

A Formal Data Flow-Oriented Model
For Distributed Network Security Conflicts Detection

Hicham El Khoury, Romain Laborde,
François Barrère, Abdelmalek Benzekri

IRIT – University Paul Sabatier
Toulouse, France

hkhoury@ul.edu.lb, Romain.Laborde@irit.fr,
Barrere.Francois@irit.fr, Abdelmalek.Benzekri@irit.fr

Maroun Chamoun
Saint Joseph University

Beirut, Lebanon
maroun.chamoun@usj.edu.lb

Abstract— Network security is inherently a distributed function
that involves the coordination of a set of devices, each device
affording its specific security features. The complexity of this task
resides in the number, the nature, and the interdependence of the
mechanisms. Any security service can interfere with others
creating a breach in the whole network security. We propose a
formal data flow oriented model to detect network security
conflicts. Network security services are represented by specific
abstract functions that can modify the data flow. We have
specified our model in hierarchical Colored Petri Nets to
automate the conflicts detection analysis. This approach has been
tested on various NAPT/IPsec scenarios to prove that without
any a priori knowledge these conflicts can be detected.

Keywords - network security; security conflict detection; data
flow modeling; Colored Petri Nets.

I. INTRODUCTION
Network security is inherently a distributed function that

involves the coordination of a set of devices, each device
affording its specific security features. Any equipment (end and
core devices) involved in a security solution requires a precise
configuration. This configuration, determining its behavior, has
a local impact on the security service provided by the
equipment but also can affects the global network security. If a
rule on equipment is poorly defined, the global security might
be compromised (principle of the weakest link in the security
chain).

The network security conflicts detection is therefore a
major problem. Conflicts can be local to one security service,
i.e. two rules for the same security mechanism on the same
equipment may be incompatible (e.g. one filtering rule permits
a data flows whereas another one on the same firewall blocks
it). However, conflicts can be distributed too. In this case, the
incompatibility can occur between different mechanisms on
different equipment playing a role at different levels in the OSI
layers (IPsec tunnels blocked by firewalls, HTTP proxy unable
to filter HTTP traffic because it has been encrypted by an IPsec
gateway, etc). These distributed conflicts are much harder to
cope with because they expect to consider the dependencies
between different equipments and/or different mechanisms.

It is therefore essential to develop tools to express and
validate network security policies. One difficulty resides in the
nature of network security information. How to express
management information while taking into consideration
constraints such as the heterogeneity of solutions,

interdependencies between security mechanisms, and the
sustainability of expression languages confronted to the fast
evolution of technologies? The right level of abstraction should
be produced, both independent of the security mechanisms and
at the same time faithfully representative of the reality.

To address this problem, we have proposed a formal data
flow oriented model. The first version of our model has been
presented in [16] and was enhanced in [17]. In this approach, a
data flow is represented as a sequence of logical elements to
match physical data flow which is a sequence of bytes grouped
according to the specifications of the network protocols. The
security mechanisms are represented as functions handling
these flows. Constraints applied to data flows and security
mechanisms point out conflicts that can occur. In this article,
we validate our model by specifying it in hierarchical Colored
Petri Nets. This formal language is suitable for representing
data flows and associated tools such as CPNtools can automate
the validation task. In addition, we present how to detect
distributed conflicts using our approach thought various
NAPT/IPsec scenarios.

The rest of this article is organized as follows. Section 2 is
dedicated to related works. Section 3 describes our modeling.
Section 4 presents example of modeling. Section 5 illustrates
our approach to conflict detection, on implementing IPSec and
NAPT, using Colored Petri Networks. Finally, Section 6
concludes and presents our working tracks.

II. RELATED WORKS
Several works have focused on detecting

misconfigurations. Their approach consists in modeling the
configurations of devices and the network topology. Al-Shaer
et al. [1] [5] proposed a classification of the anomalies that can
appear in the configuration of one or more firewalls. Alfaro et
al. [2] have improved this classification and introduced IDS. Fu
et al. [3] endeavored to address the problem of inconsistency of
IPSec tunnels and firewalls. Preda [7] considers firewalls,
IPsec and IDS. These models describe correctly the reality.
However, they are closely attached to limited set of
technologies and it is difficult to adapt them to other
technologies.

The other approach followed by distributed conflicts
detection research considers data flow or IP datagram as the
primary entity. Security technologies are then represented has
functions applied on data flows. The advantage of this
approach is the processing on data flow is related to the

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

abstract data flow model, not to the underlying technology.
However, the strength of these solutions depends on the quality
of the data flow modeling approach: not limited to one protocol
or layer, but also not de-correlated from reality.

Guttman and Herzog [4] proposed an abstract model for IP
datagrams by a 3-tuple <l,k,θ> where l represents the current
location of the datagram, k represents the current state of
treatment of the datagram and θ is the following IP header
representing the history of the actions performed on the
datagram. An IP header is also abstracted by a 3-tuple <s,d,p>
where s and d are respectively the source and destination and p
represents other data. Nevertheless, the formalization is limited
to some information contained in the IP header.

Laborde et al. [6] proposed a formal solution based on
Colored Petri Nets for the specification coupled with the CTL
logic for the analysis. Like Guttman and Herzog, this approach
focuses on analyzing the data flow. A network is represented as
an interconnection of generic functionality on the data flow:
endings flow (terminal devices such as workstations, or
servers), filtering functionality (such as firewalls or application
gateways), transformation functionality (such as IPsec, NAT,
etc.) and channels functionality (to represent the
communication media such as WiFi, abstraction of a network).
A data flow is represented by a 4-tuple < efs, efd, r, t > where
efs and efd are source and destination end flows functionalities,
r represents the permission used to generate this flow, and t
represents the list of transformation applied to the data flow.
This formalism allows the approach to be independent from
technologies. However, the level of abstraction being too high,
it does not represent explicitly what has been changed by a
transformation. This level of abstraction issue is highlighted by
“feasibility analysis” that was introduced in the refinement
process, The goal of the feasibility analysis is to validate that
something specified at the abstracted level can actually be
implemented on the real device.

In a more recent article, Al Shaer et al. [15] have proposed
a similar approach. They model the network as a finite state
machine where each state depends on the location of IP packets
(ips, ports,ipd,portd,location). However, they do not consider IP
payload in their modeling. As a consequence, they had to add
an extra valid bit to address the problem of IPsec encapsulation
modeling. Security involving different mechanisms at different
layers (TCP/IP stack or OSI model), this modeling approach is
limited for describing the entire encapsulation stack.

III. A FORMAL DATA FLOW-ORIENTED MODEL
Our goal is to define a technology independent formalism

to detect distributed conflicts (multi-mechanisms, multi-OSI
layers). Our modeling approach is data flow oriented; the
treatments of different network mechanisms are then seen as
functions on flows.

It is important to consider that network security
mechanisms are not applied to one single network layer only
(firewalls and IPSec are both mechanisms at the IP level).
Network security is multi-level (or cross-layer). For example, a
VPN can be an IPsec but also L2TP, SSL or SSH. Filtering can
be done at the IP level through a firewall and at the data link
layer via a switch, or at the application level by a dedicated
gateway.

It is also necessary to consider the influence of non “pure
security labeled” devices. For example, the installation of a
router into an Ethernet network composed only of switches
may require the changing of MAC addresses filtering rules.
Another example, NAT may have an adverse effect on the
enforcement of IPSec VPNs.

A. Analysis of the problem
In concrete terms, a data flow is a contiguous set of bytes

with variable size conveyed over a network. This sequence of
bytes is divided into logical blocks according to encapsulation
protocols. For example, a data flow corresponding to a HTTP
request can be seen as < Ethernet protocol block, IP protocol
block, TCP protocol block, HTTP protocol block >. The bytes
in a logical block are not necessarily contiguous. Then, each
protocol divides the block of bytes associated with fields in
accordance to its description. For example, the control
information of the Ethernet protocol are distributed into 14
bytes (destination MAC address, source MAC address,
identifier of the encapsulated protocol) at the beginning of the
frame and 4 bytes for the control field at the end.

Also, data flow is not static. A data flow evolves during its
journey through the network according to the mechanisms
implemented on network devices. Some mechanisms can:

• Add new blocks of bytes. For example, an IPsec
gateway adds the AH header between the IP block and
the UDP/TCP block when this protocol is used in
transport mode,

• Remove blocks of bytes. e.g., an HTTP proxy removes
the IP block when it receives a data stream,

• Modify fields. e.g., NAT changes the value of the
source IP address field in the IP block or a router
changes the time-to-live field,

• Authenticate fields. e.g., the AH protocol authenticates
certain fields of IP and all other fields of the
encapsulated protocols,

• Encrypt fields. For example, the ESP in transport mode
encrypts all the fields of the encapsulated protocols,

• Etc…
In addition, the network mechanisms perform these

treatments according to a subset of data flow fields they can
perceive. E.g., a stateless firewall analyses only the protocol id,
IP source and IP destination fields in the IP block, and port
source and destination fields in the UDP/TCP block.

B. Modeling data flows
We propose a data flow model that is independent from the

underlying protocols. We want this model to be able to
anticipate future protocols. The difficulty is to reach the good
level of abstraction between security mechanisms
independence and reality closeness.

Foremost, we define our core entities:
• ࣛ is the set of possible attributes. An attribute	ࣵ ∈ ࣛ,

represents a couple <name, value> where name is a
field that can be found in a protocol, and value is its
content,

• ࣪ is the set of protocols, i.e., the set of logical blocks.
An instance of protocol ∈ ࣪ is a couple <protoid,
attributes> where protoid=<name, id> is the name of
the protocol and an unique identifier and attributes is

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

defined on the Power-set of ࣛ, i. e. , 	ݏ݁ݐݑܾ݅ݎݐݐܽ ∈	ℙ(ࣛ),
• ℰ = 	࣪ℕ, is the set of finite sequences over ࣪. This set

represents all the possible encapsulation chain of
protocols, i.e. sequences of logical blocks. For reasons
of notation simplicity, we use: next(p୧) = 	p୧ାଵ and rest(p୧) =	< p୧ାଵ,… , p୬ > for a given sequence ݁ =< pଵ, pଶ, … , p୧, … , p୬ >,

• ࣭ is the set of security algorithms addressing the
encapsulation chain of protocols (for instance, DES,
3DES, HMAC-SHA1, etc.).

Definition 1: Formal definition of data flows
Based on above definitions, we present the set of data flows

as:	ℱ ⊆ ℰ	 × 	AUTHN	 × 	CONF such that:
• ℰ is the encapsulation chain of protocols,
• AUTHN	 ⊆ (ࣛ	 × 	࣪	 × 	ࣛ	 × 	࣪	 × 	࣭) represents the

attributes of the data flow that have been authenticated
such that (ࣵଵ, ,ଵ ࣵଶ, ,ଶ ः) 	∈ AUTHN indicates that
attribute ܽଵ of protocol ଵ guarantees the integrity of
attribute ࣵଶ of protocol ଶ via the security algorithm ः,

• CONF	 ⊆ 	BAG(ࣛ	 × 	࣪ × 	࣭) represents the attributes
of the data flow that have been encrypted, such that (ࣵ, p, ः) 	∈ CONF indicates that attribute ࣵ of protocol is encrypted via the security algorithm ः. We used a
multi-set because an attribute can be encrypted several
times by the same algorithm. A multi-set is a set of
elements where an element may appear several times.

A treatment on a data flow is then seen as a particular
function of ℱ to ℱ , called transform function as in [6]. This
function represents the capability to modify the data flows. It
can symbolize encryption protocols such as IPsec where one
transform function adds some security services (e.g.
confidentiality) and another removes it, or the NAT where only
one transform function is concerned. According to the
underlying technology, each treatment considers a subset of
attributes from data flow as input (e.g., for IPSec, attributes are
source address, destination address and transport protocol field
of the IP header as well as source port and destination port of
the TCP/UDP header) and modifies the data flow. For
example, when using ESP, treatment adds new protocols in the
encapsulation chain of protocols and new instances in the
relationship AUTHN and new attributes in multi-set CONF.

Examples:
Given flow ࣹ = (e, AUTHN, CONF) ∈ 	ℱ, e =< ,1 2 1	݁ݎℎ݁ݓ,< = ((p, 1), {(α, v1), (β, v2), (γ, v3)})	and	2 = ((p, 2),{(κ, v4), (μ, v5)}):
1. If	AUTHN = { }, and	CONF = { },	 then this data flow

includes two encapsulated protocols for which no field
is protected,

2. If	AUTHN = {(κ, ,ଶ γ, ,ଵ sଵ), (κ, ,ଶ μ, ,ଵ sଵ)}	and	CONF ,ߤ)}= ,ଶ {(ଶݏ , then field ߢ in protocol p2 authenticates
fields	ߛ	and ߤ in protocol p1 by algorithm ݏଵ and field ߤ in protocol p1 is encrypted by algorithm	ݏଶ.

In the rest of the article, we use the following notation to
simplify the readability:

• we designate by p1 the protocol element whose

protoid equals to (p,1),
• attributes(p) for the set of attributes of a protocol p.

E.g. attributes(p1)= {(α, v1), (β, v2), (γ, v3)},
• when there is no ambiguity, we use the name of the

attribute instead of the couple (name,value).
Definition 2: Data flow integrity

Data flow integrity indicates that no authenticated attribute
has been changed. This is described in our model as follows:
Let ࣹ = (e, AUTHN, CONF) ∈ 	ℱ, integrity of ࣹ is satisfied iff ∀(a, aᇱ) ∈ ࣛ	x	ࣛ, ,ଵ)	∀ (ଶ ∈ ࣪	x	࣪, ∀	s ∈ ࣭, (a, ,ଵ aᇱ, ,ଶ s) ∈AUTHN ⟹ a ∈ attributes(ଵ) 	∧ aᇱ ∈ 	attributes(ଶ).

We do not provide any definition of data flow
confidentiality in this article. Confidentiality refers to non-
disclosure of sensitive information. Sensitive information in the
context of data flow is a subset of the protocols fields/payload
that are required to be confidential. In our attribute-based
modeling, attributes within the multi-set CONF represent the
encrypted information in the data flow. It can be noticed that
our model faithfully represents reality. A real data flow cannot
be completely encrypted (if the IP destination field is
encrypted, routers won’t be able to route the packet). However,
particular values of specific attributes might be considered as
confidential (e.g., if the knowledge that two devices are
communicating over the Internet is confidential, it is important
to hide their IP addresses values for example in an IPsec tunnel
where only the IP addresses of the two IPsec gateways will be
revealed). Thus, the set attributes required to confidential
depends on external security requirements that are out of scope
of this article.

IV. CASE STUDY
In this section, we present the modeling of security

mechanisms to validate the expression capability of our
approach. We describe examples related to IPsec [10] (namely
the AH and ESP protocols) and NAPT. Although, conflicts
between these technologies are well know, our intent is to
explain how our approach can be used.

.
In the following examples, we use IP, TCP, UDP, AH, ESP

protocols and a data flow f = (< …,ip1 ,… >, AUTHN,CONF).
In our formalism, they can be defined as follows:

• attributes(ipi)={version,hlength,tos,tlength,id,flags,offset,
ttl,proto,checksum,ips,ipd,options},

• attributes(tcpi)={ports,portd,seq,ack,hlength,reserved,
tcpflags,win,options,checksum},

• attributes(udpi)={ports,portd,len,checksum},

• attributes(ahi)={nexthdr,payloadlength,reserved,spi,
seq,ad},

• attributes(espi)={ spi,seq,padlength,nextheader,ad}.

A. Specification of AH
AH (Authentication Header) [11] is designed to ensure

integrity and authenticity of IP datagrams without data
encryption. The Authentication Data (AD) field guarantees the
integrity of the datagram. The AH protocol has two modes:
transport and tunnel.

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

1) In the transport mode, AH is inserted after the IP
header and before next layer (Fig. 1).and protects the entire IP
packet except mutable fields (i.e. the fields DSCP, ECN,
Flags, Offset, TTL, Header Checksum).

Original

IP Header TCP/UDP Data

Original
IP Header AH TCP/UDP Data

Authenticated, except the mutable fields

Figure 1. IP datagram before and after applying AH in transport mode

Definition 3: Specification of AH in the transport mode
The application of AH in transport mode on the flow f (as

defined above) is the transformation function tfு௧௦௧ ∶ ℱ	 → 	ℱ , generating the flow tfு௧௦௧=f’=(<…,ip1,ah, p…>, AUTHN’, CONF’) where:

• attributes(ipଵᇱ) = attributes(ipଵ)\{(proto, x)} 		∪{(proto, 51)}	where	51	is	the	value	of	AH	protocol,	
• AUTHNᇱ =AUTHN ∪⋃ {(ad, ah, x, ipଵᇱ , s)}∀୶	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୧୮భᇲ)\{ୈୗେ,େ,… ,ୡ୦ୣୡ୩ୱ୳୫}	 ∪⋃ {	(ad, ah, y, ah, s)}	∀୷	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(ୟ୦)\{ୟୢ}	 ∪⋃ {	(ad, ah, z, p, s)}∀୮	∈	୰ୣୱ୲(ୟ୦)|	∀	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) 	It	indicates	that	integrity	of	all	immutable	fields	of	the	IP	protocol	and	every	 fields	of	all	protocols,	which	are	 encapsulated	 by	 AH,	 is	 guaranteed	 by	 using	security	algorithm	s.	

2) In the tunnel mode, the inner IP header carries the
ultimate IP source and destination addresses, while an outer IP
header contains the addresses of the IPsec peers (Fig. 2) and
protects the entire inner IP packet, including the entire inner IP
header. The position of AH in mode tunnel, relative to the
outer IP header, is the same as for AH in the transport mode.
In fact, in AH Tunnel mode the entire original IP header and
data becomes the “payload” for the new packet. The new IP
header is protected exactly the same as the IP header in
Transport mode.

Original
IP Header TCP/UDP Data

New IP
Header

AH Original
IP Header

TCP/
UDP Data

 mutable immutable fields

 Authenticated, except the mutable fields in the new IP

Figure 2. IP datagram before and after applying AH in tunnel mode

Definition 4: Specification of AH in the tunnel mode
The application of AH in the tunnel mode on the flow f (as

defined above) is the transformation function: ݐ ݂ு௧௨:	ℱ	 → 	ℱ , generating flow ݐ ݂ு௧௨(݂) = ݂ᇱ =൫< 	… , ipଶ , ah, ipଵ, p,… >, AUTHNᇱ, CONF൯ where:

• attributes൫ipଶ ൯ = {(ips, sourcegateway),(ipd, destinationgateway), (proto, 51), … },	

• AUTHNᇱ =AUTHN ∪⋃ ൛൫ad, ah, x, ipଶ , s൯ൟ∀୶	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୧୮మ)\{ୈୗେ,େ,…,ୡ୦ୣୡ୩ୱ୳୫}	 ∪⋃ {	(ad, ah, y, ah, s)}	∀୷	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(ୟ୦)\{ୟୢ}	 ∪⋃ {	(ad, ah, z, p, s)}∀୮	∈	୰ୣୱ୲(ୟ୦)|	∀	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) 	This	indicates	that	integrity	of	all	immutable	fields	of	the	new	 IP	 header,	 and	 every	 fields	 of	 all	 protocols,	which	 are	 encapsulated	 by	 AH	 (including	 the	original	IP	header),	is	guaranteed	by	using	security	algorithm	s.	
B. Specification of ESP

ESP protocol (Encapsulating Security Payload) [12]
provides authentication and encryption of data carried in IP
datagram. Like AH protocol, the Authentication Data (AD)
field guarantees the integrity of the datagram and ESP has two
modes: transport and tunnel.

1) In the transport mode, the ESP bounds the transport
and data layers (Fig. 3). ESP authenticates the data
transported in the IP datagram but not the IP header. In
addition, it encrypts the data protocol transport layer.

Figure 3. IP datagram before and after applying ESP in transport mode

Definition 5: Modeling of ESP in transport mode
Our model considers protocols as logical blocks. So, we do

not differentiate between the header and the tail of ESP.
The application of ESP in the transport mode on the flow f

(as defined above) is the transformation function ݐ ா݂ௌ௧௦௧:	ℱ	 → 	ℱ , generating flow ݐ ா݂ௌ௧௦௧ = ݂′ =(< 	… , ipଵᇱ , esp, p, … >, AUTHNᇱ, CONF′) where:
• attributes(ipଵᇱ) = attributes(ipଵ)\{(proto, x)} 		∪{(proto, 50)}	where 50 is the value of ESP protocol.
• AUTHNᇱ =AUTHN ∪⋃ {	(ad, esp, x, esp, sଵ)}	∀୶	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(ୣୱ୮){ୟୢ}	 ∪⋃ {	(ad, esp, y, p, sଵ)}∀୮	∈	୰ୣୱ୲(ୣୱ୮)|	∀୷	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) 									

indicating integrity of every fields of all protocols,
which are encapsulated by ESP, is guaranteed by using
security algorithm ݏଵ,

• CONFᇱ =CONF ∪ ⋃ {	(x, esp, sଶ)}∀୶	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(ୣୱ୮)\{ୱ୮୧,ୱୣ୯,ୟୢ}	 ∪⋃ {	(y, p, sଶ)}∀୮	∈	୰ୣୱ୲(ୣୱ୮)|	∀୷	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) . This
indicates that every fields of all protocols, which are
encapsulated by ESP, are encrypted using security
algorithm sଶ,

2) In the tunnel mode, the inner IP header carries the
ultimate IP source and destination addresses, while an
outer IP header contains the addresses of the IPsec

Original

IP Header TCP/UDP Data

 Authenticated
Original

IP Header
ESP

Header
TCP/
UDP

Data ESP
Trailer

ESP
Auth

 Encrypted

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

gateways (Fig.4) and protects the entire inner IP
packet, including the entire inner IP header. The
position of ESP in the tunnel mode, relative to the
outer IP header, is the same as for ESP in transport
mode. The integrity of the datagram is checked against
the field Authentication Data (AD). In fact, in ESP
Tunnel mode the entire original IP header and data
becomes the “payload” for the new packet. The new IP
header is not protected.

Orig.

IP Hdr TCP/UDP Data

 Authenticated

New
IP Hdr

ESP
Header

Orig.
IP Hdr

TCP/
UDP

Data ESP
Trailer

ESP
Auth

 Encrypted

Figure 4. IP datagram before and after applying ESP in tunnel mode

Definition 6: Modeling of ESP in the tunnel mode
The application of ESP in tunnel mode on a flow f (as

defined above) is the transformation function ݐ ா݂ௌ௧௨:	ℱ	 → 	ℱ , generating flow ݐ ா݂ௌ௧௨(݂) = ݂′ =൫< 	… , ipଶ , esp, ipଵ, p, … >, AUTHNᇱ, CONF′൯ where:
• attributes(ipଶ) = {(ips, sourcegateway),(ipd, destinationgateway), (proto, 50), … },		
• AUTHNᇱ =AUTHN ∪⋃ {	(ad, esp, x, esp, sଵ)}	∀୶	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(ୣୱ୮)\{ୟୢ}	 ∪⋃ {	(ad, esp, y, p, sଵ)}∀୮	∈	୰ୣୱ୲(ୣୱ୮)|	∀୷	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) 	indicating	 that	 integrity	 of	 every	 fields	 of	 all	protocols,	 which	 are	 encapsulated	 by	 ESP,	 is	guaranteed	by	using	security	algorithm	ݏଵ,	
• CONFᇱ =CONF ∪ ⋃ {	(x, esp, sଶ)}∀୶	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(ୣୱ୮)\{ୱ୮୧,ୱୣ୯,ୟୢ}	 ∪⋃ {	(y, p, sଶ)}∀୮	∈	୰ୣୱ୲(ୣୱ୮)|	∀୷	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) .	 This	indicates	 that	 every	 fields	 of	 all	 protocols	encapsulated	 by	 ESP	 are	 encrypted	 using	 security	algorithm	sଶ.	

C. Modeling of NA(P)T
NA(P)T (Network address and port translation) [8]

transforms the IP source address of an IP datagram to allow the
communication between an equipment with private IP address
with another one connected to the Internet.

The operation of this system can be summarized as follows:
1. NAPT generates dynamically a source port,
2. NAPT records the association (old IP source address,

old source port, new IP address, new source port),
3. NAPT modifies the fields source port and checksum

fields of the UDP / TCP,
4. NAPT modifies the source IP address and the

checksum in the IP header.

Definition 7: Basic NAPT
Consequently, we can represent the NAPT processing

system by the transformation function ݐ ே்݂ as follows:

• Pre-condition 1: the protocol following IP header
should be either tcp or udp. ∀f = (< 	… ip, next(ip)… >, AUTHN, CONF),		with:	{ports, portd, checksum} ∈ attributes(next(ip)).	

• Pre-condition 2: NAPT must be able to read the source
IP address and the source port: ∀f = (< 	… , ip, next(ip)… >, AUTHN, CONF),∄s|	(ips, ip, s) ∈ CONF	 ∨ (ports, next(ip), s) ∈ CONF.		

NAPT transforms the following fields: source IP address,
checksum of IP, the source port, and the checksum of transport
protocol. Therefore, tfே் transforms a flow f = (< 	… , ip, next(ip)… >, AUTHN, CONF) into a data flow f′ = (< 	… , ip′, next(ip)′ … >, AUTHN, CONF) such that:

• attributes(ip′) = attributes(ip)	\{(ips, value), (checksum, value)} 																																	∪ {(ipsᇱ, new_value), (checksumᇱ, new_value)},	
• attributes(next(ip)ᇱ) = attributes൫next(ip)൯	\{(ports, value), (checksum, value)}																		∪ {(portsᇱ, new_value), (checksumᇱ, new_value)}	
This treatment considers that protocol TCP or UDP follows

immediately the IP header, which leads to the problem of the
evolution of the arrangement of protocols encapsulation. We
therefore propose an advanced version of NAPT processing
that is not limited by this assumption. This version, called
advanced NAPT, is able to search the TCP or UDP protocol
deeper in the data flow.

Definition 8: Advanced NAPT
The transformation function ݐ ே்݂ௗ௩ represents an advanced

NAPT which is defined as:
• Pre-condition 1: the IP protocol encapsulates directly

or indirectly the TCP or UDP protocol: e.g.,	∀f = (< 	… , ip, … , p, … >, AUTHN, CONF),	∃p ∈ rest(ip)|{ports, portd, checksum} ∈ attributes(p) .	thus		is	a	transport	protocol.	
• Pre-condition 2: NAPT must be able to read the IP

source address and the source port: e.g., ∀f = (< 	… , ip, … , p, … >, AUTHN, CONF),∄s		such	that		(ips, ip, s) ∈ CONF ∨ (ports, p, s) ∈ CONF		
NAPT transforms the fields IP source address, IP checksum

and the source port and checksum of the transport protocol.
Therefore, ݐ ே்݂ௗ௩ transforms a flow ݂ = (< 	… , ip, … p… >, AUTHN, CONF) into a flow ݂′ = (< 	… , ip′, … p′… >, AUTHN, CONF) such that:

• attributes(ip′) = attributes(ip)	\{(ips, value), (checksum, value)} 																																	∪ {(ipsᇱ, new_value), (checksumᇱ, new_value)},	
• attributes(p′) = attributes(p′)	\{(ports, value), (checksum, value)}																		∪ {(portsᇱ, new_value), (checksumᇱ, new_value)}	

V. CONFLICT ANALYSIS IN COLORED PETRI NETS (CPN)
In this section, we demonstrate that it is possible to detect

conflicts between security mechanisms without a priori
knowledge. The problems between IPsec and NAPT are well
known [9] but they are not trivial without using the human
expertise. Our goal here is to detect these conflicts by applying
our formalization only. Our approach, being independent of the
underlying technologies, can handle conflicts between other
technologies.

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

In order to automate the conflict detection task, we have
specified our formalism in colored Petri nets; this formal
language being adapted to data flows oriented approach [6] and
featured with tools (CPN tools [14]) to validate our formal
methodology.

A. Introduction to CPN
Colored Petri Net (CPN) is a formal specification language

consisting of a set of tokens whose type is represented by a
color, a set of transitions, and a set of places with a domain
(which defines the types of tokens that can be stored in that
place) and a set of arcs connecting places and transitions. It
allows creating formal models of systems.

Figure 5. Example of CPN specification

The state of a system (Fig. 5) is represented by the
distribution of tokens in places. It changes when a transition is
fired. A Boolean expression called guard may be associated
with a transition to set the conditions required to fire the
transition. If the tokens contained in places connected by
incoming arcs in the transition satisfy the guard, then they are
removed from these places and new tokens are created in the
places connected to outgoing arcs of the transition.

Our choice of Colored Petri Nets formalism [13] to address
the design of modeling data flow is motivated by the following
reasons: Colored Petri Nets are well-known for their graphical
and analytical capabilities for the specification and verification
of concurrent, asynchronous, distributed, parallel and
nondeterministic systems. Various features contribute to such a
success include graphical nature, the simplicity of the model
and the firm mathematical foundation. It also provides
modularity in design.

Figure 6. Navigating through marking menus

In addition to colors, it is possible to create hierarchical
descriptions, i.e., structure a large description as a set of
smaller pieces by using the facilities within CPN Tools through
well-defined interfaces and relationships to each other. This is
similar to the use of modules in a programming language.
Conceptually, CPNs with substitution transitions are CPNs
with multiple layers of detail. It enhances the readability of the

CPN specification. Figure 6 shows an example of navigation
from a super-page to a subpage. The substitution transition AH
(with double line in the CPN at the top of figure 6) is actually a
black box view of a more detailed CPN (at the bottom) that
specifies AH in transport mode.

B. Net structure and declaration
We simulate and validate our CPN model with "CPN

Tools" [14]. The CPN development environment uses an
extension of ML language to formally specify colors of tokens,
guards at transitions, and functions on arcs. Fig. 7 presents the
definition data flow in CPN-ML.

// Definition of attributes

color ATTRIBUTE = record name:STRING * value:STRING;

// Definition of protocol identification

color PROTOCOLID = record name :STRING * id :INT;

// Definition of the list of attributes

Color ATTList = list ATTRIBUTE;

// Definition of protocols

color PROTOCOL = record protoid:PROTOCOLID*value:ATTList;

// Definition of encapsulation chain of protocols

Color ENCAPSULATION = list PROTOCOL;

// Definition of security algorithm

color SECALGO = with DES | 3DES | HMAC | …;

// Definition of authentication elements

color AUTHN = product ATTRIBUTE*PROTOCOL*ATTRIBUTE

*PROTOCOL*SECALGO;

// Definition of the list of authentication elements

color AUTHNLIST = list AUTHN;

// Definition of confidentiality elements

color CONF = product ATTRIBUTE*PROTOCOL*SECALGO ;

// Definition of the list of confidentiality elements

color CONFLIST = list CONF;

// Definition of data flows

Color DATAFLOW = product ENCAPSULATION*AUTHNLIST

*CONFLIST;

Figure 7. Definition in CPN-ML of data flows

C. Scenarios
We choose three scenarios to validate our model. The first

one is AH in the transport mode transformed data flow through
NAPT to show the use of the authentication “AUTHN”. The
second one is ESP flow in the transport mode transformed data
flow through NAPT to show the use of both authentication
“AUTHN” and confidentiality “CONF”. Finally, AH in the
tunnel mode data flow through NAPT presents tunneling.

1) Scenario 1: AH flow in transport mode with NAPT
In this first scenario, we study the interaction between a

mechanism that implements AH in the transport mode and the
NAPT mechanism (Fig. 8). Our study consists in analyzing, for
a given data flow ݂ = (< ,ଵ݅ ܿݐ >, {}, {}), the transformation
chain 		݂ݐே் 	∘ ݐ ݂ு௧௦௧.

Based on definition 3, data flow f is transformed to ݂ᇱ = ݐ ݂ு௧௦௧(݂) = (< ଵᇱ݅ , ܽℎ, ܿݐ >, ,ܰܪܷܶܣ {}) where:
1ᇱ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ •) = ,ݐݎ)}\(ଵ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ 4)} ∪ ,ݐݎ)} 51)},
• AUTHN =⋃ {	(ܽ݀, ܽℎ, ,ݔ 1ᇱ݅ , ∈௧௧௨௧௦(1ᇲ	௫∀	{(ݏ)\{ௌ,ாே,…,ୡ୦ୣୡ୩ୱ୳୫}	 ∪

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

⋃ {	(ܽ݀, ܽℎ, ,ݕ ܽℎ, 	∈௧௧௨௧௦()\{ௗ}	௬∀	{(ݏ ∪⋃ {	(ܽ݀, ܽℎ, ,ݖ ,ܿݐ ௧௧௨௧௦(௧)	∈	௭∀{(ݏ .

Figure 8. AH in the transport mode through NAPT

Then, data flow ݂′ can’t be transformed by basic NAPT
(definition 7), because ݂′ does not verify pre-condition 1; i.e.
the protocol encapsulated directly by IP is AH. As a result, the
token representing the data flow if blocked in place Flow2.

Figure 9. Conflict detection: AH in the transport mode through Advanced

NAPT

While using the advanced NAPT (definition 8), we get the
following data flow: ݂ᇱ′ = ݐ ே்݂ௗ௩ 	 ∘ ݐ ݂ு(݂) = 	 (< ଵᇱ݅ , ܽℎ, ′ܿݐ >, ,ܰܪܷܶܣ {}) ,
where:

ଵᇱ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ •) ,ݏ݅)}\(ଵ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ= ,(݈݀ (ܿℎ݁ܿ݇݉ݑݏ, {(݈݀ ,ݏ݅)}∪ ,(ݓ݁݊ (ܿℎ݁ܿ݇݉ݑݏ, 		,{	(ݓ݁݊
(ᇱܿݐ)ݏ݁ݐݑܾ݅ݎݐݐܽ • ,ݏݐݎ)}(ܿݐ)ݏ݁ݐݑܾ݅ݎݐݐܽ= ,(݈݀ (ܿℎ݁ܿ݇݉ݑݏ, {(݈݀ ,ݏݐݎ)}∪ ,(ݓ݁݊ (ܿℎ݁ܿ݇݉ݑݏ, 	.{(ݓ݁݊

In this case, integrity of ݂ᇱ′ (definition 2) is violated (Fig. 9)
because:

• ቀܽ݀, ܽℎ, ,ݏ݅) ,(݈݀ ′1݅ , ቁݏ ∈ AUTHN and	(݅ݏ, (݈݀ ∉ ′1݅ ,
• ቀܽ݀, ܽℎ, (ܿℎ݁ܿ݇݉ݑݏ, ,(݈݀ ′1݅ , ቁݏ ∈ AUTHN

and	(ܿℎ݁ܿ݇݉ݑݏ, (݈݀ ∉ ′1݅ ,
• (ܽ݀, ܽℎ, ,ݏݐݎ) ,(݈݀ ,′ܿݐ (ݏ ∈ AUTHN and ,ݏݐݎ)	 (݈݀ ,ᇱܿݐ∌
• (ܽ݀, ܽℎ, (ܿℎ݁ܿ݇݉ݑݏ, ,(݈݀ ,′ܿݐ (ݏ ∈AUTHN	and	(ܿℎ݁ܿ݇݉ݑݏ, (݈݀ ∉ .ᇱܿݐ

2) Scenario 2: a flow ESP in the transport mode with
NAPT
In our second scenario, we study the interaction between a

mechanism that implements ESP in the transport mode and the
NAPT mechanism. Our study consists in analyzing, for a given
data flow ݂ = (< ,ଵ݅ ܿݐ >, {}, {}), the transformation chain ݐ ே்݂ 	∘ ݐ ா݂ௌ(݂).

Based on definition 5, data flow f is transformed to f ᇱ = tfாௌ௧௦௧(݂) = (< ଵᇱ݅ , ,ݏ݁ ܿݐ >, AUTHN, CONF)
where:

ଵᇱ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ •) = ,ݐݎ)}\(ଵ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ 4)} ,ݐݎ)}∪		 50)}	,
• AUTHN	=	⋃ {	(ܽ݀, ,ݏ݁ ,ݔ ,ݏ݁ 	௧௧௨௧௦(௦)\{ௗ}	∈	∀௫	ଵ)}ݏ ∪	⋃ {	(ܽ݀, ,ݏ݁ ,ݕ ,ܿݐ ∈௧௧௨௧௦(௧)	ଵ)}∀௬ݏ ,	
• CONF =⋃ ,ݔ)	} ,ݏ݁ 	∈௧௧௨௧௦(௦)\{௦,௦,ௗ}	ଶ)}∀௫ݏ ∪	⋃ ,ݕ)} ,ܿݐ ௧௧௨௧௦(௧)	∈	ଶ)}∀௬ݏ 	.	

Using transformation function basic NAPT (definition 7),
there is a conflict because ݂ᇱ does not verify pre-condition 1;
i.e. the protocol encapsulated directly after IP is ESP. As a
consequence, the token representing the data flow is blocked in
place Flow2. On the other hand, using the advanced NAPT
(definition 8), pre-condition 2 is not satisfied because (ݏݐݎ, ,ܿݐ (ଶݏ ∈ CONF , i.e. the source port of TCP is
encrypted and therefore incomprehensible for NAPT (Fig. 10).

Figure 10. Conflict detection: ESP in the transport mode through NAPT

3) Scenario 3: a flow AH in tunnel mode with NAPT
In our third scenario, we study the interaction between a

mechanism that implements AH in the tunnel mode and the
NAPT mechanism. Our study analyzes, for a given data flow ݂ = (< ,ଵ݅ ܿݐ >, {}, {}) , the transformation chain 		ݐ ே்݂ 	∘ ݐ ݂ு௧௨(݂).

Basing on definition 4, data flow ݂ᇱ = ݐ ݂ு௧௨(݂) =(< ,ଶ݅ ܽℎ, ,ଵ݅ ܿݐ >, ,ܰܪܷܶܣ {}) where:

(ଶ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ • =

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

,ݏ݅)} ,(ݕܽݓ݁ݐܽ݃݁ܿݎݑݏ ,݀݅) ,ݐݎ),(ݕܽݓ݁ݐܽ݃݊݅ݐܽ݊݅ݐݏ݁݀ 51), … }	,
• AUTHN =⋃ {	(ܽ݀, ܽℎ, ,ݔ ,ଶ݅ …,ୟ୲୲୰୧ୠ୳୲ୣୱ(మ)\{౪౪ౢ,౪౩,ౢౝ౩	∈	୶∀	{(ݏ } ∪⋃ {	(ܽ݀, ܽℎ, ,ݕ ܽℎ, 	௧௧௨௧௦()\{ௗ}	∈	௬∀	{(ݏ ∪⋃ {	(ܽ݀, ܽℎ, ,ݖ ,ଵ݅ 	∈௧௧௨௧௦(భ)	௭∀	{(ݏ ∪⋃ {	(ܽ݀, ܽℎ, ,ݐ ,ܿݐ ௧௧௨௧௦(௧)	∈	௧∀{(ݏ .

Data flow ݂′ cannot be transformed by basic NAPT
(definition 7), because ݂′ does not verify pre-condition 1; i.e.
the protocol encapsulated directly after IP is AH.

While using advanced NAPT (definition 8), we get the
following data flow: ݂′ᇱ = ݐ ே்݂ௗ௩ 	 ∘ ݐ ݂ு௧௨(݂) =	(< ଶᇱ݅ , ܽℎ, ,ଵ݅ ′ܿݐ >, ,ܰܪܷܶܣ {}), where:

ଶᇱ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ •) = \(ଶ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ ,ݏ݅)}	 ,(݈݀ (ܿℎ݁ܿ݇݉ݑݏ, {(݈݀ ,ݏ݅)}∪ ,(ݓ݁݊ (ܿℎ݁ܿ݇݉ݑݏ, 		,{(ݓ݁݊
(ᇱܿݐ)ݏ݁ݐݑܾ݅ݎݐݐܽ • = ,ݏݐݎ)}\(ܿݐ)ݏ݁ݐݑܾ݅ݎݐݐܽ ,(݈݀ (ܿℎ݁ܿ݇݉ݑݏ, {(݈݀ ,ݏݐݎ)}∪ ,(ݓ݁݊ (ܿℎ݁ܿ݇݉ݑݏ, 	.{(ݓ݁݊

In this case, integrity of ݂ᇱ′ (definition 2) is violated (Fig.
11) because:

• ቀܽ݀, ܽℎ, ,ݏ݅) ,(݈݀ ′2݅ , ቁݏ ∈ AUTHN and	(݅ݏ, (݈݀ ∉ ′2݅ ,
• ቀܽ݀, ܽℎ, (ܿℎ݁ܿ݇݉ݑݏ, ,(݈݀ ′2݅ , ቁݏ ∈ AUTHN

and	(ܿℎ݁ܿ݇݉ݑݏ, (݈݀ ∉ ′2݅ ,
• (ܽ݀, ܽℎ, ,ݏݐݎ) ,(݈݀ ,′ܿݐ (ݏ ∈ AUTHN and ,ݏݐݎ)	 (݈݀ ,′ܿݐ∌
• (ܽ݀, ܽℎ, (ܿℎ݁ܿ݇݉ݑݏ, ,(݈݀ ,′ܿݐ (ݏ ∈AUTHN	and	(ܿℎ݁ܿ݇݉ݑݏ, (݈݀ ∉ .ᇱܿݐ

Figure 11. Conflict detection: AH in the tunnel mode through Advanced

NAPT

VI. CONCLUSION
Network security requires the coordination of various

heterogeneous and interdependent devices. As a consequence,
multi-mechanisms and multi-levels conflicts may occur. The
fast evolution of technologies imposes network security
analysis to be independent from current technology. We
proposed in this article a formal data flow oriented approach to
analyze conflicts related to security policy deployment. This
formal representation is based on an abstraction of a physical

data flow consisting of blocks and the relation between each
block and the underlying protocol.

By using CPN Tools, we have validated our approach
based on well-known scenarios (IPsec and NAPT). This work
allows us to verify the capacity of our model to express and
analyze real distributed inconsistency. The results are
encouraging because conflicts have been detected without
requiring any a priori knowledge or experience. Indeed, we do
not have to specify the semantics of the elements of a data
flow. This leads us to believe that our approach can be used to
detect unknown conflicts involving new security mechanisms
that may occur at different levels.

Our future work will, therefore, focus on generalizing the
model, especially on providing a generic model of devices’
configurations built on our attribute-based approach. This will
improve the reusability of hierarchical CPN specifications.
Then, we will consider more realistic scenarios by looking at
the future protocols available as draft specifications to prove
our approach is adapted to new technologies too.

REFERENCES
[1] E. Al-Shaer and H. Hamed, “Discovery of Policy Anomalies in

Distributed Firewalls”, in IEEE INFOCOM, vol.4, pp. 2605-2616, 2004.
[2] J. G. Alfaro, N. B. Cuppens, F. Cuppens, “Complete analysis of

configuration rules to guarantee reliable network security policies”, in
International Journal of Information Security,7(2), pp. 103-122, 2008.

[3] Z. Fu, F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, C. Xu,
“IPSec/VPN Security Policy: Correctness, Conflict Detection and
Resolution”, in IEEE POLICY, pp. 39-56, 2001.

[4] J. D. Guttman and A. M. Herzog, “Rigorous automated network security
management”, in International Journal of Information Security, 4(3), pp.
29-48, 2005.

[5] H. Hamed and E. Al-Shaer, “Taxonomy of Conflicts in Network
Security Policies”, in IEEE Communications Magazine, 44(3), pp. 134-
141, 2006.

[6] R. Laborde, M. Kamel, F. Barrère, and A. Benzekri, “Implementation of
a Formal Security Policy Refinement Process in WBEM Architecture”,
in Journal of Network and Systems Management, 15(2), pp. 241-266,
2007.

[7] S. Preda, “Reliable context aware security policy deployment with
applications to IPv6 environments”, PhD thesis, Télécom Bretagne,
2010.

[8] P. Srisuresh and K. Egevang, “Traditional IP Network Address
Translator (Traditional NAT)”, IETF RFC 3022, 2001.

[9] B. Aboba and W. Dixon, “IPsec-Network Address Translation (NAT)
Compatibility Requirements”, IETF RFC 3715, 2004.

[10] S. Kent and K. Seo, “Security Architecture for the Internet Protocol”,
RFC 4301, IETF, 2005.

[11] S. Kent, “IP Authentication Header (AH)”, IETF RFC 4302, 2005.
[12] S. Kent , “IP Encapsulating Security Payload (ESP)”, IETF RFC 4303,

2005.
[13] K. Jensen and L. M. Kristensen, “Coloured Perti Nets: Modelling and

Validation of Concurrent Systems”, Springer, 2009.
[14] http://cpntools.org/, <retreived: 03, 2012>
[15] Al-Shaer, E., Marrero, W., El-Atawy, A., ElBadawi, K., "Network

configuration in a box: towards end-to-end verification of network
reachability and security", in IEEE ICNP, pp. 123-132, 2009.

[16] I. El Khoury, R. Laborde, F. Barrère, A. Benzekri, “Towards a Formal
Data Flow Oriented Model for Network Security Policies Analysis”, in
SAR-SSI, pp. 1-7, 2011.

[17] I. El Khoury, R. Laborde, F. Barrère, A. Benzekri, C. Maroun, “A
generic data flow security model”, in SAFECONFIG, pp. 1-2, 2011.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

