedora@fedora1 devstack]$ nova hypervisor-list 

+----+---------------------+ 
| ID | Hypervisor hostname | 
+----+---------------------+ 
| 1  | fedora1             | 
| 2  | fedora2             | 
| 3  | fedora3             | 
+----+---------------------+ 

 

• Run the add.imgage.sh script - this is required 

because the virtual machine we're working on is a 

Fedora 32-bit architecture and default Cirrus 

image is not 32 bit, so we add an image with x386 

architecture in Glance (cirros-0.3.1-i386) 

[fedora@fedora1 devstack]$ cat 
./addimage.sh 

[fedora@fedora1 devstack]$ ./addimage.sh 
Added new image with ID: a335d33d-fee1-
41be-8be9-458cd3f7e309 
/home/fedora/devstack 

• On this infrastructure 6 overlay network will be 

build, using GRE and VxLAN encapsulation: 

neutron net-create gre1 --tenant_id 
$(keystone tenant-list | grep '\sadmin' | 
awk '{print $2}') --provider:network_type 
gre --provider:segmentation_id 1300 
neutron subnet-create gre1 10.100.1.0/24 -
-name gre1 
A summary of those networks will look like this: 

 

• Starting instances on compute nodes: 

To create VM on the command line, the following 

commands were used, specifying which networks are to be 

attached. There is also the option to use the "availability 

zone" option to specify which compute nodes will host the 

VMs 

nova boot --flavor m1.tiny --image $(nova 
image-list | grep $IMAGE'\s' | awk '{print 
$2}') --nic net-id=$(neutron net-list | 
grep vxlan-net1 | awk '{print $2}') vxlan-
host1 --availability_zone=nova:fedora2 
 

 
 

One can observe on Fedora 2 that GRE and VxLAN 

tunnels have been automatically created between 

neighboring switches. We get a full mash between VM in 

this way and control their creation by specifying the 

location for each instance. 

 

[fedora@fedora3 devstack]$ sudo ovs-vsctl 
show 

34Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



3cc9dac3-9fa6-4c69-acc1-a2d463396fc8 
    Manager "tcp:192.168.56.117:6640" 
        is_connected: true 
    Bridge br-int 
        Controller 
"tcp:192.168.56.117:6633" 
            is_connected: true 
        Port br-int 
                type: internal 
            Interface "tap86dfa951-8b" 
        Port "vxlan-192.168.56.117" 
            Interface "vxlan-
192.168.56.117" 
                type: vxlan 
                options: {key=flow, 
local_ip="192.168.56.119", 
remote_ip="192.168.56.117"} 
        Port "gre-192.168.56.118" 
            Interface "gre-192.168.56.118" 
                type: gre 
                options: {key=flow, 
local_ip="192.168.56.119", 
remote_ip="192.168.56.118"} 
        Port "tapc42b0d97-43" 
            Interface "tapc42b0d97-43" 
        Port "vxlan-192.168.56.118" 
            Interface "vxlan-
192.168.56.118" 
                type: vxlan 
                options: {key=flow, 
local_ip="192.168.56.119", 
remote_ip="192.168.56.118"} 
        Port "gre-192.168.56.117" 
            Interface "gre-192.168.56.117" 
                type: gre 
                options: {key=flow, 
local_ip="192.168.56.119", 
remote_ip="192.168.56.117"} 
 
The network topology can also be checked via Openstack 

Horizon at http://192.168.56.117, using default credentials 

(user: admin, password: admin): 

 

 

Figure 5: Network topology from Openstack web interface 

In Figure 5 it can be seen the network topology obtained, 

each network being represented in different color and 

having corresponding hosts attached. 

E. End-to-end connectivity 

To understand how traffic is routed to such an 

infrastructure, OpenFlow inputs must be analyzed. For the 

present scenario, there are 3 OpenFlow tables: Table 0, 

Table 10, and Table 20. Table 0 is the default table. For 

each tunnel created, there is an OpenFlow port present in 

this table, and we can see that all these tunnels are finished 

in this table - the full mash network. Mapping between 

tunnels and OpenFlow ports in this table is done using 

"tun_id" as a key.  

In addition to provisioning, which involves 

networking, sub-networks, encapsulation configuration, 

and the launch of instances on the available infrastructure 

that has been presented so far, functional verification 

requires end-to-end connectivity between the controller 

and the created instance. Using the "nova list" command, 

we visualize the created instances and choose one of these 

to check for connectivity. The result of this command tells 

us for each instance the network to which it is attached as 

well as its IP address. 

To test connectivity, use the ping utility, but for this 

packets must be sent using the interface that is connected 

to the same network. As shown in Figure 6 the identifier of 

the dhcp server dealing with addressing in the gre1 

10.100.1.0/24 network was used, this being the network 

attached to the chosen instance. 

 

Figure 6 PING experiment - SUCCESS 

To understand how traffic flows there were selected 

from the OpenFlow tables all entries used to forward the 

traffic: 

 

[fedora@fedora1 devstack]$ sudo ip netns exec 
qdhcp-45cf5f88-1d60-46da-a651-a3df32bc217c ping 
10.100.1.2 
PING 10.100.1.2 (10.100.1.2) 56(84) bytes of data. 
64 bytes from 10.100.1.2: icmp_seq=1 ttl=64 
time=22.3 ms 
64 bytes from 10.100.1.2: icmp_seq=8 ttl=64 
time=12.0 ms 
^C 
--- 10.100.1.2 ping statistics --- 
8 packets transmitted, 8 received, 0% packet loss, 
time 7008ms 
rtt min/avg/max/mdev = 0.392/7.810/22.338/7.077 ms 

 

35Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

http://192.168.56.117/
http://192.168.56.117/


 

Figure 7: OpenFlow tables 

In Figure 7 are represented a couple of entries from 

tables 0, 10 and 20. Those tables are used to forward 

packets between the tables or directly to the physical port. 

 

IV. CONCLUSION 

This paper presented an experiment using Openstack 

and Opendaylight framework used to provision and 

manage an infrastructure. As a proof of concept 

connectivity end to end between newly deployed VM and 

controller was successful and RTT achieved comparing to 

the one between two Fedora machines shows that the 

performance is not the same, but similar – the amount of 

resource allocated per machine was limited and the 

connectivity between instance and controller requires 

additional encapsulation. The paper can help designers to 

develop and implement systems based on cooperation 

between NFV and SDN, applicable to future IT 

developments and for the upcoming 5G technology. It is 

very important to choose wisely the operating system as 

there are unstable versions for such scenarios. The small 

setup implemented in this paper can be scaled to a data 

center to deploy and manage a larger number of instances 

and traffic. 

As future work several experiments will be conducted, 

including building a network function chaining using 

similar deployments and compare from automation, 

resource consumption and stability perspective. 

 

 

 

 

 

REFERENCES 

[1]  Y. Li and M. Chen, "Software-Defined Network Function 

Virtualization: A Survey," IEEE Xplore Digital Library, pp. 

2542 - 2553, 9 December 2015.  

[2]  ETSI GS NFV 002 V1.1.1 (2013-10) , "Network Functions 
Virtualisation (NFV); Architectural Framework," ETSI, 

2013.  

[3]  K. Diego , M. V. R. Fernando , E. V. Paulo, E. R. Christian, 

A. M Siamak and U. Steve, "Software-Defined Networking: 
A Comprehensive Survey," IEEE Xplore Digital Library, pp. 

14-76, 19 Decembrie 2014.  

[4]  Opendaylight community, "Platform Overview," [Online]. 

Available: https://www.opendaylight.org/what-we-do/odl-

platform-overview. [Accessed 15 December 2019]. 

[5]  RFC 6020, "YANG - A Data Modeling Language for the 

Network Configuration Protocol (NETCONF)," Oct 2010. 

[Online]. Available: https://tools.ietf.org/html/rfc6020. 

[Accessed Jan 2020]. 

[6]  Opendaylight community, "ODL Cloud and NFV," [Online]. 

Available: https://www.opendaylight.org/use-cases-and-

users/by-function/cloud-and-nfv. [Accessed 15 December 

2019]. 

[7]  Q. Duan, N. Ansari and M. Toy, "Software-Defined Network 

Virtualization: An Architectural Framework for Integrating 

SDN and NFV for Service Provisioning in Future 

Networks," IEEE Network, 2016. 

[8]  Openstack community, "Openstack," 2018. [Online]. 

Available: https://docs.openstack.org/security-

guide/introduction/introduction-to-openstack.html. 

[Accessed 15 December 2019]. 

[9]  B. Salisbury, "Networkstatic," [Online]. Available: 

http://networkstatic.net/opendaylight-openstack-integration-

devstack-fedora-20/#!prettyPhoto. [Accessed 15 December 

2019]. 

 

 

 

Tabela 0: 
cookie=0x0, duration=7472.684s, 
table=0, n_packets=120, 
n_bytes=11850, send_flow_rem 
in_port=8,dl_src=fa:16:3e:f5:2c:a0 
actions=set_field:0x514-

Tabela 10: 
cookie=0x0, duration=921.617s, 
table=10, n_packets=210, 
n_bytes=20446, send_flow_rem 
tun_id=0x514,dl_dst=fa:16:3e:e0:2e:b
8 actions=output:11,goto_table:20 

  

Tabela 20: 
cookie=0x0, duration=7587.297s, 
table=20, n_packets=238, 
n_bytes=22652, send_flow_rem 
tun_id=0x514,dl_dst=fa:16:3e:f5:2c:a
0 actions=output:8 

  

36Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks


