
Different Scenarios of Concatenation at Aggregate Scheduling of Multiple Nodes

Ulrich Klehmet Kai-Steffen Hielscher
Computer Networks and Communication Systems

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Email: {klehmet, hielscher}@informatik.uni-erlangen.de

Abstract—Network Calculus (NC) offers powerful tools for
performance evaluation in queueing systems. It has been proven
as an important mathematical methodology for worst-case anal-
ysis of communication networks. One of its main application
fields is the determination of QoS guarantees in packet switched
communication systems. One issue of nowadays’ research is the
applicability of NC concerning the performance evaluation of
aggregate multiplexing flows either at one node or at multiple
nodes. Then, we have to differ whether the FIFO property at
merging single flows can be assumed or not as in case of so-
called blind multiplexing. In this paper, we are dealing with
problems of computing the service curve for the single individual
flow at demultiplexing in connection with aggregate scheduling
of both – a singular service system (node) or of multiple nodes,
at least two. These service curves are relevant for worst-case
delay computation. In particular we define important application
scenarios and compare their resulting single flow service curves.
These are of practical benefit in many applications and can not
be found in literature.

Index Terms—Network Calculus; FIFO Multiplexing; Blind
Multiplexing; Concatenation of nodes; Pay Multiplexing Only
Once

I. INTRODUCTION

In the framework of NC, the modelling elements arrival
curve and service curve play an important role. They are the
basis for the computation of maximal deterministic boundary
values like backlog bounds and delay bounds found in [1], [2].

Definition 1 (Arrival curve): Given a system S with input
flow x(t). Let α(t) be a non-negative, non-decreasing function.
x(t) is constrained by or has arrival curve α(t) iff
x(t)− x(s) ≤ α(t− s) for all t ≥ s ≥ 0.
Another speech is: flow F is α-smooth.

Example 1: A commonly used arrival curve is the token
bucket constraint:
αr,b(t) = b+ rt for t > 0 and zero otherwise.

As one can see in Fig. 1 this arrival curve forms an upper limit
for traffic flows x(t) with (average) rate r and instantaneous
burst b . That means x(t)−x(s) ≤ αr,b(t−s) = b+r · (t−s).
For ∆t := t− s and ∆t→ 0 it holds

lim
t→s
{x(t)− x(s)} ≤ lim

∆t→0
{r ·∆t+ b} = b

An important definition of NC is the following one:
Definition 2 (Min-plus convolution): Let f(t) and g(t) be

non-negative, non-decreasing functions that are 0 for t ≤ 0. A
third function, called min-plus convolution is defined by

(f ⊗ g)(t) = inf
0≤s≤t

{f(s) + g(t− s)}

Fig. 1. Token Bucket Arrival Curve

Applying Definition 2 we can characterize the arrival curve
α(t) with respect to x(t) as:

x(t) ≤ (x⊗ α)(t)

The concept of arrival curves describes an upper bound to
an input stream of a system processing some type of data.
Concerning the output of this system we are interested in
some service guarantees, i.e. is there a guaranteed minimum
of output y(t) – the amount of data leaving system S? The
modeling element service curve deals with this problem.

Definition 3 (Service curve): Given a system S with input
flow x(t) and output flow y(t). The system offers a (minimum)
service curve β(t) to the flow iff β(t) is a non-negative, non-
decreasing function with β(0) = 0 and y(t) is lower bounded
by the convolution of x(t) and β(t):

y(t) ≥ (x⊗ β)(t).

Fig. 2 demonstrates (x ⊗ β)(t) as an example for the lower
bound of the output y(t) and any given input x(t).

Fig. 2. Convolution as a Lower Output Bound

Example 2: One commonly used service curve is the rate-
latency function: β(t) = βR,T (t) =
R · [t − T]+ := R ·max{0; t − T}. The rate-latency function
reflects a service element which offers a minimum service
of rate R after a worst-case latency of T . Having in mind a
worst case performance analysis, it is possible to abstract away

111Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

from complex (queuing) systems with different scheduling
strategies.
In Fig. 4, the (green) graph βR,T (t) reflects a rate-latency
service curve with rate R and latency T .

Theorem 1 (Backlog bound and output bound): Consider
a system S with input flow x(t) and output flow y(t). Be x(t)
α-smooth and S offers a service curve β(t). The backlog v at
time t, v(t) = x(t) − y(t), is bounded by the supremum of
the vertical deviation of arrival curve and service curve:

x(t)− y(t) ≤ sup
s≥0
{α(s)− β(s)}

and output y(t) is constrained by the arrival curve

α∗(t) = α� β = sup
s≥0
{α(t+ s)− β(s)}.

The complete backlog v(t) = x(t) − y(t) at time t within a
system is sometimes denoted as buffer(t).
If the node or system serves the incoming data of a flow
in FIFO order (First In First Out), the following bound is
computable:

Theorem 2 (Delay bound): Assume a flow constrained by
arrival curve α(t) passing a system with service curve β(t).
The maximal virtual delay d is given as the supremum of all
possible virtual delays of data, i.e. is defined as the supremum
of the horizontal deviation between arrival curve and service
curve:

d ≤ sup
s≥0
{inf{τ : α(s) ≤ β(s+ τ)}}.

Fig. 3 depicts both theorems.

Fig. 3. Backlog and delay bound

�

����

� �� �

�� �
�

�

�
�� ��

����

�� �

� �
��� �

�

�

Fig. 4. Example for the bounds

Example 3: Suppose there is a system with input according
to a token bucket, thus x(t) − x(s) ≤ αr,b(t − s) and rate-
latency output:

y(t) ≥ inf
s≤t
{x(s) + βR,T (t− s)}

Based on the above theorems we get the delay bound d ≤
b/R + T , the output bound α∗(t) = r(t + T) + b, and the
backlog is bounded by v = b+ rT . Fig. 4 shows the results.
Remark: Always in case of token-bucket like input and rate-
latency output the worst-case delay dmax is computable by

dmax =
burst

servicerate
+ latency.

II. AGGREGATE SCHEDULING

Until now, only per (single) flow-based scheduling have
been considered. But in real systems, aggregate scheduling
arises in many cases. Always, if there are more than one separat
input flows entering some kind of data processing/transferring
system and then dealt as a whole stream of data – we speak of
aggregate scheduling. Important examples are aggregate based
networks such as Differentiated Service domains (DS) of the
Internet [3]. In order to address such class-based networks,
we have to look for rules of multiplexing and aggregate
scheduling. Assume that m flows enter a system (network)
or system node and are scheduled by aggregation. According
to [4] the aggregate input flow and arrival curve are given as
follows.

Theorem 3 (Multiplexing): An aggregation, or multiplexing
of m flows can be expressed by addition of the input func-
tions respective arrival curves. W.l.o.g. be m = 2, then the
aggregated input flow is x(t) = x1(t) + x2(t) and α(t) =
α1(t) +α2(t), where x1, x2 and α1, α2 are the corresponding
single input flows and arrival curves.

�������

�������

��

��

���

������

��� ��

�� ������� �
��� �

����������	
����	������

����������������	
��

���� ����� ��

����	
�����������

����	
������������
�

����

�

����

��

��

��

��

�����

�

�����
��
��� �

���������
��
��� �

����� ���
��

�

��
�
��
��

�
��

����
�

�

Fig. 5. Multiplexing of input xi, output yi with arrival & service curve
αi, β = βaggr

Now, as is shown in Fig. 5 important questions arise: Is it
possible to apply the same analysis e.g. of buffer bounds and
maximal delay of Theorems 1 and 2 to the single flows xi?
Does there exists a service curve βi for the individual flow
xi, sometimes denoted as left-over service curve? What is the
maximal delay, say of flow x1, after servicing the aggregate
and subsequently demultiplexing? The answers are based on
the type of multiplexing in each case, i.e. in which manner
the aggregate scheduling is done: FIFO, priority-scheduling,
or multiplexing by complete unknown arbitration between

112Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

the flows, which is the definition of Blind scheduling [5].
Together with the particular scheduling type one has to take
into consideration the service curve of the aggregate flow. From
a practical point of view we will discuss here the two important
scheduling disciplines: FIFO and Blind. Regarding aggregate
flow servers the next both theorems given by [1] are important.

Theorem 4 (FIFO Service curves): Consider a node
serving the flows x1 and x2 in FIFO order. Assume first that
the node guarantees a service curve β to the aggregate of the
flows and secondly, flow x2 is α2−smooth. Define the family
of functions β1

θ (t) := [β(t)− α2(t− θ)]+ if t > θ otherwise
β1
θ (t) := 0. Then for any θ ≥ 0 it holds y1 ≥ x1 ⊗ β1

θ ,
where y1 is the output of flow x1. If β1

θ is a non-negative,
non-decreasing function, flow x1 has the service curve β1

θ .

Note [x]+ = x if x ≥ 0 otherwise 0.
If no knowledge is given about the choice of service

between the flows, i.e. in case of blind multiplexing one has
to differ between strict or non-strict aggregate service curves
[1].

Theorem 5 (Blind Multiplexing): Consider a node serving
the flows x1 and x2, with some unknown arbitration between
the two flows. Assume the node guarantees a strict service
curve β to the aggregate of the two flows and that flow x2

is α2 − smooth. Define β1(t) := [β(t) − α2(t)]+. If β1 is
wide-sense increasing, then it is a service curve for flow x1.

But what does it mean, a service curve is strict ?
Definition 4 (Strict service curve): A system S offers a

strict service curve β to a flow if during any backlogged period
[s, t] of duration u = t− s the output y of the flow is at least
equal to β(u), i.e. y(t) − y(s) ≥ β(t − s), or equivalently
y(z) ≥ β(z) ∀z ∈ [s, t].
Of course, any strict service curve is a service curve in terms
of definition 3, but not vice versa - see for instance [1] or [6].

Example 4: The constant rate server in Fig. 6 with input
flow x and output y has a strict service curve β(t) = ct. Let
s be the start of a busy period, that means y(s) = x(s), then
y(t)− y(s) = c(t− s), and so y(t)− x(s) ≥ β(t− s).

������

� �

��� �����

�	
� �	
�

�

�

Fig. 6. Constant rate server

Our main objective in this paper is the consideration of typical
application scenarios concerning multiplexed flows in FIFO or
blind schedule situations: Based on Theorems 1 and 2 we want
to apply the same analysis, e.g., for getting buffer bounds and
maximal delay-values of for instance the single flows xi after
being demultiplexed. For that, what is the ’best’ service curve
βi for the individual flow xi, respectively?

Concerning most practical applications we focus in particular
on input flows with token bucket like arrival constraints αr,b
and rate-latency service curves βR,T .

A. Determination of the best service curve at FIFO schedul-
ing:

First, let us come back to Theorem 4 for FIFO schedule in
case of two flows x1 and x2. The main statement is that for any
θ with 0 ≤ θ < t the expression β1

θ (t) := [β(t)− α2(t− θ)]+
is a service curve for flow x1. Because that is valid for each
t = t0 – we may ask for which especial θ we get the ’best’
service curve, i.e. the least pessimistic – or in other words
the greatest β1

θ , (so guaranteeing the least worst case delay
etc.) Of course, since α2 is a wide-sense increasing function
– formula β1

θ (t) := [β(t) − α2(t − θ)]+ in general will get
the largest value if θ is converging to t from left: θ → t with
θ < t, for that we use the notation θ → t− .
As we said before concerning practical applications,
the arrival and service curves are often a token
bucket-type αr,b(t) = b + rt and rate-latency function
βR,T (t) = R · [t − T]+, respectively. Therefore, in order to
demonstrate the search for a ’best service’ we will take these
both types of curves. That is to say get the supremum of
β1,θ = [βR,T (t) − α2(t − θ)]+ with α2(t) = r2t + b2 ⇒
sup0≤θ<t{R · (t − T)+ − [r2 · (t − θ) + b2]} =
sup0≤θ<t{Rt − RT − r2t + r2θ − b2} which outcomes
to θ = θopt := T + b2

R . Thus, the ’best’ rate-latency service
curve is β1,θ = β(t)−α2(t− (T + b2

R)) with β(t) (= βaggr)
as service curve to the aggregate.

If we now compare the service curves β1,θ of both the FIFO
(θ = θopt = T + b2

R) and blind Multiplexing (θ = 0) – of the
same multiplexed server – one could expect in case of FIFO
the service curve of single flow x1 is larger, and consequently
the better one w.r.t. the worst-case delay dmax. Let’s denote
this as β1,FIFO(t) > β1,Blind(t). Our following computation
will conform to this.

Blind Multiplexing:

β1,θ=0(t) = β1,Blind(t) = β(t) − α2(t − 0) = R(t − T)+ −
(r2t+ b2) = · · · = (R− r2)[t− RT+b2

R−r2]+

The result is (again) a rate-latency service curve:
β1,Blind(t) = βR′,T ′(t) with rate R′ = R − r2 and latency
T ′ = RT+b2

R−r2 .

FIFO Multiplexing:

β1,θ(t) = β1,FIFO(t) = β(t) − α2(t − θopt) = R(t − T)+ −
(r2 · (t− (T + b2

R)) + b2) = · · · = (R− r2)(t− [T + b2
R]+)

The result, again a rate-latency service curve:
β1,FIFO(t) = βR′,T ′(t) with rate R′ = R − r2 and latency
T ′ = T + b2

R .
It is easy to see:

β1,FIFO = (R−r2)(t− [T+ b2
R])+ > (R−r2)[t− RT+b2

R−r2]+ =
β1,Blind.

113Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

�

�

���� �� ���

� �������

����

���� 	
�� �����

�����
�

��

��

������

�������
�

�

�

��

���

	
���
� �

�
�

�
� �

Fig. 7. Service curve FIFO vs. Blind of single flow x1

In summary is to state:
For both we get the same service rate R′ = R−r2, however –
as we expected – the latency increases from FIFO to Blind
multiplexing. And because a service curve by definition 3
defines a lower output limit β1,FIFO specifies a greater lower
limit to a single flow x1 than β1,Blind. Fig. 7 shows this issue.

Given now a service system multiplexing two flows x1 and
x2. Theorems 4 or 5 provide a service curve βi e.g. β1 for the
single flow x1.
If x1 is α1-smooth and by Theorems 1 and 2 – the maximum
backlog bound for the demultiplexed single x1 is given by

x1(t)− y1(t) ≤ sup
s≥0
{α1(s)− β1(s)}

and the important worst case end-to-end-delay parameter of x1

by
d ≤ sup

t≥0
{inf{τ : α1(t) ≤ β1(t+ τ)}}

at which expression dτ (t) = inf{τ ≥ 0 : α1(t) ≤ β1(t+ τ)},
the so-called virtual delay, is needed: If an input x at time t
has arrived it is assured that not later than dτ (t) it has left the
service facility. This is guaranteed for FIFO scheduling but not
for blind Multiplexing. However, we may presume FIFO per
single flow xi within the aggregate and thus apply all bounding
theorems without any restrictions.

III. DIFFERENT AGGREGATE SCHEDULING SCENARIOS

So far, we have considered elementary service nodes (net-
work elements). We now want to discuss the concatenation of
aggregate network elements. First of all let’s give the important
theorem given in[1]:

Theorem 6 (Concatenation of nodes): Assume a flow tra-
verses systems S1 and S2 in sequence and βi is a service curve
of Si, i = 1, 2. Then the concatenation of the two systems offers
a service curve of β = β1 ⊗ β2 to the flow, like in Fig. 8.
Using this service curve β = β1⊗ β2 we mention the important
property [1] Pay Burst Only Once (POO): Applying delay
bound Theorem 2 one gets tighter end-to-end delay bounds
if the delay computation is based on the concatenated end-to-
end service curve β: D⊗ ≤ D1 + D2 with: D1 ≤ b

R1
+ T1,

D2 ≤ b+rT1

R2
+ T2 and D⊗ ≤ b

min(R1,R2)
+ (T1 + T2), again

token-bucket and rate-latency curves supposed. (The burst b
affects the sum (D1 +D2) twice whereas D⊗ only once.)

2
β

1
β

x y

21
ββ ⊗

x y

Fig. 8. Service curve of concatenated nodes

1 2br ,

1D 2D

21 br ,

D

Fig. 9. Pay Burst Only Once-Principle

A. Concatenation of aggregated nodes

Now we will regard the concatenation of aggregate nodes,
exemplarily for an input of two flows x1, x2 and a concate-
nated two-node system as shown in Fig. 10.

What is the end-to-end service curve of let’s say flow x1 ?
By Theorem 6 and the (aggregation-) Theorems 4 (or 5) with
β1
τ (t) = [β(t)− α2(t− τ)]+ we get:
βtot1 (t) = (βI1,τ ⊗ βII1,ϑ)(t)

= [βI(t)− αI2(t− τ)]+1t>τ ⊗ [βII(t)− αII2 (t− ϑ)]+1t>ϑ,
where βI , βII are service curves of the aggregated flows of
node I or node II, and αI2 and αII2 the arrival curves of the
individual flow x2 at the corresponding nodes.
(The term 1t>θ is zero for t ≤ θ. In the following, formulas,
for the sake of clarity we will omit this term frequently). As

)(tβ)(I tβ
)(1 tα

)(2 tα
)(II tβ

4484476 I node Aggr. 4484476 II node Aggr.

??)(tot

1
tβ

Fig. 10. Concatenation of aggregate nodes

given in Fig.10 flow x1 is aggregated with x2 only at node I,
i.e. multiplexing happens only once. These thoughts lead to
the PMOO-principle (Pay Multiplexing Only Once) [5]: First
do the concatenation ⊗ of both nodes w.r.t. service curve β
and afterwards apply Theorem 4 (or 5 in case of Blind):

βtot1,PMOO(t) = [(βI1 ⊗ βII1)(t)− αI2(t− κ)]+.

Question: Is βtot1,PMOO better than βtot1 or in other words
βtot1,PMOO(t) ≥ βtot1 (t) ?

Again, suppose: rate-latency service curves
βI(t) = RI · [t− T I]+, βII(t) = RII · [t− T II]+ and token
bucket arrival curves αI2(t) = r2 · t+ bI2, αII2 (t) = r2 · t+ bII2 .

At this point, we have to differ between FIFO
and blind multiplexing, that means in formula
β1
τ (t) = [β(t) − α2(t − τ)]+ we define τ = τopt = T + b2

R

114Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

or τ = 0, respectively.

1) Case FIFO: Let be τ = T I +
bI2
RI of node I,

ϑ = T II +
bII2
RII of node II It follows:

• βtot1 (t)= min(RI−r2, R
II−r2)·[t−T I−T II− bI2

RI − bII2
RII]+

And according to PMOO with τ = T I +
bI2
RI ,

ϑ = T II +
bII2
RII , κ = (T I + T II) +

bI2
min(RI ,RII)

we get

• βtot1,PMOO(t) = [min(RI , RII)− r2] · [t− T I − T II −
bI2

min(RI ,RII)
]+

The results are two service curves βtot1 or βtot1,PMOO of flow
x1 again of type rate-latency.

Since bI2 ≤ bII2 it follows: βtot1,PMOO(t) ≥ βtot1 (t).

Computing the worst-case delay D by
D = burst

servicerate + latency, for D = D1 or D = D1,PMOO

and using βtot1 , respectively βtot1,PMOO we get:

• D1(t) = b1
min(RI−r2,RII−r2)

+ [T I + T II +
bI2
RI +

bII2
RII]

• D1,PMOO(t) = b1
min(RI−r2,RII−r2)

+

[T I + T II +
bI2

min(RI ,RII)
],

thus D1,PMOO(t) < D1(t).

Result: βtot1,PMOO is better than βtot1 , since it produces a
shorter worst case delay D.

2) Case Blind: τ = 0, ϑ = 0, κ = 0 (after Theorem 5)
It follows for the end-to-end service curve βtot1 (t) of x1:

• βtot1 (t) = [min(RI − r2, R
II − r2)] · [t− (

RIT I+bI2
RI−r2 +

RIIT II+bII2
RII−r2)]+

And applying the PMOO-principle here again, we get:

• βtot1,PMOO(t) = [min(RI − r2, R
II − r2)] · [t−

min(RI ,RII)·(T I+T II)+bI2
min(RI ,RII)−r2

]+

Unfortunately, now it is not always true: βtot1,PMOO ≥ βtot1 :
βtot1,PMOO per se does not causes less delay than βtot1 . We get

βtot1,PMOO ≥ βtot1 ⇔

(*) bII2 ≥

r2T
II(RII−RI)
RI−r2

(**) bI2 ≥
r2T

I(RI−RII)
RII−r2

if (*) min(RI , RII) = RI or (**) min(RI , RII) = RII .
That means: D1,PMOO(t) < D1(t) for condition (*) or (**).

B. More general concatenation settings
For practical application and comparisons we complete

these scenarios and introduce the following definitions.

Definitions – FIFO:
βFIFO1 := [βI(t)− αI2(t− τ)]+ ⊗ [βII(t)− αII2 (t− ϑ]+

βFIFO1,PMOO := [(βI ⊗ βII)(t)− αI2(t− κ)]+

β̃FIFO1,PMOO := [βI(t)− αI2(t− τ)]+ ⊗ βII(t) or

β̃FIFO1,PMOO := βI(t) ⊗ [βII(t) − αII2 (t − τ)]+

with τ = T I +
bI2
RI , ϑ = T II +

bII2
RII and

κ = (T I + T II) +
bI2

min(RI ,RII)
.

Definitions – Blind:
βBlind1 := [βI(t)− αI2(t− 0]+ ⊗ [βII(t)− αII2 (t− 0]+

βBlind1,PMOO := [(βI ⊗ βII)(t)− αI2(t− 0]+

β̃Blind1,PMOO := [βI(t)− αI2(t− 0]+ ⊗ βII(t) or

β̃Blind1,PMOO := βI(t) ⊗ [βII(t) − αII2 (t − 0]+ here
τ = ϑ = κ = 0.

But what does it mean for instance
(i) : [βI(t)− αI2(t− 0]+ ⊗ βII(t) or
(ii) : βI(t) ⊗ [βII(t)− αII2 (t− 0]+ ?

Fig.11 explains in (i) and (ii) the semantic equivalent of
first or second expression. In picture (i) the single flow x2

)(t)(I t
)(1 t
)(2 t)(II t

 I node Aggr. II node Aggr.

??)(~Blind
,1 tPMOO

)(2 t

)(t)(I t)(1 t

)(2 t

)(II t

 I node Aggr. II node Aggr.

)(i

)(ii

??)(~Blind
,1 tPMOO

Fig. 11. Service curves of flow x1 in (i) and (ii)

with arrival curve α2 leaves the system after served in node I,
and in (ii) flow x2 enters the system being served by node II
only.

Using these definitions we come to the following results
of the

Different scenarios:
Within FIFO:
β̃FIFO1,PMOO ≥ βFIFO1,PMOO ≥ βFIFO1

Within Blind:
• βBlind1,PMOO ≥ βBlind1 if above condition (*) or (**) is

given

115Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

• β̃Blind1,PMOO ≥ βBlind1,PMOO if t→∞

• β̃Blind1,PMOO ≥ βBlind1,PMOO ≥ βBlind1 if t → ∞ and at
condition (*) or (**)

Figure 12 shows the relations of left-over service curves
between FIFO- and Blind-scheduling. Herein, the relations be-
tween the service curves symbolized by ’?’ are to be computed
from case to case. Depending on the parameters RI , RII , τ, ϑ
and the concrete value of parameter t – both inequations are
possible, either ’≥’ or ’≤’ respectively. Of course,

Blind
1

Blind
PMOO1,

Blind
PMOO1,

~

FIFO
PMOO1,

≥

≥

≥?

Blind
1

Blind
PMOO1,

Blind
PMOO1,

~

FIFO
PMOO1,

~

≥

≥

Blind
1

Blind
PMOO1,

Blind
PMOO1,

~

FIFO

1
≥

?

?

Fig. 12. Comparison between FIFO and Blind

one has to ask how to deal with more complex scenarios, e.g.
in case of more than two aggregated flows or more than two
service nodes. In principle we can apply an approach resulting
from aggregation Theorems 3, 4 and 5 together with the
concatenation Theorem 6. However one has to check whether
the solutions are of practical benefit, may be the service curves
βi(t) of single service xi are too pessimistic which means they
create to large worst-case delay bounds based on Theorem 2.

An example setting from [4] for FIFO scheduling with 3
flows and 3 server nodes is given here, where in Fig. 13 (i)
flow 3 enters node II and after service is given out immediately.
The other both flows are served by all 3 nodes. According to
the aggregation and concatenation theorem we get:
β1(t) = [βI(t) ⊗ [(βII(t)− αII3 (t− τ))]+ ⊗ βIII(t)−

αI2(t− ϑ)]+.
As before taking rate-latency service curves and

token bucket arrival curves, τ = T II +
bII3
RII , and

ϑ = T I + T II + T III +
bI2

min(RI ,RII−r3,RIII)
thereupon

resulting in β1(t) = [min(RI , RII − r3, R
III) − r2] · [t −

T I − T II − T III − bII3
RII − bI2

min(RI ,RII−r3,RIII)
]+.

The scenario in Fig. 13 (ii) w.r.t. left-over service of flow
2 leads to the end-to-end service curve
β2(t) = min(RI − r1, R

II − r3 − r1, R
III − r3) · [t − T I −

T II − T III − bI1
min(RI ,RII−r3)

− bIII3

min(RII−r1,RIII)
]+.

Hereby flow 1 get service by node I and node II and leaves
the system whereas flow 3 is served by node II and node III

)(i
I II III

1
2

3

I II III
1
2

3

)(ii

Fig. 13. Server networks with more flows and nodes

before leaving the server system. Only flow 2 get service by
all 3 nodes.

IV. CONCLUSION

In this paper, we considered the subject of service curves
in connection with aggregate scheduling mechanisms. Based
on these service curves the maximum end-to-end delays of
single flows xi (left-over flow) after being demultiplexed are
computable. In particular we discussed different scenarios of
multiple aggregated nodes - which are typical for practical
applications: Token bucket input flows and rate-latency service
curves together with the main scheduling principles FIFO and
Blind multiplexing. In a sense of case study we computed
corresponding formulas and compared the results w.r.t. ’best
service curves’, i.e. the largest one and such producing the
shortest worst-case end-to-end delays, which have great prac-
tical benefit for many hard real-time server systems.

In conclusion, for FIFO and Blind-scheduling of concate-
nated aggregation systems we computed service curves of
demultiplexed single flows and compared them in different
practice-relevant scenarios, which so far in the literature are
not given. With our formulas and comparisons for single end-
to-end service curves we move a step closer to allowing the
design of complex systems.

REFERENCES

[1] J.-Y. Le Boudec and P. Thiran, Network Calculus. Springer Verlag LNCS
2050, 2001.

[2] R. Cruz, “A calculus for network delay, part i: Network elements in
isolation,” IEEE Trans. Inform. Theory, vol. 37-1, pp. 114–131, 1991.

[3] A. Charny and J.-Y. Le Boudec, Delay Bounds in a Network with
Aggregate Scheduling. Springer Verlag LNCS 1922, 2000.

[4] M. Fidler and V. Sander, “A parameter based admission control for
differentiated services networks,” Computer Networks, vol. 44, pp. 463–
479, 2004.

[5] J. Schmitt, F. Zdarsky, and I. Martinovic, “Improving Performance Bounds
in Feed-Forward Networks by Paying Multiplexing Only Once,” in Mea-
surements, Modelling and Evaluation of Computer and Communication
Systems(14th GI/ITG Conference), Dortmund, March 2008.

[6] U. Klehmet and K.-S. Hielscher, “Strictness of Rate-Latency Service
Curves,” in Data Communication Networking(3rd DCNETS Conference),
DCNET/ICE-B/OPTICS, page 75-78. SciTePress, Rome, July 2012.

116Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

