
Optimization of Server Locations in Server Migration Service

Yukinobu Fukushima
The Graduate School of Natural Science and Technology

Okayama University
Okayama, Japan

fukusima@okayama-u.ac.jp

Tutomu Murase
Cloud System Research Laboratories

NEC Corporation
Kanagawa, Japan

t-murase@ap.jp.nec.com

Tokumi Yokohira
The Graduate School of Natural Science and Technology

Okayama University
Okayama, Japan

yokohira@okayama-u.ac.jp

Tatsuya Suda
University Netgroup Inc.

Irvine, USA
tatsuyasuda@gmail.com

Abstract—In server migration service (SMS), a work place
(WP) refers to a computer that runs a virtual machine, and
a server refers to a virtual machine that runs a server-side
application of a network application (NW-App). In SMS, WPs
are deployed at various locations in a network, and servers
may migrate between WPs towards the users of the NW-App
to achieve better QoS for the users. In SMS, an SMS provider
tries to provide an NW-App provider with a certain level of
QoS that they agree upon, and if the SMS provider fails, it
pays penalty (e.g., reimbursement of a part of service charges
to users) depending on the degree and length of the QoS
violation. Thus, the SMS provider is incentivized to migrate
servers between WPs to satisfy the agreed-upon QoS level to
reduce the penalty. On the other hand, an SMS provider also
needs to be moderate in performing server migrations to avoid
degradation of network QoS (i.e., QoS of background traffic).
This is because a server is typically large in size and the
server generates a large amount of traffic when it migrates,
resulting in increasing delay and loss for its background traffic
in a network. This paper formulates an integer-programming
model for the off-line server locations decision (i.e., when
and to which WP server should migrate) where the penalty
associated with NW-App’s QoS violations is minimized, keeping
the number and distance of server migrations below a given
level. This paper also compares the minimum penalty obtained
through solving the integer-programming model against the
penalty obtained with a greedy on-line server locations decision
algorithm, which migrates a server to a WP that minimizes the
current penalty with no consideration of the penalty that will
arise in the future. Numerical examples show that the integer-
programming model achieves 36% to 49% lower penalty than
the greedy algorithm when the degradation of network QoS is
little acceptable.

Keywords-cloud computing; server migration service; integer-
programming model; penalty

I. INTRODUCTION

Cloud computing [1] is emerging as a new computing
paradigm. As one of its service models, IaaS (Infrastructure
as a Service) cloud service (e.g., Amazon EC2 [2]) is
attracting attention from the cloud research community. In

IaaS cloud service, customers may operate their virtual
machines (VMs) at IaaS cloud service provider’s data center
on demand with little initial capital investment and operation
complexity.
In IaaS cloud service, the location of a VM is fixed

at an IaaS provider’s data center. In supporting highly
interactive network applications (NW-Apps) such as network
games application that consists of one or more server-
side applications and client-side applications, if the QoS of
the NW-App’s communication degrades because of some
reasons (e.g., there is a significant physical distance between
a server-side application and its client-side applications), it
is difficult for an IaaS provider to provide a NW-App with a
desired level of QoS such as low delay and high throughput.
QoS of NW-Apps in IaaS cloud service may improve

by adopting the server migration service (SMS) [3] (also
referred to as micro data centers [4]). In SMS, work places
(WPs) that run virtual machines are deployed at various
locations, and a virtual machine (server) that runs a server-
side application of an NW-App can migrate between WPs
towards the users of the NW-Apps to achieve better QoS for
the users.
In SMS, an SMS provider tries to provide an NW-App

provider with a certain level of QoS that they agree upon,
and if the SMS provider fails, it pays penalty (e.g., reim-
bursement of a part of service charges to users) depending on
the degree and length of the QoS violation. Thus, the SMS
provider is incentivized to migrate servers between WPs to
satisfy the agreed-upon QoS level to reduce the penalty. On
the other hand, an SMS provider also needs to be moderate
in performing server migrations to avoid degradation of
network QoS (i.e., QoS of background traffic). This is
because a server is typically large in size (e.g., the storage
size of a VM in IaaS can be a few hundreds of gigabytes)
and the server generates a large amount of traffic when
it migrates, resulting in increasing delay and loss for its

200Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

background traffic in a network.
This paper formulates an integer-programming model for

the off-line server locations decision (i.e., when and to which
WP server should migrate) where the penalty associated with
NW-App’s QoS violations is minimized, keeping the number
and distance of server migrations below a given level. This
paper also compares the minimum penalty obtained through
solving the integer-programming model against the penalty
obtained with a greedy on-line server locations decision
algorithm, which migrates a server to a WP that minimizes
the current penalty with no consideration of the penalty that
will arise in the future.
Previous work related to server migration service includes

server migration within a single data center [5] and migration
of databases (DBs) [6]. The paper [5] proposes an algorithm
which enables a server dynamically migrate among different
physical hosts within a single data center according to
their workloads. The algorithm proposed in [5] reduces the
number of servers required to achieve a given server re-
sponse time. However, the paper focuses on server migration
within a single data center and does not need to consider
degradation of network QoS due to the server migration.
Our paper considers server migration across a network and
considers degradation of network QoS due to the server
migration unlike the paper [5]. The paper [6] proposes a DB-
migration scheduling algorithm and achieves the shortest
communication time between DB servers and their clients
by optimally determining locations of DB servers for a
given query sequence. However, degradation of network QoS
due to a DB server migration is not considered. Our paper
considers degradation of network QoS due to the server
migration.
The rest of the paper is organized as follows. Section

II explains an NW-App model and a network model as
well as the server migration service that are considered in
this paper. Section III describes how server locations are
determined and formulates it as an integer programming
model. In Section IV, the numerical examples are presented.
Section V concludes the paper.

II. A MODEL FOR THE SERVER MIGRATION SERVICE

A. A model for a network application

As shown in Fig. 1, a NW-App consists of one or more
server-side applications and client-side applications, and the
former run on a virtual machine (hereafter referred to as
“server”) that is operated at WPs, while the latter run on
a user-terminal (hereafter referred to as “client”) such as a
note PC and a smart phone. It is assumed that a server runs a
single server-side application of NW-App and when a server-
side application needs to migrate to the new WP, the server
that runs the application also migrates to the new WP. It is
assumed that server Si (i = 1, 2, · · ·, n) communicates with
a pre-determined set of clients Cj

i (i = 1, 2, · · ·, n, and j = 1,
2, · · ·, mi). If a NW-App operates multiple servers for some

C1
1

C1
2

C1
3

S1

C2
1

C2
2

S2

C3
3

C3
2

C3
1S3

C4
1

C4
4

S4

C4
2

C4
3

Figure 1. Communications in a network application

purpose such as load balancing, server Si also communicates
with other servers Sks (k �= i) in the same NW-App. It is
assumed that clients do not communicate with other clients.
A server and a client each has two states, ON-state (i.e.,

running a server/client-side application) and OFF-state (i.e.,
not running a server/client-side application). The communi-
cation described above among servers and clients only occur
when they are in ON-state. A client changes from OFF-
state to ON-state when it starts to execute the client-side
application, and it returns to OFF-state when its execution
completes. A server is in ON-state only when at least one
of its clients is in ON-state. For example, S4 is in ON-state
because its client C4

4 is in ON-state, and S3 is in OFF-state
because all of its clients are in OFF-state.

B. A network model

Fig. 2 shows an example of a network considered in this
paper. In Fig. 2, R1 ∼ R6 are routers. Client C

j
i is connected

to a router, and client-router association does not change
throughout the time period of the interest of this paper. A
work place (WP) is a physical computer and can operate a
VM (server) that run a server-side application of a NW-App.
A server in ON-state uses the resources of a WP (e.g., CPU
and memory) for communication. Thus, the number of ON-
state servers in a WP should be bounded due to the limitation
of the resources (e.g., CPU time and memory space) of a WP.
This paper assumes that the number of ON-state servers that
a WP can support is bounded at a pre-determined threshold
(refereed to as the capacity of a WP).

C. Server migration service

SMS can be classified into two service models: integrated
model and overlay model depending on whether an SMS
provider owns a network or not. In an integrated model, an

201Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

C1
2

C3
2

S2

R6

R1

R2

R4

R5 R3

WP1

WP2

WP4

WP3

S3

S1

S4

C1
1

C1
3

C2
1

C2
2

C3
1

C3
3

1
4C

C4
2

C4
3

C4
4

Figure 2. Network model assumed in this paper

SMS provider owns WPs and a network that connects among
the WPs (e.g., carrier cloud with SMS), and consequently
the objectives of the SMS provider will be 1) providing
NW-Apps with good QoS and 2) keeping the network QoS
good. In an overlay model, on the other hand, an SMS
provider owns WPs only and rents network capacity from
network operators to achieve the reachability among WPs,
and consequently the objectives of the SMS provider will
be 1) providing NW-Apps with good QoS and 2) reducing
the network rental fees paid for network operators. Although
our server locations decision model can cope with both the
models, this paper focuses on the integrated model.
Fig. 3 shows SMS based on the integrated model. The

intended customers of the SMS are NW-App developers
who hope to run their NW-Apps with the desired level of
QoS. In the SMS, prior to the start of the service, an NW-
App developer and the SMS provider make an agreement
regarding NW-App’s QoS (such as communication delays
between a server and a client, communication delays be-
tween servers, throughputs, and packet loss) of the service
that the SMS provider provides the NW-App provider with.
Based on the agreement, the NW-App developer pays fees
to the SMS provider, and the SMS provider provides the
NW-App developer with its service. If the NW-App’s QoS
is violated, the SMS provider pays the penalty for the NW-
App developer. The penalty will be calculated based on the
degree of the NW-App’s QoS violation and its duration (i.e.,
how long the NW-App’s QoS had been violated).
In order to provide QoS specified in the agreement and

minimize the penalty, an SMS provider may migrate servers
among WPs. Server migrations may be performed when
the NW-App’s QoS is violated (reactive migration) or in
order to prevent the QoS from being violated (proactive
migration). When a server migration is performed, the server

Figure 3. Server migration service based on the integrated model

needs to be migrated from a WP to another WP, creating
additional traffic and resulting in possible QoS degradation
of the network. Thus, in performing server migration, the
SMS provider also needs to minimize the network QoS
degradation caused by the additional traffic associated with
server migration.
To decide when and to which WP servers migrate so

that both the penalty and the network QoS degradation are
minimized in SMS, two server locations decision approaches
can be considered: off-line approach and on-line approach.
An off-line approach makes decisions of server locations
based on client ON/OFF state transitions in the past, present
and future. It can be applied to NW-Apps whose clients show
regular and easily predictable ON/OFF state transitions. The
off-line approach achieves the optimal performance when
the predicted state transitions are correct, while it can result
in great performance degradation when the transitions are
wrongly predicted. An on-line approach makes decisions of
server locations without client ON/OFF state transitions in
the future. It can be applied to any NW-Apps and achieves
reasonable performance. As the first step for realizing the
optimal SMS, this paper proposes an off-line server locations
decision approach. Our approach is useful for NW-Apps
with predictable client state transitions, and also serves as a
benchmark for on-line approaches that cope with NW-Apps
with unpredictable client state transitions.

III. OFF-LINE APPROACH FOR SERVER LOCATIONS

DECISION

As discussed in Section II, it is important to minimize both
the penalty associated with NW-App’s QoS violation and the
network QoS degradation caused by the additional traffic as-
sociated with server migrations. This section first considers
the server locations decision as a simple discrete-time model.
Then this section formulates an integer-programming model
for the discrete-time server locations decision.

A. Discrete-time server locations decision

In order to simplify modeling of server locations decision,
we consider a discrete-time model where state-transitions
and server locations decision (i.e., when and to which WP
servers should migrate) occur at discrete-time instances. This

202Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

model is referred to as the discrete-time server locations
decision in the rest of the paper.
In the model, time is slotted, and server and client status

changes at the boundary of slots, and the server locations
are also determined at the boundary of slots as depicted
in Fig. 4. It is assumed that, once the new location (WP)
is determined for a server, the server migrates to the WP
instantaneously, i.e., there is no network delay associated
with moving the server to the new WP. In calculating NW-
App’s QoS provided by the SMS provider and also the
network QoS degradation, it is assumed that those QoSs are
static within a slot, and they change only at the boundaries
of a slot. These assumptions make it relatively easier to
calculate NW-App’s QoS that the SMS provider provides
and the network QoS degradation that servers create when
they migrate.
Because time slots are artificially introduced in the

discrete-time model to approximate continuous time, it is im-
portant to carefully determine the size of a time-slot. When a
slot is large, the deviation in the calculated NW-App’s QoS
and the network QoS degradation from the actual values will
be large. When a slot size is small, frequency of the server
locations decision increases, and consequently complexity
(e.g., CPU time and memory space) for determining server
locations will be high. The optimal length of a time slot is
beyond the scope of this paper.
The total penalty refers to the sum of the penalties

that arise in all time-slots. In order to calculate the total
penalty, the penalty in a single slot is first calculated. The
penalty in each slot depends on the NW-Apps’ QoSs of
communications between servers and their clients, as well as
communications between servers. For each communication,
a penalty function calculates the penalty based on the degree
of the NW-App’s QoS violation and its duration. In our
model, any form of the function may be adopted under
the agreement between the SMS provider and the NW-App
developer.
The degree of network QoS degradation due to a server

migration may be calculated based on factors such as the size
of a server and the number of hops that a server takes to
move to the new WP. A network QoS degradation function
calculates the degree of the network QoS degradation. In
our model, any form of the function may be adopted by the
SMS provider. In order to keep the network QoS degradation
below a predetermined level, the sum of the degrees of
the network QoS degradations needs to be kept below a
predetermined upper bound in a given period of time (i.e.,
called a network QoS degradation window) that consists of a
given number of consecutive time-slots. For example, if the
size of a network QoS degradation window is three (slots)
and if the upper bound on the sum of the degrees of network
QoS degradations in a window is ten in Fig. 4, the sum of the
degrees of the network QoS degradations in every window
must be less than or equal to ten.

B. Model formulation

Given a sequence of ON/OFF state transitions of all
clients, the optimal server locations in every time-slot should
be decided so that the total penalty is minimized while
keeping the network QoS degradation below a predetermined
level. Our model for the server locations decision is based
on an integer programming and is described below.

• Parameters (Constants)

T : A set of consecutive slots (= {0, 1, 2, · · ·N}).
Slots 1 to N are included in the time period
where the SMS provider migrates servers while
slot 0 stands for expressing the initial locations
(WPs) of servers.

S : A set of servers (= {1, 2, · · ·n}).
L : A set of WPs (= {1, 2, · · · r}).
Ri : A set of clients that server i supports.
Ci : Capacity of WP i (i.e., the number of servers

that WP i can support).
Qt

i : A binary constant that is equal to 1, if client i
is in ON-state in slot t, and 0, otherwise.

P t
ij : Penalty when server i stays at WP j in slot t

(the penalty function calculates P t
ij using Qt

i).
W : A set of network QoS degradation windows (=

{{1, 2, · · · , p}, {2, 3, · · · , p + 1}, · · · , {N − p +
1, N − p + 2, · · · , N}} where p is the length
(slots) of the window).

U : The upper bound on the sum of the degrees
of the network QoS degradations for a given
network QoS degradation window.

Iij : The degree of network QoS degradation when a
server migrates from WP i to WP j (the network
QoS degradation function calculates Iij).

Fi : Initial location (WP) of server i.

• Variables

st
ij : A binary variable that is equal to 1, if server i

stays at WP j in slot t, and 0, otherwise.
ot

i : A binary variable that is equal to 1, if server i is
in ON-state in slot t, and 0, otherwise.

Using the parameters and variables defined above, our model
becomes to minimize the objective function (1) subject to
(2)–(7) below.

• Objective function: To minimize the total penalty.

minimize
∑

t∈T

∑

i∈S

∑

j∈L

P t
ijs

t
ij (1)

• Constraints

– A server’s location must fall within all WPs.
∑

j∈L

st
ij = 1 ∀i ∈ S, ∀t ∈ T (2)

– The number of servers that reside on a WP must

203Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

t

1 2 3 4 5 6 7 8 9 10

Client 1
Client 2

Client m

Server 1
Server 2

Server n

Server 1
Server 2

Server n

Figure 4. An example of discrete-time off-line server locations decision.

be less than or equal to the WP’s capacity.
∑

i∈S

ot
is

t
ij ≤ Cj ∀j ∈ L, ∀t ∈ T (3)

– Sum of the degrees of network QoS degradations
during an network QoS degradation window must
be less than or equal to the predetermined upper
bound.

∑

t∈w

∑

i∈S

∑

j,k∈L

st−1
ij st

ikIjk ≤ U ∀w ∈ W (4)

– A server is in ON-state, if one or more of its clients
is in ON-state.

ot
i ≥ Qt

j ∀j ∈ Ri, ∀i ∈ S, ∀t ∈ T (5)

– A server’s initial WP is given.

s0
ij = 1 j = Fi, ∀i ∈ S (6)

s0
ij = 0 j �= Fi, ∀i ∈ S (7)

IV. NUMERICAL EXAMPLES

In this section, we obtain the optimal performance with
our integer programming model in section III, and compare
it with the performance obtained through a simple greedy
on-line algorithm.

A. Parameter settings

With the simple greedy on-line algorithm that we consider
in this paper, a server selects the WP with the minimum
penalty in the current slot from the candidate WPs that sat-
isfy the network QoS degradation constraint. When there are
multiple such candidates with the same minimum penalty, a

server migrates to the WP that yields the minimum network
QoS degradation when the server migrates to the new WP.
We use 14-node NSFNET (Fig. 5) as the network model.

Every router is equipped with one WP with the capacity of
one server. The propagation delays of links in this network
varies between 1.4 and 11.2 [ms]. In the numerical examples
in this section, it is assumed that the delay on each link
is dominated by the propagation delay of the link, and
the packet transmission time (i.e., packet length divided
by channel speed of the link) and the queueing delay at
a router are negligible. Negligible packet transmission time
is realistic and justified, because channel speed of the link
is huge and getting huger. So is negligible queueing delay
at a router, because it is reported that a very small buffer
(e.g., a buffer for 10–20 packets) is enough for core routers
to achieve high TCP throughput [7]. Small buffer yields
negligible queueing delay at routers.
In the scenario considered in this numerical result section,

there is only one NW-App consisting of one server and 14
clients. 14 clients are uniformly distributed over 14 routers
(i.e., one client per router). The SMS provider and the
NW-App developer agree that end-to-end delay between the
server and each client must be smaller than or equal to 10
ms. It is assumed that clients follow the exponential ON/OFF
model where ON-state period and OFF-state period follow
the exponential distributions with means μON = 2 (slots)
and μOFF = 10 (slots), respectively. The duration of the
time period the SMS provider performs server migrations
is set to 10 (slots). We consider a total of 100 ON/OFF-
state transitions of clients to obtain the average of total
penalties. IBM ILOG CPLEX Optimizer [8] is used to solve
our integer programming model.

204Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

R1

R2

R3

R4 R5

R6

R7

R8

R9

R10

R11 R12

R13

R14

Figure 5. NSFNET

It is assumed that the penalty of the NW-App’s QoS
violation in one time-slot is proportional to the difference
between the end-to-end delay between the server and a
client and the predetermined threshold (i.e., 10 ms), i.e.,
the penalty function is α times the difference, where α is a
constant. Note that the difference is regarded as zero when
the end-to-end delay is smaller than or equal to the threshold
value. In the numerical examples in section IV.B, we set
the value of α to ten. As for the network QoS degradation
function, we simply consider that the degree of network QoS
degradation is equal to the number of hops that a server takes
to move to the newWP (e.g., the server’s migration on 2-hop
counts route causes the network QoS degradation of two).
We set the size of the network QoS degradation window
to three (slots). It is assumed that a server and a client
communicate using the shortest hop path between them. It
is also assumed that the server migrates to the new WP
using the shortest hop path. In the numerical result examples
shown in section IV.B, the upper bound (U) on the sum of
the network QoS degradation in a window varies one to ten.

B. Results

Figs. 6 and 7 depict the average total penalty as a
function of the upper bound on the sum of the network QoS
degradation in a window (U) with 95% confidential interval,
when the server’s initial locations are set to WP 1 connected
to R1 and WP 5 connected to R5, respectively.
These figures show that the average total penalties of

both our model and the greedy algorithm decrease as U
increases. This is because the larger U enables the server
to migrate more frequently and/or to the new WP that are
further over more number of hops. Consequently, there is a
larger possibility of a server finding the new WP that either
avoids or reduces the penalty.
Figs. 6 and 7 show that, when U is less than or equal

to three (when the degradation of network QoS is little
acceptable), our model achieves 36% to 49% lower penalty
than the greedy algorithm.
When U is larger than or equal to four, both our model and

the greedy algorithm show nearly identical penalty. This is

explained as follows. When the value of U is large, namely,
when there is no tight upper bound on the network QoS
degradation, even if the server migrate to almost any WP,
it still meet the network QoS degradation constraint. As a
result, with the greedy algorithm, a server often migrates
to the WP with the minimum penalty, resulting in nearly
identical total penalty as with our model.
We next explore the influence of the server’s initial

location on the average total penalty. Figs. 8 and 9 depict the
average total delays of our model and the greedy algorithm
as a function of the server’s initial WP. In the figures, the
larger the value of U becomes, the smaller the difference of
the average total penalties among different server’s initial
WPs. This is because the larger U leads to extending a
server’s moving range limited by its initial WP.

V. CONCLUSION AND FUTURE WORK

In this paper, we formulated an integer programming
model for a discrete-time off-line server locations decision in
the server migration service, and derived the optimal server
locations. Numerical examples showed that 1) our model
achieves 36% to 49% smaller penalty than the greedy on-
line algorithm when the degradation of network QoS due
to server migrations is little acceptable and 2) the greedy
on-line algorithm can achieve the optimal or near optimal
performance when an upper bound on the network QoS
degradation is large (i.e., when the network QoS degradation
constraint virtually does not exist).
Our future work includes 1) investigation of the optimal

length of a time-slot and 2) design of an on-line server loca-
tions decision algorithm that achieves a performance close to
our integer programming model because the computational
complexity of our integer programming model can be large
in a practical situation.

REFERENCES

[1] M. Armbrust et al., “A view of cloud computing,” Communications of
the ACM, vol. 53, Apr. 2010, pp. 50–58.

[2] “Amazon EC2.” http://aws.amazon.com/ec2 [retrieved: Jan. 2013].
[3] A. Yamanaka, Y. Fukushima, T. Murase, T. Yokohira, and T. Suda,

“Destination selection algorithm in a server migration service,” in
Proceedings of the 7th International Conference on Future Internet
Technologies (CFI), Sept. 2012, pp. 15–20.

[4] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” in Proceedings of
ACM SIGCOMM’08, Jan. 2009, pp. 68–73.

[5] S. Ranjan, J. Rolia, H. Fu, and E. Knightly, “QoS-driven server mi-
gration for Internet data centers,” in Proceedings of tenth International
Workshop on Quality of Service (IWQoS), May 2002, pp. 3–12.

[6] T. Hara, M. Tsukamoto, and S. Nishio, “A scheduling method of
database migration for WAN environments,” in Proceedings of Brazil-
ian Symposium on Database (SBBD), Oct. 1999, pp. 125–136.

[7] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Part III: Routers with very small buffers,” SIGCOMM Computer
Communication review, vol. 35, July 2005, pp. 83–90.

[8] “IBM ILOG CPLEX Optimizer.” http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/ [retrieved: Jan. 2013].

205Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 to
ta

l p
en

al
ty

Upper bound on network QoS degradation (U)

integer programming model
greedy algorithm

Figure 6. Average total penalty (server’s initial WP: WP 1).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 to
ta

l p
en

al
ty

Upper bound on network QoS degradation (U)

integer programming model
greedy algorithm

Figure 7. Average total penalty (server’s initial WP: WP 5).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

 to
ta

l p
en

al
ty

ID of server’s initial WP

integer programming model (U=1)

integer programming model (U=2~10)

Figure 8. Average total penalty as a function of server’s initial WP (integer
programming model).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

 to
ta

l p
en

al
ty

ID of server’s initial WP

greedy algorithm (U=1)

greedy algorithm (U=2~10)

Figure 9. Average total penalty as a function of server’s initial WP (greedy
algorithm).

206Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

