
Selective Process Replication for Fault Tolerance in Large-scale, Heterogeneous
Environments with Non-Uniform Node Failure Distribution

Longhao Li

Department of Computer Science
University of Pittsburgh

Pittsburgh, USA
Email: lol16@cs.pitt.edu

Taieb Znati

Department of Computer Science
University of Pittsburgh

Pittsburgh, USA
Email: znati@cs.pitt.edu

Rami Melhem

Department of Computer Science
University of Pittsburgh

Pittsburgh, USA
Email: melhem@cs.pitt.edu

Abstract—Future systems are scaling to a large number of cores.
Consequently, their propensity to failure increases dramatically,
making it more challenging to achieve forward progress for
compute-intensive applications on a large number of cores. Pure
process replication is a widely accepted technique to tolerate
fail-stop errors. At extreme-scale, however, it is inadequate to
achieve fault tolerance efficiently due to doubled or even tripled
computational resources usage. In this paper, we propose a
selective process replication model that only assigns replicas to
failure-prone processes. It assumes cores fail independently, but
non-identically. The simulation results show that, on average,
selective replication reduces more than 35 percent of energy
consumption and more than 25 percent of the time to completion
comparing to full replication with 1 million cores, where 20
percent of them are failure-prone.

Keywords–fault-tolerance; selective replication; cloud comput-
ing; heterogeneous environment.

I. INTRODUCTION

Cloud computing has been widely used as a computing
platform for resource-intensive applications like MapReduce,
which require massive data analysis [1]. Meanwhile, com-
puting and information systems have become integral to all
aspects of our society, and their significance will inevitably
increase in the future. The demand of cloud computing as
back-end support of these systems is growing. Exploiting the
convenience of on-demand computing power and flexible, low-
cost resources is the key to success. With the continuous
increase in computational scale, the ability to support massive
parallelism is required for the cloud computing platforms of
the future.

Massive parallelism is supported by large scale systems
that contain millions of computational cores. Such systems
are plagued with massive energy consumption and high system
failure rate. Even with the expected technology improvement,
the rate of system level failures will dramatically increase with
the number of computational cores increase. For example, a
computing infrastructure with 200,000 cores will experience a
Mean Time Between Failure (MTBF) of less than one hour,
even when the MTBF of an individual core is as large as 5
years [2], [3], [4], [5].

MapReduce is a popular data processing computational
model which is widely used in Cloud computing platforms.
Applications based on MapReduce divide large amount of
data into subloads and distribute them to small tasks that
can execute in parallel and independently. The computational

results will merge together after all the subtasks complete
execution and produce the final results. Thus, a single failure
on any of the sub-tasks may lead to delay time to completion.
Also, applications may contain multiple stages of MapReduce
computation. Multiple failures on different subtasks may lead
to an unacceptable delay in response time. This will likely
cause unpleasant experience for customers and lead to revenue
reduction.

A Service Level Agreement (SLA) is a contract between
a customer and a Cloud Service Provider (CSP). It specifies
the response time requirement of the customer. Violations on
the agreement would lead to a penalty, which would further
result in revenue reduction. Also, longer completion time may
cause additional energy consumption of task re-execution and
poor utilization of resources. To ensure that the tasks can be
accomplished before the agreed deadline, a certain level of
reliability is necessary.

In order to maintain system reliability, a resilience strategy
is required in such large-scale systems. Process replication
fault tolerance strategy relies on redundancy in resources by
replicating the entire process. The original and replicated
process runs in parallel on different hardware so that if one of
the processes failed, other processes would finish the task on
time. Comparatively, it is unlikely that the main and replicated
processes failed at the same time. Process replication requires
additional energy consumption due to the replications of the
same process. In large scale, however, the additional energy
consumption is significant enough that need to be reduced.
Thus, full replication is not suitable for the future large scale
systems.

Furthermore, most studies in fault tolerance assume that
failures occur independently and identically. However, due to
aging and replacement, cores may appear to have different
failure rates. New cores may appear to have a comparatively
higher failure rate due to manufacturing defects, and old cores
also have a high failure rate because the hardware is worn out.
Other factors can also lead to difference in failure rates, such
as working environment temperature or nodes’ usage [6].

In this paper, we propose a selective replication framework
for cloud computing that only replicate processes on unreliable
cores. In order to minimize the energy consumption, the
proposed framework only protect the cores which are prone to
failure. The main contributions of this paper are the following:

• A selective replication framework for cloud computing
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resilience that select processes on unreliable cores
based on the age of the hardware.

• A simulation based experimentation and evaluation
which contains sensitivity analysis of different work-
loads and different ratio of unreliable cores.

The rest of the paper is introduced as follows. We discuss about
the related works in Section II and explain the aspects leading
to heterogeneous environment in Section III. We introduce
the selective replication framework in Section IV. In Section
V, we discuss about the simulation setup and the evaluation
results. Section VI concludes the paper and discusses about
some possible future works.

II. RELATED WORKS

The field of fault tolerance in computing systems is well
established, and significant advances on how to deal with
faults have been achieved by different communities. Rollback
and recovery are predominate mechanisms to achieve fault
tolerance in current High Performance Computing (HPC)
and cloud computing environments [7], [8], [9]. Upon the
occurrence of a fault, recovery is achieved by restarting the
computation from a safe checkpoint [8]. Both coordinated and
uncoordinated checkpointing schemes rollback and recovery
schemes have been proposed [7], [8], [9], [10]. The drawback
of coordinated checkpointing is a lack of scalability, as it
requires global process coordination [5], [11], [12], [13], [14].
Uncoordinated checkpointing has not been widely adopted in
HPC environments, due to its dependency on applications [15],
[16]. Multi-level checkpointing can benefit from tolerance to
failure but may increase failure rates of individual nodes and
increase per-node cost [17].

Process and state machine replication has long been used
to provide fault tolerance in distributed [18] and mission
critical systems [19]. Based on this technique, a process’s state
and computation are replicated across independent computing
nodes. Redundancy has been proposed, to augment existing
checkpointing techniques [20], [21], [22].

Study of failure modelling is another direction of research.
Eric et al. found that Weibull and Log-normal are the best
fitting distributions to model failure in the high performance
computing system based on the history data study [23].
Nosayba and Bianca studied the impact of different factors on
the reliability of HPC systems such as environmental factors
and nodes’ usages. Cooling system failure may cause node
outages, and high usages can lead to a higher failure rate.
They also find that some nodes fail more often than others
even when they have the same hardware specification [6].

In general, replication requires doubling the number of
cores, with increases power consumption, which might not be
efficient enough for future generation exascale infrastructure.
Message logging-based approaches have been proposed to har-
ness applications’ temporal computation and communication
patterns to reduce the cost of checkpointing for hybrid systems.
The cost of recovery, however, remains proportional to the
system size and not to the degree of failure. Partial redundancy
has been analytically studied for HPC environment [24]. In
this work, we study a practical selective replication strategy
for cloud computing environment.

Figure 1. “Bathtub” Curve.

III. HETEROGENEOUS ENVIRONMENT

As the age of computational cores increases, the likelihood
of failure changes. It has been well studied and applied that
the hardware reliability changes by following a “bathtub curve”
as depicted in Figure 1 [25]. The life span of a hardware is
divided into three periods: the early life period, the useful life
period and the worn out period. The early life period is the
beginning of the hardware’s life span. It starts with a relatively
high failure rate due to possible manufacturing defects. By
fixing the defects, the failure rate continually decreases until it
reaches the useful life period. The failure rate remains steady
during the useful life period, and the useful life period is
significantly longer than the other two life periods. When a
hardware reaches the end of its life span, it start to wear out and
the failure rates gradually increase. However, the increasing of
failure rate is more gradual than the early life period.

Considering the hardware replacement and maintenance,
systems may contain cores in different life periods and form
a heterogeneity. Large-scale systems may encounter consider-
able amount of replacement of cores. Consequently, influence
of unreliable cores in these systems cannot be neglected.

IV. SELECTIVE REPLICATION

Process replication is one of the most popular fault-
tolerance techniques. Full replication significantly reduces the
failure likelihood, but also at least doubles the energy con-
sumption and resource usage. To overcome this disadvantage,
we propose a selective process replication model that only
replicates processes host on error-prone cores. This is done
because when compared to full replication, more cores are
utilized for task computation, while processes on unreliable
cores are protected. We assume that there are N number
of cores assigned to the current job, and each core i has
failure rate λi. The job has workload W . Assume each process
occupies one core and executes in maximum speed. The
subload is dependent on the number of main processes, M .
In full replication, number of main processes occupies half of
the available cores Mf = N

2 , and the subload wf = W
Mf

for
each process. By selectively replicating processes, there are
more cores available for main processes compared to that by
using full replication, Ms > Mf . Therefore, the subload on
each main process is reduced and so is the execution time.
Consequently, the number of faults encountered may drop
during execution and the time to completion may be reduced.
Also, because of the reduction in redundancy, the energy
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Figure 2. Cores in different life periods.

Figure 3. Cases of full replication.

consumption may be reduced. However, there are two major
challenges that needs to be addressed for selective replication.
The first challenge is to determine which cores need to be
protected, and the second challenge is to determine which
cores should be used to host replicas.

A. Replication Candidate Selection
Selecting processes that need to be replicated is a hard

problem considering there are no absolute standards to de-
termine if a core is reliable. In practice, however, we can
estimate the cores’ reliability by their history of failure in
execution. In this paper, we estimate reliability as the failure
rate based on the life span of the cores. Replicating processes
on most unreliable cores is an essential guidance for candidate
selection. Furthermore, determining the number of cores to
replicate is a problem we need to solve. Analytical modeling
is one way to determine the optimal ratio. However, it may not
be the best solution if the modeling has too many assumptions.
Moreover, the optimization may be compute-intensive and may
not be able to produce a truly optimal solution. In our model,
since cores are divided to three life periods, it may be a good
approach to only replicate processes on cores in early life and
worn out life period as a practical solution.

B. Replica Assignment
The goal of replica assignment is to determine which

core should be used to host replicas to minimize the failure
likelihood of any replication pair. It is studied that the best
strategy to assign replica is pairing the most unreliable core
with the most reliable core for replications [24].

We assume that there are cores in three different life
periods, as shown in Figure 2. There is a small portion of
cores in early life and worn out period as shown in Figure
2. Figure 3 illustrates the different cases of full replication.
The obliviousness of failure rate difference may cause two
unreliable cores to be paired for replication. These pairs may

Figure 4. Selective Replication Assignment.

Algorithm 1 Algorithm for Selective Replica Assignment

Input:
Ce = {ce1, ce2, ..., ceK}
Cu = {cu1 , cu2 , ..., cuL}
Cw = {cw1 , cw2 , ..., cwQ}

Output: Assignment
Initialization : Assignment = {}

1: for i = 1 to K do
2: Assignment = Assignment ∪ {< cei , c

u
i >}

3: end for
4: for i = 1 to Q do
5: Assignment = Assignment ∪ {< cwi , c

u
L−i−1 >}

6: end for
7: for i = K + 1 to L−Q do
8: Assignment = Assignment ∪ {< cui >}
9: end for

10: return Assignment

Figure 5. Algorithm for Selective Replica Assignment.

be less reliable than a core in useful life without replication.
Additionally, the pairing of two reliable cores will lead to
a high probability of energy wastage. Figure 4 depicts the
proposed selective replication solution. Processes on cores
in early life and worn out period are protected by replicas
chosen from cores in the useful life period. The remaining
cores in useful life period are utilized to complete the job by
themselves. Algorithm 1, as shown in Figure 5, is used for
selective replica assignment. Ce, Cu and Cw are sets of cores
in early life period, useful life period and worn out period,
respectively. The output is a set of tuples where each tuple is
an assignment that contains either a pair of cores for replication
or a single core for execution by themselves.

C. Discussion
Considering the practicality of the proposed model, it is

very easy to apply it to current cloud computing infrastructures.
Given the estimation of failure rate changes, which may
be estimated by the past data, boundaries of different life
periods are easy to determine. Therefore, it is straightforward
to categorize the cores into the discussed three life periods.
Consequently, the selective replica assignment algorithm is
able to execute in linear time. Hence, the replica selection
and assignment methods can be easily embedded with current
cloud computing job scheduling algorithms for better resource
allocation.

V. EXPERIMENTAL EVALUATION

To evaluate our model, a comprehensive simulation-based
experiment is conducted. To fairly compare selective replica-
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Figure 6. Failure cases on replication group of 2.

tion with full replication, we simulate two baseline models –
full replication with optimal replica assignment (baseline 1)
and full replication with random replica assignment (baseline
2).

A. Simulation Setup
The simulation assumes that there are one million cores

available (N = 1, 000, 000) such that each core hosts only
one process and executes at maximum speed. To simulate the
heterogeneous environment, the experiment assumes that cores
are divided into three classes. These three classes represent
three life periods: early life, useful life and worn out life
period. We assume that the reliability of cores in each class is
identical to make the simulation controllable. Furthermore, we
assume that failures occur independently, but not identically.
With consideration that the computational time is significantly
shorter than the life span, we assume that the failure rate
does not change during execution. Consequently, we make the
assumption that failure follows an exponential distribution with
mean set as the MTBF of the core. The MTBF of each core in
these classes is 1 year, 10 years and 3 years, respectively. We
varied the total workload (W ) and ratio of cores in each class
to observe how selective replication performed in different
scenarios.

We use CSIM19 (C version) to conduct the simulation
[26]. To simulate the failure time of a core, a random number
is drawn from an exponential distribution with mean set as
the core’s MTBF. This random number represents the failure
time of the core. Failure occurs only if the failure time is
earlier than the failure free completion time. If failure occurs
and the process has either no replica or a failed replica, the
task is re-executed. We assume that the re-execution is on the
repaired cores, and maintain the same fault tolerance strategy,
with or without replicas. Thus, the re-execution may encounter
additional failures on one subload’s execution. For processes
assigned a replica, there are four possible cases that may occur
during the execution, as depicted in Figure 6. Case (a) is
the execution of subload w without failure. Cases (b) and (c)
represent the execution with one failure on the process or its
replica. Case (d) has both the process and its replica failed
before the task completion.

We normalize the hourly dynamic energy consumption rate
of each core as RD = 1, i.e., for each core, the dynamic
energy consumption of executing one-hour job is 1 unit of
energy consumption. Other than dynamic energy, static energy

Figure 7. Failure on processes with and without replica.

is another aspect of energy consumption. It comes from the
power leakage of several components (processor, memory,
etc.). We define the static energy consumption as a predefined
fraction ρ = 0.5 of dynamic energy consumption [27]. The
calculation of energy consumption is based on the execu-
tion time of each process, including execution time before
failure and re-execution time. The minimum execution time
is the failure free completion time of subload w. There is
no maximum execution time for a subload w because it is
possible to have failure in every execution and re-execution.
For example, a process P1 without replication encountered
two failures during execution as depicted in Figure 7. The
execution time before failure for each failed execution is t1f
and t2f , respectively. The total energy consumption of process
P1 is E1 = (1 + ρ)RD(t1f + t2f + Tc), where Tc is the failure
free execution time of subload w. Since we represent the
workload as hours of execution, the failure-free execution time
is same as that of the subload, Tc = w. For processes with
replicas, the computation of energy consumption requires to
consider the failure time for both process and its replica when
failures occur in both cores. The second example in Figure 7
depicts the case where both the process P1 and its replica P2

failed before the completion of task. The re-execution starts
from t2f , and the replica P2 finishes the task at t2f + Tc.
The energy consumption of this process pair is calculated as
E1,2 = (1+ ρ)RDt3f + (1+ ρ)RD(t1f + Tc). The total energy
consumption is the sum of the energy consumption for all the
processes. We assume no energy consumption after completion
of the execution for each process. The time to completion of
the total workload W is the maximum completion time among
all the subtasks. For each setup, we simulate the job execution
100 times and report the average result to overcome the bias
of randomness.

B. Sensitivity Analysis on total workload
The goal of this analysis is to evaluate the performance

of the proposed model with different workloads. Heavier
workload indicates longer time to completion. Intuitively,
longer time to completion indicates that failures are more
likely to occur during execution. We vary the total workload
from 10 to 2000 million hours of works. The percentage
of cores in each class is 5%, 80%, and 15%, respectively.
The results of comparing selective replication with baseline
model 1 and 2 are depicted in Figures 8 and 9, respectively.
Compared to full replication with and without optimal replica
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Figure 8. Comparison between selective replication with baseline 1 in
different workloads.

Figure 9. Comparison between selective replication with baseline 2 in
different workloads.

assignment, selective replication can reduce more than 35 %
of energy consumption. With 10 million hours of total work,
full replication has slightly shorter response time. Selective
replication model finishes the job in 23.9 hours. The optimal
replica assignment with full replication completes the job in
20.6 hours, while the full replication with random replica
assignment completes the job in 22.1 hours. There is about 40
% of energy consumption reduced compared to both baseline
models. Due to the fairly light workload, it is very unlikely to
have failure on both the process and its replica simultaneously.
Therefore, the completion time of full replication is very close
to the failure free completion time as Tc = w = 2W

N = 20
hours. Compared to baseline 2, which is the traditional full
replication model, the difference on time to completion is very
marginal.

As the total workload increases, the selective replication
model has a shorter response time than the baseline mod-
els. For 2000 million hours of work, selective replication
achieved 48% reduction in time to completion compared to full
replication with random replica assignment. It indicates that,
with heavier workload, the likelihood of failure on process
with replication start to increase and it causes longer total
completion time. For selective replication, the total completion
time is under double of failure free completion time for full
replication when there are no more than 1000 million hours of
work. This sensitivity analysis shows that selective replication
has advantage on energy consumption with different workloads
and advantage on time to completion with heavy workload in
cloud computing platform.

Figure 10. Comparison between selective replication with baseline 1 in
different ratios of unreliable cores.

Figure 11. Comparison between selective replication with baseline 2 in
different ratios of unreliable cores.

C. Sensitivity Analysis on ratio of cores in each class
The goal of this analysis is to evaluate the performance

of selective replication with different percentage of unreliable
cores. The total workload for this analysis is 100 million hours
of work. We vary the percentage of cores in early life and
worn out period to represent different scenarios. We maintain
the ratio of cores in these two classes as 1:3 to ensure that
the results are comparable. The results of comparing selective
replication with baseline model 1 and 2 are depicted in Figures
10 and 11, respectively. When 36% of cores are unreliable
(9% of cores in early life and 27% of cores in worn out
period)(a relatively more unreliable scenario of the analysis),
selective replication reduces about 22% of energy consumption
compared to two baseline models. It also reduces about 16%
and 17% of time to completion when compared to full repli-
cation with and without optimal replica assignment strategy,
respectively. Considering that in our approach, only 28 % of
cores are not associated with replicas, the improvements are
significant. As the reliability increases, the reduction in energy
consumption and time to completion increases. With only 4 %
of unreliable cores, selective replication achieves about 48% of
reduction in energy consumption and about 39% of reduction
in time to completion when compared to the baseline model
2.

Hence, we observe that selective replication has an advan-
tage in all scenarios with different reliabilities, and has more
advantage in reliable scenarios. Also, our experiment validated
that the optimal replica assignment strategy has advantage on
cloud computing platform as the baseline model 1 always has
shorter time to completion when compared to baseline model
2.
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VI. CONCLUSION AND FUTURE WORKS

The major contribution of this paper was to address the
problem that, when infrastructures grow to large scale, tra-
ditional full replication fault tolerance strategy requires high
amount of resources. By considering the failure rate differ-
ence of computational cores of different ages, we proposed
the selective replication model that only replicates processes
on unreliable cores to reduce the energy consumption and
response time. The results of our experimental evaluations
showed that, compared to full replication, selective replication
can reduce more than 35 percent of energy consumption and
about 30 percent of completion time simultaneously with 100
million hours of workload and 1 million cores.

In this work, we proposed a model categorizing the cores
into three different classes. We may gain more reduction in
energy consumption if we increase the granularity. Our frame-
work is a practical approach to reduce energy consumption and
response time. However, it may not be the optimal solution
to this problem. An optimization solution with the necessary
assumptions may produce better results. Furthermore, the pro-
posed solution estimated failure rates based on the age of the
cores. Other factors such as spatial and temporal dependencies
among core failures is not considered. By exploring the emerg-
ing online and offline machine learning methods, we may gain
better insights into temporally and spatially correlated failures,
which can then be used to predict when failures are likely to
occur. Therefore, it would be possible to dynamically assign
replicas to further reduce energy consumption and execution
time.
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