
Design and Implementation of Passwordless Single
Sign On Authentication Mechanism

Fatima Hussain∗, Rasheed Hussain†, Damir Samatov†, Andrey Bogatyrev†and Salah Sharieh∗,
†Innopolis University, Innopolis, Russia, Email: r.hussain@innopolis.ru

∗Royal Bank of Canada, Toronto, Canada, Email: fatima.hussain@rbc.com

Abstract—Single Sign-On (SSO) is an access control mecha-
nism that enables a user to get authenticated only once through
an authenticated server, and get access to all other available
services (related to authentication server) without providing
credential again. Passwords are considered as the most popular
method for user authentication. However, password selection and
management is a challenging task. In this paper, we design and
implement a password less authentication mechanism and also
present the SSO implementation with magic-links technique. In
essence, we design two password less SSO scenarios. In the
first scenario of the proposed SSO technique, we create global
and local sessions based on JSON Web Token (JWT) tokens
and then grant access to services (based on JavaScript). In the
second scenario, the open-source identity server framework is
modified in a way to create a session key (token) distributed
among the connected services and users can be authorized by
using protocols, such as OAuth with OpenID Connect. The
proposed mechanism addresses the problem of limitations with
the passwords and further scales the SSO techniques across
different services.

Index Terms—SSO(Single Sign-On), Passwordless, Keycloack,
OAuth, OpenID Connect, Identity Server, Magic-Link, Authentica-
tion, Authorization.

I. INTRODUCTION

In the wake of increased security risks and sophisticated
cyber attacks, mutual authentication among clients, as well as
servers, is of utmost importance for validating legitimate users
and services. Modern authentication and authorization are
usually based on a username and password. Since passwords
are the easily manageable option for authentication, most
of the users prefer using the same password for different
Internet services. If a critical service requires the users to
change their passwords frequently or has a restrictive password
policy, users usually change the password(s) to obvious and
guessable words and often repeat the same passwords. As
a result, even if an unrelated application gets hacked or the
application data is compromised, it puts users’ account at risk
because of the frequent use of same and related passwords.
This way, the dictionary attacks on passwords are feasible and
cheaper means of hacking passwords. In order to overcome
these challenges, password less approaches are considered as
revolutionary approaches to improve the existing username
and password mechanisms. As an alternative, the users can
just provide their usernames, and the system generates a one
time code, and delivers it to the users via email, dedicated
application or an SMS. Afterwards, users provide this code
back to the system and the system verifies the credibility of

the code (code is issued by the system). Benign users are
authenticated if the verification process is successful.

Similarly, Single Sign-On (SSO) approach enables the con-
solidation of user identity and management. In our daily lives,
we use plethora of different applications every day, such
as email, issue tracker, file hosting, Customer Relationship
Management (CRM) software, and so on. If unique set of
credentials are required for each of these applications, it leads
to a very fragmented identity system. To date, various software
solutions are available for SSO integration [1]; however, the
existing solutions are expensive and complex.

In this regard, it is important to decide whether a Software-
as-a-Service (SaaS) subscription should be purchased that
provides a ready-to-use SSO solutions that can be integrated
into our products or is it better to build our own solutions.
To answer these questions and put light on the existing SSO
solutions, in this paper, we discuss different approaches of
SSO implementation, and then design our own home-grown
implementation of a password less SSO with a discussion
on selecting the best of both approaches, i.e., SSO and
passwordless authentication to one system. The rest of the
paper is organized as follows. In Section II, we discuss the
existing work on SSO and then outline our research goals and
methodology in Section III. Passwordless SSO is discussed
in Section IV and our proposed SSO model along with its
implementation is discussed in Section V. In Section VI, we
conclude the paper.

II. RELATED WORK

SSO authentication allows users to get an access to different
domains without the requirement to enter their credentials
repeatedly. This allows users to maintain only one account
instead of many. Some of the benefits of SSO include, but not
limited to, boost to the user experience, improved security, and
reduced cost in terms of creation and storage of passwords
for different services. However, it also introduces various
challenges to the authentication systems, such as difficult
implementation, password security, dictionary attacks on the
passwords, password management, and above all, the smooth
integration into traditional password-based login systems. Fur-
thermore, some of the most pressing issues are listed below:

• Reduced security as users create weak passwords and
hackers usually use smart tools. Also, if access to the
identity provider is compromised, all the connected ser-
vices are also compromised.

81Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

• Degraded Quality of Service (QoS) experience for cus-
tomers, employees, and users already forced to create
and manage many passwords. According to the existing
researches, the users do not like passwords and do not
manage the passwords efficiently [2].

There are several password alternatives:
• Email-based authentication (also called magic-link). It

is a unique link sent to the email with permission to
authenticate only once. It becomes invalid automatically
when the user is logged into account. It eliminates the
password requirement entirely and makes use of the email
address to validate an identity. It is worth mentioning
that email is one way to send the magic-link. We could
use another means such as messaging application and
so on. Nevertheless, the security of the magic link is
dependent on the secure use of the email. If the attackers
can compromise the email service, then the authentication
will be jeopardized as well.

• Social media sign-on or oAuth: A third-party applica-
tion requests access to the identity provider (Google,
Facebook, GitHub etc.) to gain information about the
requested profile.

• Certificate-based: Users get a secure access to a server
by exchanging a digital certificate. It is suitable in most
cases and used only for the internal authentication in a
company.

• Biometric technologies: The idea is “You are your key”.
This includes fingerprint, facial, eye, speech recognition
and so on.

To date, there are commercially available solutions, frame-
works, and protocols that allow us to provide SSO-based
authentication as given below.

• OAuth 2.0 protocol is used for authorization and OpenID
Connect on top of it, is used to verify the identity of the
end-user.

• Keycloak is another open-source solution to allow SSO
with identity and access management.

• IdentityServer4 framework is built on ASP.NET Core and
it implements OAuth and OpenID protocols.

Furthermore, in [3], the authors proposed Loxin universal
security framework for passwordless login. It supports two-
factor and multifactor-authentication and consists of modu-
lar architecture. The architecture includes application, server,
Certificate Authority and Push Message Service (PMS) that
can resist the main security attacks, such as Man-In-The-
Middle (MITM) and replay attacks. However, Loxin does not
provide a wide list of authentication mechanisms and single
sign-on abilities. Moreover, in [4], the authors describes a
way of using CAPTCHA on the mobile phones when the
server performs verification of the user’s response according
to the sender’s IMEI code. In another work [5], the authors
performed extensive experiments on FIDO-based passwordless
authentication along with Shibboleth single sign-on technique.

Despite all afore-mentioned work, there is lack of research
and implementations of combining benefits of password less

approaches with SSO that will not only improve the efficiency,
but also increase the security. This research intends to combine
the SSO and passwordless techniques to improve security and
user experience as well as increase efficiency and ease-of-use.

III. RESEARCH GOALS AND METHODOLOGY

In this section, we explain the goals of this research work.
Furthermore, we also devise the methodology for our proposed
SSO mechanisms. The research goals are summarized below.

A. Goals

• Build an authentication mechanism in which users are
authenticated to multiple services without passwords. In
other words, devise a passwordless SSO mechanism.

• Investigate the existing SSO techniques that (after nec-
essary tweaking and modification) can be used for our
proposed authentication system. Afterwards, we aim at
implementing the SSO framework to provide access to
various services through a single entry point.

• Combining SSO with the already developed or outsourced
passwordless authentication is a daunting challenge since
the existing SSO still needs password. Our goals is to
integrate SSO with passwordless authentication.

B. Methodology

We divide the methodology into the following four stages.
• The first stage is mainly focused on preparation and field

research. We thoroughly studied and analyzed the exist-
ing works related to SSO and authentication methods.
Furthermore, we considered most popular methods for
SSO implementation (and built from scratch, Keycloak,
oAuth-based, OpenID Connect).

• In the second stage, the most suitable techniques for
password less authentication are determined based on
exploring the existing solutions.

• The third stage is focused on combining SSO and pass-
word less authentication approaches and develop the
integrated system.

• In the fourth stage, we conduct the experiments to verify
the proof-of-concept.

IV. PASSWORDLESS SSO

In this section, we discuss the passwordless SSO techniques.

A. OAuth 2.0 and OpenID Connect

OAuth 2.0 is a protocol that allows a user to provide
limited access to their resources on one application, to another
application without having to expose their credentials. The
typical work-flow of the protocol is shown in Figure 1.
To get access to the protected resources, OAuth 2.0 uses
access tokens. An access token represents the granted
permissions. Typically, access tokens are in JSON Web Token
(JWT) format. JWTs contain three parts: a metadata about the
type of token and the algorithms used to encrypt its contents, a
set of statements about the permissions that should be allowed,
and a signature to validate that the token can be trusted. The

82Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

permissions represented by the access token are known as
scopes. The application specifies the scopes it wants when
authenticates. If scopes are authorized by the end-user, then
the access token will involve these authorized scopes.

The following roles are allowed in OAuth:

• Client: it is the application that requests access to a
protected resource on behalf of the Resource Owner.

• Resource Owner is the end-user who has the credentials.
• Resource Server is the resource or API server. The

resource server handles authenticated requests after the
application has obtained an access token.

• Authorization Server: the server that authenticates the
resource owner, and generates access tokens after getting
proper authorization.

The OAuth 2.0 protocol specification defines different flows
in which access token can be accessed. These flows are called
grant types. Grant types are decided on the basis of individual
cases, i.e., type of the application. Following are the common
grant types.

• Authorization Code: is used by web applications with
back-end server. This also can be used by mobile apps,
using the proof key for code exchange technique.

• Implicit: is used by Single Page Applications executing
only in browser without any back-end. There is no extra
step of exchanging authorization code to access token.

• Resource Owner Password Credentials: In this grant type,
the username and password are exchanged directly for an
access token.

• Client Credentials: is mostly used for machine to machine
communication.

Figure 1: Protocol flow

OAuth and OpenID Connect are used together and com-
pliment each other. OAuth 2.0 is used for resource access
and sharing, while OpenID Connect is used for the user
authentication. It is applied on top of OAuth protocol as
an extra layer. It uses simple JSON Web Tokens (JWT),
which are obtained using flows conforming to the OAuth 2.0
specifications. OpenID Connect provide one login for multiple
sites, and whenever a user log into a website using OIDC, he

is redirected to OpenID site for authentication and taken back
to the original website.

OpenID Connect allows applications to verify the identity
of the user based on the authentication performed by an
authorization server, as well as to get basic profile information
about the user by requesting an ID token. Various tokens and
terminology used with OpenID Connect is explained as under.

• Access Tokens: are credentials used by an application to
access any API. Access Tokens can be an opaque string,
JWT, or non-JWT token. Access token informs the API
that the owner of this token has been granted delegated
access to the API and is in position to request specific
actions.

• Identity Token: is a JSON Web Token (JWT) that contains
identity data. Application use this to get user information
such as , name, email etc. (typically used for UI display).
ID Tokens contain three parts: a header, a body and a
signature.

• Claims: JWT Tokens contain claims, which are state-
ments (such as name or email address) about an entity
or an user and some additional metadata. Set of standard
claims are obtained through OpenID Connect specifica-
tion, which include name, email, gender, birth date, etc.
Custom claims can also be created and is added to token,
if the information needed about a specific user isn’t in a
standard claim.

Now we explain basic functionality of OpenID Connect
by using use case of, logging into using OAuth and OpenID
Connect (by employing Google account.

1) When a client sign into OAuth using his Google account,
OAuth sends an Authorization Request to Google.

2) Google authenticates client credentials and asks client
to login if he is not already signed in. It also ask for
authorization (lists all the permissions that OAuth wants,
for example read permissions for email address, and asks
client if he is ok with that).

3) Once client authenticate and authorize the sign in,
Google sends an Access Token, and (if requested) an
ID Token, back to OAuth.

4) OAuth0 can retrieve client information from the ID
Token or use the Access Token to invoke a Google API.

V. PROPOSED SSO MODEL

We propose and develop SSO solution customized accord-
ing to our specifications and requirements. This will not only
reduce the cost and dependencies on the external vendors, but
also give us a complete control over all of the data (storage,
processing etc.). However, specific expertise and experience is
required for developing solutions for identity management.

A. Keycloak SSO

Since Keycloak is the most popular Open Source Identity
and Access Management application [6], we choose it as
main tool for SSO implementation. To work with Keycloack,
we performed following steps to enable SSO. We succinctly

83Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

enumerate the steps that will enable the SSO feature of
Keycloack.

1) Login to Keycloak on localhost:8080 with default cre-
dentials admin:admin.

2) Create new realm.
3) Create new client applications (as many as we want),

in the menu Configure − > Clients. Choose Client
Protocol as openid-connect and Access
Type as confidential, also put Implicit Flow
Enabled in ON position.

4) Create a new user, which will be our test client, in the
menu Manage − > Users

5) Copy client application credentials. And then go through
the following path: Configure − > Clients − >
Your app name − > Installation. Choose Format
Option as Keycloak OIDC JSON and copy all
provided configurations.

6) Download and launch the test NodeJS app from reposi-
tory [7], which will use authentication methods provided
by the Keycloak.

After performing these steps, if we are able to login in first
launch, we will automatically login to second as well.

B. Identity Server 4 Passwordless SSO

Identity Server4 is an OpenID Connect and OAuth 2.0
framework for ASP.NET Core platform [8]. It enables the
feature of Single Sign-on and Sign-out for our applications.

Identity Server is used as an authorization service in our
case. In order to configure it for our needs, we developed the
architecture as shown in Figure 2.

Figure 2: Identity Server Architecture

Client is an application or software that requests tokens
from the Identity Server - either for authenticating a user or
for accessing a resource. An application must be registered
with Identity Server before it can request the tokens. We want
to protect the resources, such as APIs, identity data for our
users. Each resource has a distinctive name, and applications
use these name to specify to which resources it need to
induce access to. A user is a person that uses a registered
client to access certain resources. We add CORS service to
avoid problems with this policy. Moreover, we add support
for OpenID Connect Identity Scopes. This is in contrast to
OAuth, scopes in OpenID Connect do not represent resources,
but represent identity data of user, such as ID, name or email
address. At the end, we configure AccountController.
We also created a method to check if the user’s email exist or

not, and if it does, we will generate a token for this user. Then
we create a link which should be sent to the user’s email with
the generated token attached. By following this link, the user
is then redirected back to the authorization server and it checks
if the attached token is valid or not. If it successfully passes
this checking the consent screen which requests the access
to user’s data for the application is generated. Users choose
which kind of scopes they want to give to the application and
then redirected back to the service itself. Developed solution
can be found in the repository [9].

C. Magic link implementation

In traditional authentication scenario, a user is required
to provide a username and password, while in passwordless
authentication, users only provide their username. With this
username, the system issues a one-time passcode and delivers
it to the user via email. The user then provides this code back
to the system and the system verifies that the provided code is
legitimate (correct, not expired and never used). If the code is
legitimate, the user is authenticated. Basic authentication flow
of magic links implemented on NodeJS is described in Figure
3.

Figure 3: Magic link flow

D. SSO implementation

As proof of concept, we perform basic implementation and
we create an SSO provider and clients on NodeJS as shown in
Figure 4. Details description of the logical flow and sequence
of authentication process is described as follows.

1) The user tries to access resource of system domain1
which is under the protection. domain1 detects that the
user is not authenticated and jumps to the sso-server,
using its own address as one of the parameters.

2) The SSO authentication server also detects that the user
is not logged in and redirects the user to the generated
login page.

3) User enters credentials and the SSO authentication
server then verifies information that the user provided.

4) The session between the user and the SSO authen-
tication server is established. This is called a global
session. Then the server sends authentication token to
”domain1”. And the session cookies are stored in the
browser cookie storage.

84Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

Figure 4: SSO workflow

5) The SSO authentication server takes the authorization
token and jumps to the initial request address (system
domain1).

6) The domain1 uses this token to create and establish a
connection with the user. In our case we will return a
signed JWT with user profile information if validation
was successful.

7) Application under ”domain1” then creates local session
based on JSON Web Tokens payload. Furthermore,
domain1 cookie is also stored in the browser.

8) Now the user can reach any other websites connected as
consumers without entering any credential because there
are the global session stored by the SSO authentication
server that will redirect the user to ”domain2” already
with user profile info.

E. Testing environment

After implementation of our proposed SSO model, we tested
it in practical environment. Therefore, after launching the
server and clients, we use web-browser to validate the imple-
mentation of our SSO mechanism. When a client application
is opened in the browser, it is automatically redirected to SSO
server and it also provides a prompt for a valid email address.
An authentication link is sent to the email provided and the
user has to click on the link sent to the email. The link serves
as an authentication token and after clicking the link, the user
is authenticated with the SSO-provider. After authentication,
the user can request any client sites and the access is granted
without providing the user credentials again.

VI. CONCLUSION AND FUTURE WORK

In this work, we provide some alternative password tech-
niques for protecting user credentials and identity for improv-
ing user experience and security. We presented methods of
creating SSO based open-source solutions followed by their
successful implementation and testing. Also, we implemented

authentication system by combining SSO and passwordless
approaches.

For future work, we aim to design and implement new
passwordless techniques. It will also enable flexible adjusting
of the users authentication flow. The development of the
mobile application related to the SSO authentication server can
be one of the possible solutions to grant access to the resources
by confirming the request for authentication. Moreover, the
ways of communication between the browser and physical
device, such as USB stick can be developed to get the stored
keys or certificates which will authenticate the user without
prompt to enter a password.

REFERENCES

[1] N. Heijmink, “Secure single sign-on a comparison of protocols.”
2015. [Online]. Available: https://www.coursehero.com/file/21561672/
z-researchpaper-sso-final-nick-heijmink-s4250559/

[2] S. Wise, “Is memorizing passwords the easiest way to manage
them?” 2015. [Online]. Available: https://www.passwordboss.com/
password-habits-survey-part-1/

[3] B. Zhu, X. Fan, and G. Gong, “Loxin. a solution to password-less
universal login,” 2014. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/6849280

[4] M. S. Shahreza and S. S. Shahreza, “Passwordless login system
for mobile phones using captcha,” 2007. [Online]. Available: https:
//ieeexplore.ieee.org/document/4418840

[5] M. Morii, H. Tanioka, and K. Ohira, “Research on integrated
authentication using passwordless authentication method,” 2017. [Online].
Available: https://ieeexplore.ieee.org/document/8029677

[6] T. Darimont, “Awesome keycloak.” [Online]. Available: https://github.
com/thomasdarimont/awesome-keycloak

[7] A. Bogatyrev and D. Samatov., “So-server & consumer implementation,
keycloak test client.” 2017. [Online]. Available: https://bitbucket.org/
bogatyr285/sso/src

[8] S. Brady, “Getting started with identityserver 4,” 2016.
[Online]. Available: https://www.scottbrady91.com/Identity-Server/
Getting-Started-with-IdentityServer-4

[9] A. Bogatyrev and D. Samatov., “Identity server with client
and apis.” 2019. [Online]. Available: https://bitbucket.org/demmy
art/passwordless-sso

85Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

