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Abstract— Network security is inherently a distributed function 
that involves the coordination of a set of devices, each device 
affording its specific security features. The complexity of this task 
resides in the number, the nature, and the interdependence of the 
mechanisms. Any security service can interfere with others 
creating a breach in the whole network security. We propose a 
formal data flow oriented model to detect network security 
conflicts. Network security services are represented by specific 
abstract functions that can modify the data flow. We have 
specified our model in hierarchical Colored Petri Nets to 
automate the conflicts detection analysis. This approach has been 
tested on various NAPT/IPsec scenarios to prove that without 
any a priori knowledge these conflicts can be detected. 

Keywords - network security; security conflict detection; data 
flow modeling; Colored Petri Nets. 

I.  INTRODUCTION 
Network security is inherently a distributed function that 

involves the coordination of a set of devices, each device 
affording its specific security features. Any equipment (end and 
core devices) involved in a security solution requires a precise 
configuration. This configuration, determining its behavior, has 
a local impact on the security service provided by the 
equipment but also can affects the global network security. If a 
rule on equipment is poorly defined, the global security might 
be compromised (principle of the weakest link in the security 
chain). 

The network security conflicts detection is therefore a 
major problem. Conflicts can be local to one security service, 
i.e. two rules for the same security mechanism on the same 
equipment may be incompatible (e.g. one filtering rule permits 
a data flows whereas another one on the same firewall blocks 
it). However, conflicts can be distributed too. In this case, the 
incompatibility can occur between different mechanisms on 
different equipment playing a role at different levels in the OSI 
layers (IPsec tunnels blocked by firewalls, HTTP proxy unable 
to filter HTTP traffic because it has been encrypted by an IPsec 
gateway, etc). These distributed conflicts are much harder to 
cope with because they expect to consider the dependencies 
between different equipments and/or different mechanisms. 

It is therefore essential to develop tools to express and 
validate network security policies. One difficulty resides in the 
nature of network security information. How to express 
management information while taking into consideration 
constraints such as the heterogeneity of solutions, 

interdependencies between security mechanisms, and the 
sustainability of expression languages confronted to the fast 
evolution of technologies? The right level of abstraction should 
be produced, both independent of the security mechanisms and 
at the same time faithfully representative of the reality. 

To address this problem, we have proposed a formal data 
flow oriented model. The first version of our model has been 
presented in [16] and was enhanced in [17]. In this approach, a 
data flow is represented as a sequence of logical elements to 
match physical data flow which is a sequence of bytes grouped 
according to the specifications of the network protocols. The 
security mechanisms are represented as functions handling 
these flows. Constraints applied to data flows and security 
mechanisms point out conflicts that can occur. In this article, 
we validate our model by specifying it in hierarchical Colored 
Petri Nets. This formal language is suitable for representing 
data flows and associated tools such as CPNtools can automate 
the validation task. In addition, we present how to detect 
distributed conflicts using our approach thought various 
NAPT/IPsec scenarios. 

The rest of this article is organized as follows. Section 2 is 
dedicated to related works. Section 3 describes our modeling. 
Section 4 presents example of modeling. Section 5 illustrates 
our approach to conflict detection, on implementing IPSec and 
NAPT, using Colored Petri Networks. Finally, Section 6 
concludes and presents our working tracks. 

II. RELATED WORKS 
Several works have focused on detecting 

misconfigurations. Their approach consists in modeling the 
configurations of devices and the network topology. Al-Shaer 
et al. [1] [5] proposed a classification of the anomalies that can 
appear in the configuration of one or more firewalls. Alfaro et 
al. [2] have improved this classification and introduced IDS. Fu 
et al. [3] endeavored to address the problem of inconsistency of 
IPSec tunnels and firewalls. Preda [7] considers firewalls, 
IPsec and IDS. These models describe correctly the reality. 
However, they are closely attached to limited set of 
technologies and it is difficult to adapt them to other 
technologies. 

The other approach followed by distributed conflicts 
detection research considers data flow or IP datagram as the 
primary entity. Security technologies are then represented has 
functions applied on data flows. The advantage of this 
approach is the processing on data flow is related to the 
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abstract data flow model, not to the underlying technology. 
However, the strength of these solutions depends on the quality 
of the data flow modeling approach: not limited to one protocol 
or layer, but also not de-correlated from reality. 

Guttman and Herzog [4] proposed an abstract model for IP 
datagrams by a 3-tuple <l,k,θ> where l represents the current 
location of the datagram, k represents the current state of 
treatment of the datagram and θ is the following IP header 
representing the history of the actions performed on the 
datagram. An IP header is also abstracted by a 3-tuple <s,d,p> 
where s and d are respectively the source and destination and p 
represents other data. Nevertheless, the formalization is limited 
to some information contained in the IP header. 

Laborde et al. [6] proposed a formal solution based on 
Colored Petri Nets for the specification coupled with the CTL 
logic for the analysis. Like Guttman and Herzog, this approach 
focuses on analyzing the data flow. A network is represented as 
an interconnection of generic functionality on the data flow: 
endings flow (terminal devices such as workstations, or 
servers), filtering functionality (such as firewalls or application 
gateways), transformation functionality (such as IPsec, NAT, 
etc.) and channels functionality (to represent the 
communication media such as WiFi, abstraction of a network). 
A data flow is represented by a 4-tuple < efs, efd, r, t > where 
efs and efd are source and destination end flows functionalities, 
r represents the permission used to generate this flow, and t 
represents the list of transformation applied to the data flow. 
This formalism allows the approach to be independent from 
technologies. However, the level of abstraction being too high, 
it does not represent explicitly what has been changed by a 
transformation. This level of abstraction issue is highlighted by 
“feasibility analysis” that was introduced in the refinement 
process, The goal of the feasibility analysis is to validate that 
something specified at the abstracted level can actually be 
implemented on the real device. 

In a more recent article, Al Shaer et al. [15] have proposed 
a similar approach. They model the network as a finite state 
machine where each state depends on the location of IP packets 
(ips, ports,ipd,portd,location). However, they do not consider IP 
payload in their modeling. As a consequence, they had to add 
an extra valid bit to address the problem of IPsec encapsulation 
modeling. Security involving different mechanisms at different 
layers (TCP/IP stack or OSI model), this modeling approach is 
limited for describing the entire encapsulation stack. 

III. A FORMAL DATA FLOW-ORIENTED MODEL 
Our goal is to define a technology independent formalism 

to detect distributed conflicts (multi-mechanisms, multi-OSI 
layers). Our modeling approach is data flow oriented; the 
treatments of different network mechanisms are then seen as 
functions on flows. 

It is important to consider that network security 
mechanisms are not applied to one single network layer only 
(firewalls and IPSec are both mechanisms at the IP level). 
Network security is multi-level (or cross-layer). For example, a 
VPN can be an IPsec but also L2TP, SSL or SSH. Filtering can 
be done at the IP level through a firewall and at the data link 
layer via a switch, or at the application level by a dedicated 
gateway. 

It is also necessary to consider the influence of non “pure 
security labeled” devices. For example, the installation of a 
router into an Ethernet network composed only of switches 
may require the changing of MAC addresses filtering rules. 
Another example, NAT may have an adverse effect on the 
enforcement of IPSec VPNs. 

A. Analysis of the problem 
In concrete terms, a data flow is a contiguous set of bytes 

with variable size conveyed over a network. This sequence of 
bytes is divided into logical blocks according to encapsulation 
protocols. For example, a data flow corresponding to a HTTP 
request can be seen as < Ethernet protocol block, IP protocol 
block, TCP protocol block, HTTP protocol block >. The bytes 
in a logical block are not necessarily contiguous. Then, each 
protocol divides the block of bytes associated with fields in 
accordance to its description. For example, the control 
information of the Ethernet protocol are distributed into 14 
bytes (destination MAC address, source MAC address, 
identifier of the encapsulated protocol) at the beginning of the 
frame and 4 bytes for the control field at the end. 

Also, data flow is not static. A data flow evolves during its 
journey through the network according to the mechanisms 
implemented on network devices. Some mechanisms can: 

• Add new blocks of bytes. For example, an IPsec 
gateway adds the AH header between the IP block and 
the UDP/TCP block when this protocol is used in 
transport mode, 

• Remove blocks of bytes. e.g., an HTTP proxy removes 
the IP block when it receives a data stream, 

• Modify fields. e.g., NAT changes the value of the 
source IP address field in the IP block or a router 
changes the time-to-live field, 

• Authenticate fields. e.g., the AH protocol authenticates 
certain fields of IP and all other fields of the 
encapsulated protocols, 

• Encrypt fields. For example, the ESP in transport mode 
encrypts all the fields of the encapsulated protocols, 

• Etc… 
In addition, the network mechanisms perform these 

treatments according to a subset of data flow fields they can 
perceive. E.g., a stateless firewall analyses only the protocol id, 
IP source and IP destination fields in the IP block, and port 
source and destination fields in the UDP/TCP block.  

B. Modeling data flows 
We propose a data flow model that is independent from the 

underlying protocols. We want this model to be able to 
anticipate future protocols. The difficulty is to reach the good 
level of abstraction between security mechanisms 
independence and reality closeness. 

Foremost, we define our core entities: 
• ࣛ is the set of possible attributes. An attribute	ࣵ ∈ ࣛ, 

represents a couple <name, value> where name is a 
field that can be found in a protocol, and value is its 
content,  

• ࣪ is the set of protocols, i.e., the set of logical blocks. 
An instance of protocol  ∈ ࣪  is a couple <protoid, 
attributes> where protoid=<name, id> is the name of 
the protocol and an unique identifier and attributes is 
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defined on the Power-set of ࣛ, i. e. , 	ݏ݁ݐݑܾ݅ݎݐݐܽ ∈	ℙ(ࣛ), 
• ℰ = 	࣪ℕ, is the set of finite sequences over ࣪. This set 

represents all the possible encapsulation chain of 
protocols, i.e. sequences of logical blocks. For reasons 
of notation simplicity, we use: next(p୧) = 	p୧ାଵ  and rest(p୧) =	< p୧ାଵ,… , p୬ >  for a given sequence ݁ =< pଵ, pଶ, … , p୧, … , p୬ >, 

• ࣭  is the set of security algorithms addressing the 
encapsulation chain of protocols (for instance, DES, 
3DES, HMAC-SHA1, etc.). 

Definition 1: Formal definition of data flows 
Based on above definitions, we present the set of data flows 

as:	ℱ ⊆ ℰ	 × 	AUTHN	 × 	CONF such that: 
• ℰ is the encapsulation chain of  protocols, 
• AUTHN	 ⊆ (ࣛ	 × 	࣪	 × 	ࣛ	 × 	࣪	 × 	࣭) represents the 

attributes of the data flow that have been authenticated 
such that (ࣵଵ, ,ଵ ࣵଶ, ,ଶ ः) 	∈ AUTHN  indicates that 
attribute ܽଵ  of protocol ଵ  guarantees the integrity of 
attribute ࣵଶ of protocol ଶ via the security algorithm ः, 

• CONF	 ⊆ 	BAG(ࣛ	 × 	࣪ × 	࣭) represents the attributes 
of the data flow that have been encrypted, such that (ࣵ, p, ः) 	∈ CONF indicates that attribute ࣵ of protocol  is encrypted via the security algorithm ः. We used a 
multi-set because an attribute can be encrypted several 
times by the same algorithm. A multi-set is a set of 
elements where an element may appear several times. 

A treatment on a data flow is then seen as a particular 
function of ℱ to ℱ , called transform function as in [6]. This 
function represents the capability to modify the data flows. It 
can symbolize encryption protocols such as IPsec where one 
transform function adds some security services (e.g. 
confidentiality) and another removes it, or the NAT where only 
one transform function is concerned. According to the 
underlying technology, each treatment considers a subset of 
attributes from data flow as input (e.g., for IPSec, attributes are 
source address, destination address and transport protocol field 
of the IP header as well as source port and destination port of 
the TCP/UDP header) and modifies the data flow. For 
example, when using ESP, treatment adds new protocols in the 
encapsulation chain of protocols and new instances in the 
relationship AUTHN and new attributes in multi-set CONF. 

Examples: 
Given flow ࣹ = (e, AUTHN, CONF) ∈ 	ℱ, e =< ,1 2 1	݁ݎℎ݁ݓ,< = ((p, 1), {(α, v1), (β, v2), (γ, v3)})	and	2 = ((p, 2),{(κ, v4), (μ, v5)}):  
1. If	AUTHN = { }, and	CONF = { },	 then this data flow 

includes two encapsulated protocols for which no field 
is protected, 

2. If	AUTHN = {(κ, ,ଶ γ, ,ଵ sଵ), (κ, ,ଶ μ, ,ଵ sଵ)}	and	CONF ,ߤ)}= ,ଶ {(ଶݏ , then field ߢ  in protocol p2 authenticates 
fields	ߛ	and ߤ in protocol p1 by algorithm ݏଵ and field ߤ in protocol p1 is encrypted by algorithm	ݏଶ. 

In the rest of the article, we use the following notation to 
simplify the readability: 

• we designate by p1 the protocol element whose 

protoid equals to (p,1), 
• attributes(p) for the set of attributes of a protocol p. 

E.g. attributes(p1)= {(α, v1), (β, v2), (γ, v3)}, 
• when there is no ambiguity, we use the name of the 

attribute instead of the couple (name,value). 
Definition 2: Data flow integrity 

Data flow integrity indicates that no authenticated attribute 
has been changed. This is described in our model as follows: 
Let ࣹ = (e, AUTHN, CONF) ∈ 	ℱ, integrity of ࣹ is satisfied iff ∀(a, aᇱ) ∈ ࣛ	x	ࣛ, ,ଵ)	∀ (ଶ ∈ ࣪	x	࣪, ∀	s ∈ ࣭, (a, ,ଵ aᇱ, ,ଶ s) ∈AUTHN ⟹ a ∈ attributes(ଵ) 	∧ aᇱ ∈ 	attributes(ଶ). 

We do not provide any definition of data flow 
confidentiality in this article. Confidentiality refers to non-
disclosure of sensitive information. Sensitive information in the 
context of data flow is a subset of the protocols fields/payload 
that are required to be confidential. In our attribute-based 
modeling, attributes within the multi-set CONF represent the 
encrypted information in the data flow. It can be noticed that 
our model faithfully represents reality. A real data flow cannot 
be completely encrypted (if the IP destination field is 
encrypted, routers won’t be able to route the packet). However, 
particular values of specific attributes might be considered as 
confidential (e.g., if the knowledge that two devices are 
communicating over the Internet is confidential, it is important 
to hide their IP addresses values for example in an IPsec tunnel 
where only the IP addresses of the two IPsec gateways will be 
revealed). Thus, the set attributes required to confidential 
depends on external security requirements that are out of scope 
of this article. 

IV. CASE STUDY 
In this section, we present the modeling of security 

mechanisms to validate the expression capability of our 
approach. We describe examples related to IPsec [10] (namely 
the AH and ESP protocols) and NAPT. Although, conflicts 
between these technologies are well know, our intent is to 
explain how our approach can be used. 

. 
In the following examples, we use IP, TCP, UDP, AH, ESP 

protocols and a data flow f = (< …,ip1 ,… >, AUTHN,CONF). 
In our formalism, they can be defined as follows: 

• attributes(ipi)={version,hlength,tos,tlength,id,flags,offset, 
ttl,proto,checksum,ips,ipd,options},  

• attributes(tcpi)={ports,portd,seq,ack,hlength,reserved, 
tcpflags,win,options,checksum}, 

• attributes(udpi)={ports,portd,len,checksum}, 

• attributes(ahi)={nexthdr,payloadlength,reserved,spi, 
seq,ad}, 

• attributes(espi)={ spi,seq,padlength,nextheader,ad}. 

A. Specification of AH 
AH (Authentication Header) [11] is designed to ensure 

integrity and authenticity of IP datagrams without data 
encryption. The Authentication Data (AD) field guarantees the 
integrity of the datagram. The AH protocol has two modes: 
transport and tunnel. 
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1) In the transport mode, AH is inserted after the IP 
header and before next layer (Fig. 1).and protects the entire IP 
packet except mutable fields (i.e. the fields DSCP, ECN, 
Flags, Offset, TTL, Header Checksum).  

 
Original 

IP Header TCP/UDP Data 
 

Original 
IP Header AH TCP/UDP Data 

Authenticated, except the mutable fields 
 

Figure 1.  IP datagram before and after applying AH in transport mode 

Definition 3: Specification of AH in the transport mode 
The application of AH in transport mode on the flow f (as 

defined above) is the transformation function tfு௧௦௧ ∶ ℱ	 → 	ℱ , generating the flow tfு௧௦௧=f’=(<…,ip1,ah, p…>, AUTHN’, CONF’) where: 

• attributes(ipଵᇱ ) = attributes(ipଵ)\{(proto, x)} 		∪{(proto, 51)}	where	51	is	the	value	of	AH	protocol,	
• AUTHNᇱ =AUTHN ∪⋃ {(ad, ah, x, ipଵᇱ , s)}∀୶	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୧୮భᇲ )\{ୈୗେ,େ,… ,ୡ୦ୣୡ୩ୱ୳୫}	 ∪⋃ {	(ad, ah, y, ah, s)}	∀୷	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(ୟ୦)\{ୟୢ}	 ∪⋃ {	(ad, ah, z, p, s	)}∀୮	∈	୰ୣୱ୲(ୟ୦)|	∀	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) 	It	indicates	that	integrity	of	all	immutable	fields	of	the	IP	protocol	and	every	 fields	of	all	protocols,	which	are	 encapsulated	 by	 AH,	 is	 guaranteed	 by	 using	security	algorithm	s.	

2) In the tunnel mode, the inner IP header carries the 
ultimate IP source and destination addresses, while an outer IP 
header contains the addresses of the IPsec peers (Fig. 2) and 
protects the entire inner IP packet, including the entire inner IP 
header. The position of AH in mode tunnel, relative to the 
outer IP header, is the same as for AH in the transport mode. 
In fact, in AH Tunnel mode the entire original IP header and 
data becomes the “payload” for the new packet. The new IP 
header is protected exactly the same as the IP header in 
Transport mode.  

Original 
IP Header TCP/UDP Data 

 
New IP 
Header 

AH Original 
IP Header 

TCP/ 
UDP Data 

                     mutable   immutable fields 

 Authenticated, except the mutable fields in the new IP 
 

Figure 2.  IP datagram before and after applying AH in tunnel mode 

Definition 4: Specification of AH in the tunnel mode 
The application of AH in the tunnel mode on the flow f (as 

defined above) is the transformation function:  ݐ ݂ு௧௨:	ℱ	 → 	ℱ , generating flow ݐ ݂ு௧௨(݂) = ݂ᇱ =൫< 	… , ipଶ , ah, ipଵ, p,… >, AUTHNᇱ, CONF൯ where: 

• attributes൫ipଶ ൯ = {(ips, sourcegateway),(ipd, destinationgateway), (proto, 51), … },	

• AUTHNᇱ =AUTHN ∪⋃ ൛൫ad, ah, x, ipଶ , s൯ൟ∀୶	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୧୮మ)\{ୈୗେ,େ,…,ୡ୦ୣୡ୩ୱ୳୫}	 ∪⋃ {	(ad, ah, y, ah, s)}	∀୷	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(ୟ୦)\{ୟୢ}	 ∪⋃ {	(ad, ah, z, p, s	)}∀୮	∈	୰ୣୱ୲(ୟ୦)|	∀	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) 	This	indicates	that	integrity	of	all	immutable	fields	of	the	new	 IP	 header,	 and	 every	 fields	 of	 all	 protocols,	which	 are	 encapsulated	 by	 AH	 (including	 the	original	IP	header),	is	guaranteed	by	using	security	algorithm	s.	
B. Specification of ESP 

ESP protocol (Encapsulating Security Payload) [12] 
provides authentication and encryption of data carried in IP 
datagram. Like AH protocol, the Authentication Data (AD) 
field guarantees the integrity of the datagram and ESP has two 
modes: transport and tunnel. 

1) In the transport mode, the ESP bounds the transport 
and data layers (Fig. 3). ESP authenticates the data 
transported in the IP datagram but not the IP header. In 
addition, it encrypts the data protocol transport layer.  

 
Figure 3.  IP datagram before and after applying ESP in transport mode 

Definition 5: Modeling of ESP in transport mode 
Our model considers protocols as logical blocks. So, we do 

not differentiate between the header and the tail of ESP. 
The application of ESP in the transport mode on the flow f 

(as defined above) is the transformation function ݐ ா݂ௌ௧௦௧:	ℱ	 → 	ℱ , generating flow  ݐ ா݂ௌ௧௦௧ = ݂′ =(< 	… , ipଵᇱ , esp, p, … >, AUTHNᇱ, CONF′) where: 
• attributes(ipଵᇱ ) = attributes(ipଵ)\{(proto, x)} 		∪{(proto, 50)}	where 50 is the value of ESP protocol. 
• AUTHNᇱ =AUTHN ∪⋃ {	(ad, esp, x, esp, sଵ)}	∀୶	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(ୣୱ୮){ୟୢ}	 ∪⋃ {	(ad, esp, y, p, sଵ	)}∀୮	∈	୰ୣୱ୲(ୣୱ୮)|	∀୷	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) 									

indicating integrity of every fields of all protocols, 
which are encapsulated by ESP, is guaranteed by using 
security algorithm ݏଵ, 

• CONFᇱ =CONF ∪ ⋃ {	(x, esp, sଶ)}∀୶	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(ୣୱ୮)\{ୱ୮୧,ୱୣ୯,ୟୢ}	 ∪⋃ {	(y, p, sଶ)}∀୮	∈	୰ୣୱ୲(ୣୱ୮)|	∀୷	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) . This 
indicates that every fields of all protocols, which are 
encapsulated by ESP, are encrypted using security 
algorithm sଶ, 

2) In the tunnel mode, the inner IP header carries the 
ultimate IP source and destination addresses, while an 
outer IP header contains the addresses of the IPsec 

 
Original 

IP Header TCP/UDP Data 
 

            Authenticated   
Original 

IP Header 
ESP 

Header 
TCP/
UDP 

Data ESP 
Trailer 

ESP 
Auth 

 

                      Encrypted 
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gateways (Fig.4) and protects the entire inner IP 
packet, including the entire inner IP header. The 
position of ESP in the tunnel mode, relative to the 
outer IP header, is the same as for ESP in transport 
mode. The integrity of the datagram is checked against 
the field Authentication Data (AD). In fact, in ESP 
Tunnel mode the entire original IP header and data 
becomes the “payload” for the new packet. The new IP 
header is not protected.  

 
Orig. 

IP Hdr TCP/UDP Data 
 
            Authenticated   

New 
IP Hdr 

ESP 
Header 

Orig. 
IP Hdr 

TCP/
UDP 

Data ESP 
Trailer 

ESP 
Auth 

 
                        Encrypted 

 
Figure 4.  IP datagram before and after applying ESP in tunnel mode 

Definition 6: Modeling of ESP in the tunnel mode 
The application of ESP in tunnel mode on a flow f (as 

defined above) is the transformation function  ݐ ா݂ௌ௧௨:	ℱ	 → 	ℱ , generating flow ݐ ா݂ௌ௧௨(݂) =  ݂′ =൫< 	… , ipଶ , esp, ipଵ, p, … >, AUTHNᇱ, CONF′൯ where: 
• attributes(ipଶ ) = {(ips, sourcegateway),(ipd, destinationgateway), (proto, 50), … },		
• AUTHNᇱ =AUTHN ∪⋃ {	(ad, esp, x, esp, sଵ)}	∀୶	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(ୣୱ୮)\{ୟୢ}	 ∪⋃ {	(ad, esp, y, p, sଵ	)}∀୮	∈	୰ୣୱ୲(ୣୱ୮)|	∀୷	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) 	indicating	 that	 integrity	 of	 every	 fields	 of	 all	protocols,	 which	 are	 encapsulated	 by	 ESP,	 is	guaranteed	by	using	security	algorithm	ݏଵ,	
• CONFᇱ =CONF ∪ ⋃ {	(x, esp, sଶ)}∀୶	∈ୟ୲୲୰୧ୠ୳୲ୣୱ(ୣୱ୮)\{ୱ୮୧,ୱୣ୯,ୟୢ}	 ∪⋃ {	(y, p, sଶ)}∀୮	∈	୰ୣୱ୲(ୣୱ୮)|	∀୷	∈	ୟ୲୲୰୧ୠ୳୲ୣୱ(୮) .	 This	indicates	 that	 every	 fields	 of	 all	 protocols	encapsulated	 by	 ESP	 are	 encrypted	 using	 security	algorithm	sଶ.	

C. Modeling of NA(P)T 
NA(P)T (Network address and port translation) [8] 

transforms the IP source address of an IP datagram to allow the 
communication between an equipment with private IP address 
with another one connected to the Internet. 

The operation of this system can be summarized as follows: 
1. NAPT generates dynamically a source port, 
2. NAPT records the association (old IP source address, 

old source port, new IP address, new source port), 
3. NAPT modifies the fields source port and checksum 

fields of the UDP / TCP, 
4. NAPT modifies the source IP address and the 

checksum in the IP header. 

Definition 7: Basic NAPT 
Consequently, we can represent the NAPT processing 

system by the transformation function ݐ ே்݂  as follows: 

• Pre-condition 1: the protocol following IP header 
should be either tcp or udp. ∀f = (< 	… ip, next(ip)… >, AUTHN, CONF),		with:	{ports, portd, checksum} ∈ attributes(next(ip)).	

• Pre-condition 2: NAPT must be able to read the source 
IP address and the source port: ∀f = (< 	… , ip, next(ip)… >, AUTHN, CONF),∄s|	(ips, ip, s) ∈ CONF	 ∨ (ports, next(ip), s) ∈ CONF.		

NAPT transforms the following fields: source IP address, 
checksum of IP, the source port, and the checksum of transport 
protocol. Therefore, tfே்  transforms a flow f = (< 	… , ip, next(ip)… >, AUTHN, CONF)  into a data flow f′ = (< 	… , ip′, next(ip)′ … >, AUTHN, CONF) such that: 

• attributes(ip′) = attributes(ip)	\{(ips, value), (checksum, value)} 																																	∪ {(ipsᇱ, new_value), (	checksumᇱ, new_value)},	
• attributes(next(ip)ᇱ) = attributes൫next(ip)൯	\{(ports, value), (checksum, value)}																		∪ {(portsᇱ, new_value), (checksumᇱ, new_value)}	
This treatment considers that protocol TCP or UDP follows 

immediately the IP header, which leads to the problem of the 
evolution of the arrangement of protocols encapsulation. We 
therefore propose an advanced version of NAPT processing 
that is not limited by this assumption. This version, called 
advanced NAPT, is able to search the TCP or UDP protocol 
deeper in the data flow. 

Definition 8: Advanced NAPT  
The transformation function ݐ ே்݂ௗ௩  represents an advanced 

NAPT which is defined as: 
• Pre-condition 1: the IP protocol encapsulates directly 

or indirectly the TCP or UDP protocol: e.g.,	∀f = (< 	… , ip, … , p, … >, AUTHN, CONF),	∃p ∈ rest(ip)|{ports, portd, checksum} ∈ attributes(p) .	thus		is	a	transport	protocol.	
• Pre-condition 2: NAPT must be able to read the IP 

source address and the source port: e.g., ∀f = (< 	… , ip, … , p, … >, AUTHN, CONF),∄s		such	that		(ips, ip, s) ∈ CONF ∨ (ports, p, s) ∈ CONF		
NAPT transforms the fields IP source address, IP checksum 

and the source port and checksum of the transport protocol. 
Therefore, ݐ ே்݂ௗ௩  transforms a flow ݂ = (< 	… , ip, … p… >, AUTHN, CONF)  into a flow ݂′ = (< 	… , ip′, … p′… >, AUTHN, CONF) such that: 

• attributes(ip′) = attributes(ip)	\{(ips, value), (checksum, value)} 																																	∪ {(ipsᇱ, new_value), (	checksumᇱ, new_value)},	
• attributes(p′) = attributes(p′)	\{(ports, value), (checksum, value)}																		∪ {(portsᇱ, new_value), (checksumᇱ, new_value)}	

V. CONFLICT ANALYSIS IN COLORED PETRI NETS (CPN) 
In this section, we demonstrate that it is possible to detect 

conflicts between security mechanisms without a priori 
knowledge. The problems between IPsec and NAPT are well 
known [9] but they are not trivial without using the human 
expertise. Our goal here is to detect these conflicts by applying 
our formalization only. Our approach, being independent of the 
underlying technologies, can handle conflicts between other 
technologies. 
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In order to automate the conflict detection task, we have 
specified our formalism in colored Petri nets; this formal 
language being adapted to data flows oriented approach [6] and 
featured with tools (CPN tools [14]) to validate our formal 
methodology.  

A. Introduction to CPN 
Colored Petri Net (CPN) is a formal specification language 

consisting of a set of tokens whose type is represented by a 
color, a set of transitions, and a set of places with a domain 
(which defines the types of tokens that can be stored in that 
place) and a set of arcs connecting places and transitions. It 
allows creating formal models of systems.  

 

Figure 5.  Example of CPN specification 

The state of a system (Fig. 5) is represented by the 
distribution of tokens in places. It changes when a transition is 
fired. A Boolean expression called guard may be associated 
with a transition to set the conditions required to fire the 
transition. If the tokens contained in places connected by 
incoming arcs in the transition satisfy the guard, then they are 
removed from these places and new tokens are created in the 
places connected to outgoing arcs of the transition. 

Our choice of Colored Petri Nets formalism [13] to address 
the design of modeling data flow is motivated by the following 
reasons: Colored Petri Nets are well-known for their graphical 
and analytical capabilities for the specification and verification 
of concurrent, asynchronous, distributed, parallel and 
nondeterministic systems. Various features contribute to such a 
success include graphical nature, the simplicity of the model 
and the firm mathematical foundation. It also provides 
modularity in design. 

 
Figure 6.  Navigating through marking menus 

In addition to colors, it is possible to create hierarchical 
descriptions, i.e., structure a large description as a set of 
smaller pieces by using the facilities within CPN Tools through 
well-defined interfaces and relationships to each other. This is 
similar to the use of modules in a programming language. 
Conceptually, CPNs with substitution transitions are CPNs 
with multiple layers of detail. It enhances the readability of the 

CPN specification. Figure 6 shows an example of navigation 
from a super-page to a subpage. The substitution transition AH 
(with double line in the CPN at the top of figure 6) is actually a 
black box view of a more detailed CPN (at the bottom) that 
specifies AH in transport mode. 

B. Net structure and declaration 
We simulate and validate our CPN model with "CPN 

Tools" [14]. The CPN development environment uses an 
extension of ML language to formally specify colors of tokens, 
guards at transitions, and functions on arcs. Fig. 7 presents the 
definition data flow in CPN-ML. 

// Definition of attributes  

color ATTRIBUTE = record name:STRING * value:STRING; 

// Definition of protocol identification 

color PROTOCOLID = record name :STRING * id :INT; 

// Definition of the list of attributes 

Color ATTList = list ATTRIBUTE; 

// Definition of protocols 

color PROTOCOL = record protoid:PROTOCOLID*value:ATTList; 

// Definition of encapsulation chain of protocols 

Color ENCAPSULATION = list PROTOCOL; 

// Definition of security algorithm 

color SECALGO = with DES | 3DES | HMAC | …; 

// Definition of authentication elements 

color AUTHN = product ATTRIBUTE*PROTOCOL*ATTRIBUTE 

*PROTOCOL*SECALGO; 

// Definition of the list of authentication elements 

color AUTHNLIST = list AUTHN; 

// Definition of confidentiality elements 

color CONF = product ATTRIBUTE*PROTOCOL*SECALGO ; 

// Definition of the list of confidentiality elements 

color CONFLIST = list CONF; 

// Definition of data flows 

Color DATAFLOW = product ENCAPSULATION*AUTHNLIST 

*CONFLIST; 

Figure 7.  Definition in CPN-ML of data flows 

C. Scenarios 
We choose three scenarios to validate our model. The first 

one is AH in the transport mode transformed data flow through 
NAPT to show the use of the authentication “AUTHN”. The 
second one is ESP flow in the transport mode transformed data 
flow through NAPT to show the use of both authentication 
“AUTHN” and confidentiality “CONF”. Finally, AH in the 
tunnel mode data flow through NAPT presents tunneling. 

1) Scenario 1: AH flow in transport mode with NAPT 
In this first scenario, we study the interaction between a 

mechanism that implements AH in the transport mode and the 
NAPT mechanism (Fig. 8). Our study consists in analyzing, for 
a given data flow ݂ = (< ,ଵ݅ ܿݐ >, {}, {}), the transformation 
chain 		݂ݐே் 	∘ ݐ ݂ு௧௦௧.  

Based on definition 3, data flow f is transformed to ݂ᇱ = ݐ ݂ு௧௦௧(݂) = (< ଵᇱ݅ , ܽℎ, ܿݐ >, ,ܰܪܷܶܣ {}) where: 
1ᇱ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ • ) = ,ݐݎ)}\(ଵ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ 4)} ∪ ,ݐݎ)} 51)}, 
• AUTHN =⋃ {	(ܽ݀, ܽℎ, ,ݔ 1ᇱ݅ , ∈௧௧௨௧௦(1ᇲ	௫∀	{(ݏ )\{ௌ,ாே,…,ୡ୦ୣୡ୩ୱ୳୫}	 ∪
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⋃ {	(ܽ݀, ܽℎ, ,ݕ ܽℎ, 	∈௧௧௨௧௦()\{ௗ}	௬∀	{(ݏ ∪⋃ {	(ܽ݀, ܽℎ, ,ݖ ,ܿݐ ௧௧௨௧௦(௧)	∈	௭∀{(ݏ . 

 
Figure 8.  AH in the transport mode through NAPT 

Then, data flow ݂′  can’t be transformed by basic NAPT 
(definition 7), because ݂′ does not verify pre-condition 1; i.e. 
the protocol encapsulated directly by IP is AH. As a result, the 
token representing the data flow if blocked in place Flow2. 

 
Figure 9.  Conflict detection: AH in the transport mode through Advanced 

NAPT 

While using the advanced NAPT (definition 8), we get the 
following data flow: ݂ᇱ′ = ݐ ே்݂ௗ௩ 	 ∘ ݐ ݂ு(݂) = 	 (< ଵᇱ݅ , ܽℎ, ′ܿݐ >, ,ܰܪܷܶܣ {}) , 
where: 

ଵᇱ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ • ) ,ݏ݅)}\(ଵ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ= ,(݈݀ (ܿℎ݁ܿ݇݉ݑݏ, {(݈݀ ,ݏ݅)}∪ ,(ݓ݁݊ (	ܿℎ݁ܿ݇݉ݑݏ, 		,{	(ݓ݁݊
(ᇱܿݐ)ݏ݁ݐݑܾ݅ݎݐݐܽ • ,ݏݐݎ)}(ܿݐ)ݏ݁ݐݑܾ݅ݎݐݐܽ= ,(݈݀ (ܿℎ݁ܿ݇݉ݑݏ, {(݈݀ ,ݏݐݎ)}∪ ,(ݓ݁݊ (ܿℎ݁ܿ݇݉ݑݏ, 	.{(ݓ݁݊

In this case, integrity of ݂ᇱ′ (definition 2) is violated (Fig. 9) 
because: 

• ቀܽ݀, ܽℎ, ,ݏ݅) ,(݈݀ ′1݅ , ቁݏ ∈ AUTHN and	(݅ݏ, (݈݀ ∉ ′1݅ , 
• ቀܽ݀, ܽℎ, (ܿℎ݁ܿ݇݉ݑݏ, ,(݈݀ ′1݅ , ቁݏ ∈ AUTHN  

and	(ܿℎ݁ܿ݇݉ݑݏ, (݈݀ ∉ ′1݅ , 
• (ܽ݀, ܽℎ, ,ݏݐݎ) ,(݈݀ ,′ܿݐ (ݏ ∈ AUTHN  and ,ݏݐݎ)	 (݈݀  ,ᇱܿݐ∌
• (ܽ݀, ܽℎ, (ܿℎ݁ܿ݇݉ݑݏ, ,(݈݀ ,′ܿݐ (ݏ ∈AUTHN	and	(ܿℎ݁ܿ݇݉ݑݏ, (݈݀ ∉  .ᇱܿݐ

2) Scenario 2: a flow ESP in the  transport mode with 
NAPT 
In our second scenario, we study the interaction between a 

mechanism that implements ESP in the transport mode and the 
NAPT mechanism. Our study consists in analyzing, for a given 
data flow ݂ = (< ,ଵ݅ ܿݐ >, {}, {}), the transformation chain ݐ ே்݂ 	∘ ݐ ா݂ௌ(݂). 

Based on definition 5, data flow f is transformed to  f ᇱ = tfாௌ௧௦௧(݂) = (< ଵᇱ݅ , ,ݏ݁ ܿݐ >, AUTHN, CONF)  
where: 

ଵᇱ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ • ) = ,ݐݎ)}\(ଵ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ 4)} ,ݐݎ)}∪		 50)}	, 
• AUTHN	=	⋃ {	(ܽ݀, ,ݏ݁ ,ݔ ,ݏ݁ 	௧௧௨௧௦(௦)\{ௗ}	∈	∀௫	ଵ)}ݏ ∪	⋃ {	(ܽ݀, ,ݏ݁ ,ݕ ,ܿݐ ∈௧௧௨௧௦(௧)	ଵ)}∀௬ݏ ,	
• CONF =⋃ ,ݔ)	} ,ݏ݁ 	∈௧௧௨௧௦(௦)\{௦,௦,ௗ}	ଶ)}∀௫ݏ ∪	⋃ ,ݕ)} ,ܿݐ ௧௧௨௧௦(௧)	∈	ଶ)}∀௬ݏ 	.	

Using transformation function basic NAPT (definition 7), 
there is a conflict because ݂ᇱ does not verify pre-condition 1; 
i.e. the protocol encapsulated directly after IP is ESP. As a 
consequence, the token representing the data flow is blocked in 
place Flow2. On the other hand, using the advanced NAPT 
(definition 8), pre-condition 2 is not satisfied because (ݏݐݎ, ,ܿݐ (ଶݏ ∈ CONF , i.e. the source port of TCP is 
encrypted and therefore incomprehensible for NAPT (Fig. 10). 

 
Figure 10.  Conflict detection: ESP in the transport mode through NAPT 

3) Scenario 3: a flow AH in tunnel mode with NAPT 
In our third scenario, we study the interaction between a 

mechanism that implements AH in the tunnel mode and the 
NAPT mechanism. Our study analyzes, for a given data flow ݂ = (< ,ଵ݅ ܿݐ >, {}, {}) , the transformation chain    		ݐ ே்݂ 	∘ ݐ ݂ு௧௨(݂).  

Basing on definition 4, data flow ݂ᇱ = ݐ ݂ு௧௨(݂) =(< ,ଶ݅ ܽℎ, ,ଵ݅ ܿݐ >, ,ܰܪܷܶܣ {}) where: 

(ଶ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ • =
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,ݏ݅)} ,(ݕܽݓ݁ݐܽ݃݁ܿݎݑݏ ,݀݅) ,ݐݎ),(ݕܽݓ݁ݐܽ݃݊݅ݐܽ݊݅ݐݏ݁݀ 51), … }	, 
• AUTHN =⋃ {	(ܽ݀, ܽℎ, ,ݔ ,ଶ݅ …,ୟ୲୲୰୧ୠ୳୲ୣୱ(మ)\{౪౪ౢ,౪౩,ౢౝ౩	∈	୶∀	{(ݏ } ∪⋃ {	(ܽ݀, ܽℎ, ,ݕ ܽℎ, 	௧௧௨௧௦()\{ௗ}	∈	௬∀	{(ݏ ∪⋃ {	(ܽ݀, ܽℎ, ,ݖ ,ଵ݅ 	∈௧௧௨௧௦(భ)	௭∀	{(ݏ ∪⋃ {	(ܽ݀, ܽℎ, ,ݐ ,ܿݐ ௧௧௨௧௦(௧)	∈	௧∀{(ݏ . 

Data flow ݂′  cannot be transformed by basic NAPT 
(definition 7), because ݂′ does not verify pre-condition 1; i.e. 
the protocol encapsulated directly after IP is AH. 

While using advanced NAPT (definition 8), we get the 
following data flow: ݂′ᇱ = ݐ ே்݂ௗ௩ 	 ∘ ݐ ݂ு௧௨(݂) =	(< ଶᇱ݅ , ܽℎ, ,ଵ݅ ′ܿݐ >, ,ܰܪܷܶܣ {}), where: 

ଶᇱ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ • ) = \(ଶ݅)ݏ݁ݐݑܾ݅ݎݐݐܽ ,ݏ݅)}	 ,(݈݀ (ܿℎ݁ܿ݇݉ݑݏ, {(݈݀ ,ݏ݅)}∪ ,(ݓ݁݊ (	ܿℎ݁ܿ݇݉ݑݏ, 		,{(ݓ݁݊
(ᇱܿݐ)ݏ݁ݐݑܾ݅ݎݐݐܽ • = ,ݏݐݎ)}\(ܿݐ)ݏ݁ݐݑܾ݅ݎݐݐܽ ,(݈݀ (ܿℎ݁ܿ݇݉ݑݏ, {(݈݀ ,ݏݐݎ)}∪ ,(ݓ݁݊ (ܿℎ݁ܿ݇݉ݑݏ, 	.{(ݓ݁݊

In this case, integrity of ݂ᇱ′ (definition 2) is violated (Fig. 
11) because: 

• ቀܽ݀, ܽℎ, ,ݏ݅) ,(݈݀ ′2݅ , ቁݏ ∈ AUTHN and	(݅ݏ, (݈݀ ∉ ′2݅ , 
• ቀܽ݀, ܽℎ, (ܿℎ݁ܿ݇݉ݑݏ, ,(݈݀ ′2݅ , ቁݏ ∈ AUTHN  

and	(ܿℎ݁ܿ݇݉ݑݏ, (݈݀ ∉ ′2݅ , 
• (ܽ݀, ܽℎ, ,ݏݐݎ) ,(݈݀ ,′ܿݐ (ݏ ∈ AUTHN  and ,ݏݐݎ)	 (݈݀  ,′ܿݐ∌
• (ܽ݀, ܽℎ, (ܿℎ݁ܿ݇݉ݑݏ, ,(݈݀ ,′ܿݐ (ݏ ∈AUTHN	and	(ܿℎ݁ܿ݇݉ݑݏ, (݈݀ ∉  .ᇱܿݐ

 
Figure 11.  Conflict detection: AH in the tunnel mode through Advanced 

NAPT 

VI. CONCLUSION 
Network security requires the coordination of various 

heterogeneous and interdependent devices. As a consequence, 
multi-mechanisms and multi-levels conflicts may occur. The 
fast evolution of technologies imposes network security 
analysis to be independent from current technology. We 
proposed in this article a formal data flow oriented approach to 
analyze conflicts related to security policy deployment. This 
formal representation is based on an abstraction of a physical 

data flow consisting of blocks and the relation between each 
block and the underlying protocol. 

By using CPN Tools, we have validated our approach 
based on well-known scenarios (IPsec and NAPT). This work 
allows us to verify the capacity of our model to express and 
analyze real distributed inconsistency. The results are 
encouraging because conflicts have been detected without 
requiring any a priori knowledge or experience. Indeed, we do 
not have to specify the semantics of the elements of a data 
flow. This leads us to believe that our approach can be used to 
detect unknown conflicts involving new security mechanisms 
that may occur at different levels.  

Our future work will, therefore, focus on generalizing the 
model, especially on providing a generic model of devices’ 
configurations built on our attribute-based approach. This will 
improve the reusability of hierarchical CPN specifications. 
Then, we will consider more realistic scenarios by looking at 
the future protocols available as draft specifications to prove 
our approach is adapted to new technologies too. 
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