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Abstract - This paper presents an enhancement to a category of 
Adaptive Video Streaming solutions aimed at improving both 
Quality of Service (QoS) and Quality of Experience (QoE). The 
specific solution used as baseline for the work is the Smooth 
Streaming framework from Microsoft. The presented 
enhancement relates to the rate adaption scheme used, and 
suggests applying a stochastic variable for the rate adjustment 
intervals rather than the fixed approach. The main novelty of 
the paper is the simultaneous study of both network oriented 
fairness in the QoS domain and perception based fairness from 
the QoE domain, when introducing the suggested mechanism. 
The method used for this study is by means of simulations and 
numerical optimization. Perception based fairness is suggested 
as an objective QoE metric which, requires no reference to 
original content. The results show that the suggested 
enhancement has great potential in improving QoE, while 
maintaining QoS. 

Keywords - Adaptive Video Streaming; Fairness; QoE. 

I.  INTRODUCTION 

Solutions for Adaptive Video Streaming are part of the 
more general concept of ABR (Adaptive Bit Rate) streaming 
which, covers any content type. The implementation of ABR 
streaming for video varies between different vendors, and 
among the more successful one today is the Microsoft 
Smooth Streaming (SilverLight) framework [1]. In general, 
the different implementations use many undisclosed and 
proprietary functions, awaiting results from ongoing 
standardization. 

 The basic behavior of adaptive video streaming solutions 
is that the client continuously performs a measurement and 
estimation of available resources in order to decide which, 
quality level to request. The relevant resource from the 
network side is the available capacity along the path between 
the server and client. Based on this, at certain intervals the 
client decides to either go up or down in quality level or 
remain at the current level. The levels are predefined and 
communicated to the client by the server at session startup. 
The changes in quality levels are normally done in an 
incremental approach, rather than by larger jumps in rate 
level. The rationale behind this is the objective to provide a 
smooth watching experience for the user. However, it may 
also be related to the CPU monitoring done by the client, as 
this is a key resource required. It may be the case that even if 
the network can provide you with a much higher rate level, 
the CPU on the device being used would not be able to 

process it. During the initial phase of an adaptive streaming 
session the potential requests of change in rate level are more 
frequent than later on when operating in a more steady-state 
phase. To some extent this is a rather aggressive behavior 
from a single client which, may have undesirable inter-
stream impacts. At the same time, in order to give the user a 
good first impression and make him want to continue using 
the service it is desirable to reach a high quality as soon as 
possible. 

Among the strongest drivers for commercial use of ABR 
based services on the Internet are Over-The-Top content 
providers. These are providers which, rely on the best effort 
Internet service as transport towards their customers. 
Therefore, technologies aiming at making services survive 
almost any network state are of great interest. In addition to 
focus on the network based QoS dimensions of services and 
involved networks, there is also a growing interest in the 
QoE dimension [2]. The latter should be considered as not 
only a richer definition of quality, but also more focused 
towards who decides whether something is good or bad, i.e., 
the end user. The evolution of successful services on Internet 
indicates that the focus on QoE for Over-The-Top providers 
is a good strategy. 

A. Problem Statement 

The concept of Adaptive Video Streaming is without a 
doubt very promising. However, as more and more services 
are adopting this concept the success brings new challenges. 
The first challenge with effects visible to the end users is 
how well these services behave when they compete for a 
shared resource, such as the broadband access to a 
household. With a strong dominance of video based service 
on the Internet this issue is important to address. As each 
client operates independently of each other, it has no 
understanding of the traffic it competes with. Different 
clients consider each other as just background traffic. This 
leads to unpredictable and potentially oscillating behavior of 
each session, especially in a home environment this type of 
interference is likely to have a very negative impact on each 
user QoE.  

B. Research Approach 

The method investigated in this paper to address the 
problem at hand is to apply specific changes in the 
algorithm used by each ABR client controlling the adaptive 
behavior. The specific change suggested is related to the 
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rate adjustment interval used [1]. The effect of changing the 
duration of the rate adjustment interval from a fixed value T 
to some stochastic variable is presented and analyzed.  

The ABR solution used as reference point for the work 
is the one from Microsoft (Smooth Streaming). However, 
the key principles would still apply to other solutions based 
on similar principles. 

C. Paper Outline 

The structure of this paper is as follows. Section II 
provides an overview of methodology and metrics; Section 
III describes the simulation model; Section IV presents 
simulation results; Section V gives an analysis of the 
results; Section VI provides the conclusions and an outline 
of future work. 

II. RELATED WORK 

It has been shown in [3] that competing adaptive streams 
can cause unpredictable performance for each stream, both 
in terms of oscillations and ability to achieve fairness in 
terms of bandwidth sharing. The experimental results 
presented give clear indication on that competing ABR 
clients cause degraded and unpredictable performance. 
Apart from this paper, the topic at hand does not seem to 
have been addressed by the academic research community 
to the extent it deserves.  

In another paper [4], the authors have investigated how 
well adaptive streaming performs when being subject to 
variable available bandwidth in general. Their findings were 
that the adaptive streams are performing quite well in this 
type of scenario except for some transient behavior. These 
findings do not contradict the findings in [3] as the type of 
background traffic used do not have the adaptive behavior 
itself, but is rather controlled by the basic TCP mechanisms. 

Rate-control algorithms for TCP streaming in general 
and selected bandwidth estimation algorithms are described 
in [5]. This work is relevant to any TCP based application 
delivering a video stream. 

In some of our own previous work we have described 
and analyzed how competing adaptive streams can be 
controlled using a knowledge based bandwidth broker in the 
home gateway [6] [7]. 

III. METHODOLOGY AND METRICS 

In this section, we introduce the relevant performance 
metrics and together with motivation for the chosen focus. 
Thereafter, some candidate methods on how to improve the 
performance metrics are given, and finally, the specific 
method subject for study is presented. 

A. Flow Based Performance Metrics 

For transport flows it is common [8] to focus on the 
following metrics in order to assess their performance: inter-
flow fairness, stability and convergence time. This in 
addition to the general QoS metrics: bandwidth, packet loss, 
delay and jitter. The same metrics can be applied to adaptive 

video streams as they by definition also are flows with 
similar concerns. The analysis of these metrics can be done 
from a strict network oriented perspective (QoS), but to 
some extent also bridged over to a user perception domain 
(QoE). When focusing on the inter-flow fairness metric this 
is traditionally analyzed [9] using, e.g., the Jain’s fairness 
index [10], the product measure [11] or Epsilon-fairness 
[12] for flows with equal resource requirements. For flows 
with different resource requirement, the Max-Min fairness 
[13], proportional fairness [14] or minimum potential delay 
fairness [15] approaches are commonly seen. Real life 
adaptive video streams would typically belong to the last 
category. 

Max-Min fairness: The objective of max-min fairness is 
to maximize the smallest throughput rate among the flows. 
When this is met, the next-smallest throughput rate must be 
as large as possible, and so on. Max-min fairness can also be 
explained by considering it as a progressive filling 
algorithm, where all flows start at zero and grow at the same 
pace until the link is full. With this approach the max-min 
fairness gives priority to the smallest flows. The least 
demanding flows always have the best chance of getting 
access to all the resources it needs. 

Proportional fairness: The original definition of 
proportional fairness comes from economic disciplines [14] 
for the purpose of charging. The original definition is used 
in the relevant RFC [9] but it does not come across as very 
constructive for the purpose of analyzing fairness in single 
resource (e.g., bandwidth) sharing among flows. In this 
context more recent definitions and interpretations are more 
suitable [16]. The principle of this would be that a resource 
allocation is considered proportional fair if it is made to the 
flow which, has the highest ratio between potential 
maximum resource consumption and its average resource 
consumption so far. A further simplification would be to use 
the current resource usage (if greater than 0) instead of the 
average in the ratio calculation.  The same ratio numbers for 
each flow could then be used to give a view on the current 
system fairness by comparing them. If they are all equal the 
system could be stated as proportionally fair. 

Minimum potential delay fairness: The idea behind 
minimum potential delay fairness is based on the 
assumption that the involved flows are generated by 
applications transferring files of certain sizes. A relevant 
bandwidth sharing objective would be to minimize the time 
needed to complete those transfers. However, this does not 
apply to an adaptive streaming scenario and is therefore not 
discussed any further. 

B. Perception Based Performance Metrics 

There is a wide range of metrics which, influence how 
satisfied an end user is with a service such as e.g., video 
streaming. Many of these are not related to network aspects, 
and therefore difficult to influence by means in this domain. 
However, one of the perceived performance metrics which, 
could be correlated with network aspect is the notion of 
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perceived fairness. It is then of great interest to try and find 
methods of influencing this in a positive manner. 

Looking at fairness from an end user perception, 
research from the social science and psychology domain 
[17] states that this is closely related to what is called 
‘Social Justice’. In this context a queuing system or any 
other resource allocation mechanism would be considered as 
a ‘Social System’. It has further been found that users react 
negatively to any system behavior which, gives better 
service to other user, unless justification is provided.  Such 
system behavior is considered un-fair, i.e., in violation with 
the social justice of the system as the end users considers it 
as discrimination. 

The end user notion of system discrimination has been 
suggested by [18] as an important measure of perceived 
service quality, and more specifically the perceived fairness 
is stated to be closely related to the discrimination 
frequency. It should be noted that analyzing this type of end 
user perceived discriminations has a challenge in terms of 
handling the false positive and false negative cases. 

Applying the concept of discrimination to competing 
adaptive streams, it would be related to situations where end 
user expectations are not met during steady state periods and 
also negative changes in service delivery during more 
transient periods. In other words, whatever makes the end 
user think that he is being discriminated due to other users 
in the system, will lead to reduced perceived service quality. 

In order to use this type of perceived end user 
discrimination as a measure for how well the algorithm 
which, controls the adaptive streams are performing, a clear 
definition regarding what end users are considering as 
discrimination is required. This could, e.g., be periods with 
session rate below some threshold, any change in session 
rate to a lower level or the session rate change frequency.  

C. Methods for Improving Performance 

There are several things that one could try to incorporate 
into the adaptive algorithms controlling the ABR service [1] 
in order to make them perform better in a multi-stream 
scenario.  

The selected performance metrics to be studied are from 
the network side proportional fairness, and from the end 
user side the perceived fairness metric as earlier described. 
Whether it is possible to improve both these fairness metrics 
at the same time will be an important part of the results. 

Randomization of time intervals: The fixed rate 
adjustment intervals (T) used by each adaptive stream while 
in steady-state may be a contributing factor to inaccurate 
estimations of available bandwidth and thereby oscillating 
behavior. An alternative to fixed intervals would be to 
randomize them by using a per-session stochastic parameter 
(within certain reasonable bounds). By doing so the 
available bandwidth estimation methods may become more 
accurate. 

Back-off periods: Whenever a service is reducing its rate 
level due to observed congestion it may try to increase again 

after the same amount of time (T). In addition to the 
previous described randomization of this interval, one could 
also consider introducing a back-off period. This would 
imply that after a service has reduced its rate level, it enters 
a back-off period of a certain duration during which, no 
increase is allowed. 

Threshold based behavior:  Rather than using the same 
intervals of potential rate changes all the time, one could 
introduce a threshold for when it operates more or less 
aggressive. This threshold could be the mean available rate 
level for a specific session, or even a smoothed average 
value for the actual achieved level. This concept is applied 
with success in more recent TCP versions for the purpose of 
optimizing performance. 

The method chosen for the simulations is according to 
the first approach described, i.e., a randomization of the 
intervals between each potential rate change as originally 
suggested in [3]. As baseline for the simulations, the fixed 
interval with T=2s has been used. Then as stochastic 
alternatives, both a uniform distribution and a negexp 
distribution have been implemented. The uniform 
distribution gives values of T between [1.6, 2.4]s, while the 
negexp alternative gives values of T according to the 
distribution function with λ=0.5 and expected value (1/ λ) = 
2s. 

IV. SIMULATION MODEL 

As the adaptive streaming solutions of today are highly 
proprietary, the details concerning their implementation are 
not disclosed. Due to this, there will always be some degree 
of uncertainty concerning their internal functions. 

A. Assumptions 

One of the key functions of an ABR client is the method 
used for determining whether to go up or down in rate level 
during times of varying available bandwidth. From studying 
live traffic it does not seem as if the clients use additional 
network probing beyond the actual information obtained 
through download of video segments. Further on, in the 
likely absence of a per stream traffic shaper at the server 
side (for scalability and performance reasons), it will give a 
traffic pattern for each stream which, typically contains a 
sequence of busy and idle periods. The measured busy 
period rate is then higher than the actual stream rate level. 
Also, it is likely that there will be sub-periods within the 
busy periods where per packet rate is close to the total 
available bandwidth. As such, the client can probably obtain 
a rather accurate indication of maximum available 
bandwidth by just looking at minimum observed inter-
arrival time of packets of known size belonging to the same 
stream.  

However, not all streams will have interleaved busy 
periods so there is a good chance for each stream to 
overestimate the potential for additional bandwidth. There is 
a wide range of bandwidth estimation methods and a few of 
these are described in [19], but again - as the details of the 
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adaptive streaming solutions are not disclosed we will not 
discuss this part any further. Independent of which, method 
being used, there will be some degree of uncertainty which, 
contributes to variable performance.  Further on, we assume 
the following to be true for the ABR sessions to be studied 

 

 No stream coordination at server side  
 No involvement from mechanisms in the network 

between the client and server 
 All clients operate independently and do not 

communicate 
 All clients are well behaved in the sense that they 

follow the same scheme 
 At each defined stream rate level there are no 

variations due to i.e., picture dynamics 

B. Session Type and Schedule 

The ABR sessions used in the simulator are based on 
profiles observed in commercial services. The quality levels 
defined are {0, 250, 750, 1500, 2500, 3500, 5000} Kbps. 
All sessions are of the same type. The sessions are initiated 
by 10 different users and start time scheduling are done 
according to stochastic distributed parameters ta – Uniform 
[0, 2000] ms and tb – Uniform [0, 60] s. This gives that all 
sessions start during the first 60 seconds (tb), but shifted by 
some milliseconds (ta) in order to avoid synchronization of 
the rate adjustment intervals. 

 

 
Figure 1. Session scheduling per user 

 
During one simulation run, each user executes a total of 

10 sessions sequentially. Time for starting the next session 
(m) for specific user (n) is noted tn,m (cf. Figure 1). The 
duration of each session td is deterministic and set to 40 
minutes. A total of 10 simulation runs using different seeds 
are executed, corresponding to an aggregated session time 
of approximately 66 hours per user. 

C. Rate Adaption Algorithm 

The model for rate adaption per session is based on 
periodic estimation of available bandwidth As(t) and 
calculation of a smoothed average SAs(t).  

 

 
Figure 2. Thresholds for smoothed average 

 
This smoothed average (cf. Figure 2) is compared to a 

congestion threshold (CT), the link capacity (C) and a burst 
threshold (BT) in order to trigger a rate adjustment. 

Whenever the sum of requested rates from sessions is 
above the burst threshold (BT), the next session which, 
calculates SAs(t) will be forced down, independent of the 
value of SAs(t). This function is implemented in the 
simulator in order to incorporate the somewhat 
unpredictable behavior during times of heavy congestion.  

The calculation of smoothed average SAs(t) is based on 
[3], and is expressed in (1). The parameter ߜ gives the 
weighting of the estimated available bandwidth for the two 
periods included in the calculation. 

 

ሻݐ௦ሺܣܵ ൌ ߜ ௜ିଵሻݐ௦ሺܣ ൅ ሺ1 െ  ௜ሻ (1)ݐ௦ሺܣሻߜ

 
The available bandwidth estimation function used in the 

simulations is based on the assumption that sessions running 
at high rates are able to make more accurate estimations 
than those running at lower rates. An abstraction of the 
function itself is made by a number of n bandwidth samples 
Ci,j (cf. Figure 3) 

A specific session is then given access to a number of 
these samples according to its current rate level, and then it 
will use this as basis for its estimation. A high rate gives a 
high number of samples available, and then, also, a higher 
degree of accuracy. 

 

 
Figure 3. Capacity samples per period 

 
The number of samples xs,i available to a specific session 

s for period i is given by its ratio between current rate Rs(ti) 
and max rate Rsmax, multiplied by n as per (2). 

 

௦,௜ݔ ൌ ݊ ܴ௦ሺݐ௜ሻ ܴ௦݉ܽݔ
ൗ  (2) 
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In the simulations, the value of n was set to 20 and 
Rsmax was according to the session definition 5000Kbps. 
The available bandwidth estimated As(t) for period i is then 
given by the following (3). 

 

௜ሻݐ௦ሺܣ ൌ 	෍
௜,௟ܥ

௦,௜ൗݔ

௫೔

௟ୀଵ

 (3) 

 
By combination with the expression for SAs(t) it gives 

the following expression (4). 
 

ሻݐ௦ሺܣܵ ൌ ෍	ߜ
௜,௟ܥ

௦,௜ିଵൗݔ

௫೔షభ

௟ୀଵ

൅ ሺ1 െ ሻ෍ߜ
௜,௟ܥ

௦,௜ൗݔ

௫೔

௟ୀଵ

 (4) 

 
The value of ߜ	 was	 set	 to	 0.8	 as	 per	 ሾ3ሿ,	 thus	 giving	

most	weight	to	the	available	bandwidth	estimation	from	
the	previous	period.	

D. Simulation Tool 

The simulator was built using the process oriented 
Simula [20] programming language and the Discrete Event 
Modeling On Simula (DEMOS) context class [21].  

This programming language is considered as one of the 
first object oriented programming languages, and remains a 
strong tool for performing simulations.  

V. RESULTS 

The simulation results are presented for different 
congestion levels on the access link. The chosen capacities 
are 10, 20, 30 and 40Mbps. The lowest capacity would 
represent a highly congested scenario. The simulations were 
also run for all levels from 10 to 40 with increments of 
200Kbps but for the sake of clarity these details are left out 
as they did not change the conclusions.  

The studied fairness parameters (proportional and 
perceived), are compared for the 10 independent users 
sharing the access link. In order to present more information 
regarding variations in quality levels, a presentation of 
Coefficient of Variation (CV) is given. Values for CV 
below 1 is considered low-variance, while above 1 is 
considered high-variance.  

The simulation results to be presented are based on that 
all users are accessing the same service, with identical 
session properties (i.e., quality levels). However, the 
simulations were also run for other service types and a 
mixture of services. These results are also left out, as they 
did not change the conclusion. 

A. Proportional Fairness 

Proportional fairness is measured as achieved session 
average rate per user, divided by session max – as per the 
definition earlier (cf. Figure 4, Figure 5, Figure 6). A high 
value is good and the maximum value is 1. 

 

 
Figure 4. Proportional Fairness, fixed T=2s 

 

 
Figure 5. Proportional Fairness, Uniform T [1.6, 2.4] 

 

 
Figure 6. Proportional Fairness, negexp T [λ =0.5] 
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B. Perceived Fairness 

The perceived fairness metric is calculated as the 
number of quality (rate) level reductions per minute (cf. 
Figure 7, Figure 8, Figure 9). Here, a low metric value is 
good – as it would reflect less rate reductions per minute. 

 

 
Figure 7. Perceived Fairness, fixed T=2s 

 
Figure 8. Perceived Fairness, Uniform T [1.6, 2.4] 

 

 
Figure 9. Perceived Fairness, negexp T [λ =0.5] 

C. Coefficient of Variation (CV) 

The Coefficient of Variation is calculated as Standard 
Deviation/Mean Value for sessions belonging to a user (cf. 
Figure 10, Figure 11, Figure 12). Values below 1 indicate 
low-variance which, is preferred. 

 

 
Figure 10. Coefficient of Variation, fixed T=2s 

 
Figure 11. Coefficient of Variation, Uniform T [1.6, 2.4] 

 

 
Figure 12. Coefficient of Variation, negexp T [λ =0.5] 
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VI. ANALYSIS 

As expected, the randomization of time interval duration 
does have an effect on the parameters studied. However, the 
effect is not always positive.  

Concerning proportional fairness, the introduction of a 
uniform T variable does not have a significant effect. The 
result can be viewed as neutral. On the other side, when the 
negexp T variable is used a clear negative effect is observed 
as the difference between users becomes significant. 

For the perceived fairness metric, both the use of a 
uniform T and a negexp T have a significant positive effect. 
The best results are achieved for the negexp case which, 
gives values well below 1 for all congestion levels and 
users. It may be considered promising that the effect is 
especially strong during high times of high congestion (link 
capacity of 10M and 20M).  

Regarding Coefficient of Variation, the results are 
similar to Proportional Fairness. A uniform T give no 
change, while a negexp T gives a negative change. 

TABLE I.  SUMMARY OF SIMULATION RESULTS 

 
Proportional 

Fairness 
Perceived 
Fairness 

Coefficient 
Variation 

uniform T neutral positive neutral 

negexp T negative positive negative 

 
The somewhat intuitive explanation to why changes 

could be expected is that some of the negative effects of a 
fixed adjustment interval as illustrated in Figure 13 are 
reduced. In the case of fixed periods, each session would get 
the same periodic view on the link utilization, always 
missing or including some other traffic. This gives a certain 
degree of error in the available bandwidth estimation 
functions. 

 

 
Figure 13. Problem with fixed estimation periods 

 
Each session estimates available bandwidth only during 

its busy periods (ref Section III Subsection C). This means 
that in order to get an accurate estimation it is beneficial for 
it to have overlapping busy periods with as many other 
sessions as possible. 

A. Burst Period Duration 

The duration of the busy period for a specific session 
depends on both its current rate level and the rate 

adjustment interval. The dependency of the rate level 
follows from the obvious relation to data volume to be 
transferred per time unit for a specific rate level, while the 
dependency of rate adjustment interval follows from the 
requirement to maintain the same average amount of data 
received over time.  

At the beginning of each interval the client requests the 
next video fragment for a specific rate level, with duration 
equal to its rate adjustment interval. This is illustrated in 
Figure 14 where two sessions running at the same rate level, 
but with different rate adjustment intervals have different 
busy period durations.  

 

 
Figure 14. Equal rate sessions with different busy periods 

 
Any two sessions (Sx, Sy) running at the same rate level, 

will have a relation between their burst period durations 
expressed by the parameter β. This parameter is given by the 
following expression (5). 

 

ߚ ൌ
݀௥௫,்௫

݀௥௬,்௬
൘ ൌ ௫ܶ

௬ܶ
൘ , ௫ݎ	ݎ݋݂ ൌ ௬ݎ (5) 

Using this relationship, we can express (6) the burst 
period duration dri,Ti for any session Si as a function of its 
rate adjustment interval Ti and a reference burst period 
duration dri,T. 

 

݀௥௜,்௜ ൌ ݀௥௜,்ሺ ௜ܶ
ܶൗ ሻ (6) 

 

The values for dri,T can presumably be calculated based 
on information about the codec used for the specific media 
stream inside each sessions, together with assumption on 
per session server side capacity. Alternatively one could 
make measurements on a specific system and establish a 
dri,T matrix for all valid values of ri and the reference T 
value.  

However, if we assume that the server side capacity is 
not a limitation, and that it will always try to burst with a 
certain bitrate Cburst we can also express the burst period 
duration dri,Ti as follows (7). 

 

݀௥௜,்௜ ൌ ቀݎ௜ ܶ ௕௨௥௦௧ܥ
ൗ ቁ ቀ ௜ܶ

ܶൗ ቁ ൌ ቀݎ௜ ௜ܶ
௕௨௥௦௧ܥ
ൗ ቁ (7) 

 

The maximum value for Cburst is natural to think of as the 
access capacity for the user group / home network, as this is 
normally the end-to-end bottleneck. However, it is likely 
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that the actual Cburst is related to the maximum rate for the 
specific service. 

B. Probability for Burst Period Overlap 

For Ti values according to a uniform distribution, the 
probability Pi,r,t for a session i at rate level r to be in its busy 
period at time t will be according to the following 
expression (8). 

 

௜ܲ,௥,௧ ൌ
݀௥,்௜

௜ܶ
൘ ൌ

݀௥,் ቀ ௜ܶ
ܶൗ ቁ

௜ܶ
ൌ
݀௥,்

ܶൗ  (8) 

 

From this, we see that all sessions at a specific rate level 
has the same probability of being in its busy period at time t. 
We can then express the probability that all n sessions are in 
their busy period at time t as follows (9).  

 

௔ܲ௟௟	௕௨௦௬,௧ ൌ ൬
݀௥భ,்

ܶൗ ൰
௖భ
	 ൬
݀௥೘,்

ܶൗ ൰
௖೘
 (9) 

 

The parameter cm represents the number of sessions at 
rate level rm and the sum of all cm values equals n. From this 
we see that the probability of any session to see all other 
sessions during its busy period depends on the session rate 
level mix, and this probability increases when more sessions 
are running at high rate levels.   

Further on, we recognize that the probability for that a 
session i has an overlap with each of the other sessions 
sometimes during its busy period Ti is the integral of Pall busy,t 
over the period [0, Ti] which, is easily expressed as the 
constant Pall busy,t multiplied by Ti. 

We then let a specific session mix be described by the 
vector Rmix={r1,…,rn}, whereas ri represents the rate level 
for session i. Also, for a specific session i let Ai be the group 
of sessions which, has overlapping busy periods with 
session i at a specific time t0, and Bi be the group of sessions 
for which, it did not have an overlap. In the situation where 
all sessions have the same rate adjustment interval duration 
Ti, the probability of that session i has an overlapping busy 
period with any of the sessions in group Bi at time t0+Ti is 
zero. This leads to that while Rmix remains unchanged, the 
view a specific session has of the total traffic will not 
change. The system state for session i in terms of busy 
period overlap with other sessions is independent of the 
state at t0 and also t in general. 

In the case where Ti is not equal for all sessions, but 
instead are chosen according to some stochastic distribution 
– the group of sessions which, overlap the busy period of 
session i at t0+Ti is not independent of the state at t0. If we 
let Ci denote the sub-group of sessions from Bi which, has 
overlapping busy periods with session i at time t0+Ti, it can 
be shown that there is a deterministic relationship between 
Ai, Bi and Ci.  

If we then remember the assumed use of a smoothed 
average function we see the benefit of this potential 
additional burst period overlaps in subsequent periods. 

C. Dynamics in Burst Period Overlap 

When the starting times for each session and their 
respective rate adjustment intervals (Ti) are considered 
stochastic processes, the sessions will combine in time in 
different ways. In order to define the deterministic 
relationship between overlapping busy periods during 
subsequent intervals, we need to analyze scenarios where 
sessions with different rate levels and different rate 
adjustment interval are combined.  

 

 
Figure 15. Session Sy staring after Sx (Ty<Tx) 

 
The first scenario (a) to be studied is the one where two 

sessions (Sx, Sy) with different Ti values (Tx, Ty) are active at 
the same time. We assume Tx > Ty and that Sy starts 
immediately after the busy period of Sx finishes as 
illustrated in Figure 15. 

For the two sessions (Sx, Sy) there will be shift in phase 
between them as a function of time which, makes them have 
a full or partial busy period overlap at some time. The 
question is then how many rounds it will take for Sx to see 
Sy and vice versa. It can be shown that we can express the 
number of rounds for Sx before it has an overlapping busy 
period with Sy as follows (10). 

 

Nୟ,୶→୷ ൌ 1 ൅ ቜ ௬ܶ

௫ܶ െ ௬ܶ
ቝ 

when		
்ೣ

ଶ
൏ ௬ܶ ൏ ሺ ௫ܶ െ ݀௥௫,்௫ െ ݀௥௬,்௬ሻ 

Nୟ,୶→୷ ൌ 2 

when ሺ ௫ܶ െ ݀௥௫,்௫ െ ݀௥௬,்௬ሻ ൏ ௬ܶ ൏ ௫ܶ 

(10) 

 

In the same way, we can express the number of rounds 
for Sy before the same overlap of busy period with Sx takes 
place (11). 
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ቝ 
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(11) 
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The next scenario (b) to be studied is where the sessions 
(Sx, Sy) are running with different Ti values (Tx, Ty) but now 
Sy finishes its busy period before Sx (cf.  Figure 16).  

 
Figure 16. Session Sx staring after Sy (Ty<Tx) 

 

The number of rounds it takes for Sx to see Sy is 
expressed as follows (12). 

 

Nୠ,୶→୷ ൌ 1 ൅ ቜ ௬ܶ െ ݔ݀ െ ݕ݀
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ቝ 
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்ೣ

ଶ
൏ ௬ܶ ൏ ൫ ௫ܶ െ ݀௥,்௬൯ 

Nୠ,୶→୷ ൌ 2 

when ሺ ௫ܶ െ ݀௥,்௬ሻ ൏ ௬ܶ ൏ ௫ܶ 

(12) 

 

The number of rounds it takes for Sy to see Sx is 
expressed as follows (13). 

 

Nୠ,୷→୶ ൌ 1 ൅ ቜ ௫ܶ െ ݔ݀ െ ݕ݀

௫ܶ െ ௬ܶ
ቝ 
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ଶ
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Nୠ,୷→୶ ൌ 2 

when ሺ ௫ܶ െ ݀௥,்௬ሻ ൏ ௬ܶ ൏ ௫ܶ 

(13) 

 

It should be noted that for both scenarios there is a 
special case where Na,y-x/Nb,y-x and Na,x-y/Nb,x-y are always 2, 
i.e., two sessions which, did not have overlapping busy 
periods at t0 is guaranteed to have overlapped during the 
next period for Sx and Sy. For a smoothed average function 
operating over two periods this is desirable, i.e., whatever it 
does not see in the first period it is guaranteed to see in the 
next. 

D. Optimization Problem 

The expressions for Ny-x and Nx-y contain many variables. 
These variables are the rate adjustment intervals Ti and the 
burst period durations dri,Ti for all sessions. The latter are 
calculated based on the session rates rx and ry and Cburst as 
defined in Section V. These expressions can be used as 
input to a constrained optimization problem and analyzed as 
such in order to find maximum and minimum values.  

As the starting point for this optimization problem we 
can focus on the worst case scenario, that would be the 
number of rounds for Sy before it has an overlap with Sx 

(Na,y-x/Nb,y-x), which, will always be higher than the number 
of rounds for Sx before this has an overlap with Sy.  

We also see that Na,y-x will always be greater than Nb,y-x 
since Tx>Ty. This gives us only one expression to analyze 
for the worst case scenario as follows (14). 
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(14) 

The above maximization can then be done for different 
values of Cburst. In the simulations the access speeds used 
were between 10 and 40Mbps and the maximum session 
rate was 5Mbps. Based on measurements of real traffic we 
can see that the Cburst is lower than the actual access speed 
and thereforee values of respectively 5Mbps, 7.5Mbps and 
10Mbps were used for Cburst. 

For the two different alternatives of choosing values for 
Ti used in the simulations, the uniform approach is easiest to 
work with in the optimization context since it gives a min 
and max value for Ti. For the negexp alternative the 
corresponding range would be [0,∞]  and for this scenario 
the optimzation problem does not have a useful solution. 

The result from solving the optimization problem is 
shown in Figure 17. The three different burst bitrates (Cburst) 
give surfaces which, are plotted, whereas the highest 
capacity gives the highest values for Na,y-x.  

 

 
 

Figure 17. Maximum Na,y-x for different burst bitrates 
 

We see that in many cases we get an overlap already in 
the second round, and thereby we improve the basis for the 
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available bandwidth estimation algorithm. This analysis 
then strengthens the findings of the simulations.  

The more likely explanation to the negexp behavior in 
terms of good perceived fairness is the somewhat extreme 
proportional unfairness. By allowing some sessions to be 
very greedy, one prevents others from increasing at all.  
This is a stable but proportionally very unfair situation. 

In order to improve the available bandwidth estimations 
further one may consider the well known PASTA principle 
[22] from queuing theory which, states that a Poisson based 
Arrival process See Time Averages. This implies that the 
bandwidth probing should take place not only during the 
burst periods, but as a process taking samples throughout 
the whole rate adjustment period. 

VII. CONCLUSIONS AND FUTURE WORK 

The results show that there is a significant potential of 
improving perceived fairness as defined and associated QoE 
for adaptive streams of the category studied. The positive 
effect of the suggested enhancement to the rate adaption 
scheme, i.e., using a stochastically determined duration of 
rate adjustment intervals rather than fixed values is 
supported by the simulation results and theoretical analysis. 

The results also illustrate that when studying the 
performance of adaptive streaming solutions, it is not 
enough to only focus on the network centric QoS domain. A 
change in this domain does not necessary lead to a 
corresponding change in the QoE domain, and vice versa. 
The significant improvement in Perceived Fairness, while 
proportional fairness remained the same for the uniform T 
case supports this statement.  

As future work in this field it is planned to further study 
objective and no-reference based QoE metrics such as 
Perceived Fairness which, is possible to correlate over to the 
QoS and network domain. It is also planned to verify the 
simulation and analytical results by means of measurements. 
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