
Unified POF Programming for Diversified SDN Data Plane Devices

Haoyu Song, Jun Gong, Hongfei Chen, Justin Dustzadeh

Huawei Technologies
Santa Clara, CA, USA, 95124

email: {haoyu.song, jun.gong, hongfei.chen, justin.dustzadeh}@huawei.com

Abstract—Software Defined Networking (SDN) will ultimately
evolve to be able to program the network devices with customized
forwarding applications. The ability to uniformly program het-
erogeneous forwarding elements built with different chips is
desirable. In this paper, we discuss a data plane programming
framework suitable for a flexible and protocol-oblivious data
plane and show how OpenFlow can evolve to provide a generic
interface for platform-independent programming and platform-
specific compiling. We also show how an abstract instruction
set can play a pivotal role to support different programming
styles which map to different forwarding chip architectures. As
an example, we compare the compiler-mode and interpreter-
mode implementations for a Network Processing Unit (NPU)
based forwarding element and conclude that the compiler-mode
implementation can achieve a performance similar to that of a
conventional non-SDN implementation. Built upon our Protocol-
Oblivious Forwarding (POF) vision, this work presents our
continuous efforts to complete the ecosystem and pave the SDN
evolving path. The programming framework could be considered
as a proposal for the OpenFlow 2.0 standard.

Keywords–SDN; OpenFlow; POF; data plane; programming.

I. INTRODUCTION

It has been envisioned that in SDN the network intelli-
gence should be moved to software as much as possible in
order to support agile, flexible, and low-cost network service
deployments. Programmable Forwarding Elements (FE) are
essential to enable this vision and represent a big leap from
the current network device application paradigm. These FEs
will be shipped as white-box just like bare-metal servers
without fixed functions or pre-installed applications. User can
program the device through a standard-based open interface.
Therefore, the future SDN operation can be modeled as fol-
lows. First, the user determines the entire forwarding protocols
and behavior through device-level programming. Note that
this is done through high level programming over high level
device abstractions. After this step, the white-box is equipped
with customized functions tailored for operator needs. Then,
the operator applies runtime control to operate these devices
through network-level and service-level programming. Any
third party can produce software to program and configure the
programmable FEs. Any third party can also produce network-
level application software which taps into the customized FEs
to offer various network services. Depending on the actual use
cases, the role of device programmer, service programmer, and
network user can be overlapped or independent. The advan-
tages of this network operation model are obvious. Network
applications can be programmed on-the-fly and deployed in
real time. Service innovation is never so easy and accessible
before. Moreover, the system time-to-market can be signifi-
cantly reduced and the life cycle of FEs greatly extended.

In the arena of programmable data plane devices, Central
Processing Unit (CPU) and NPU-based FEs are clearly quali-
fied candidates, but so far, there is lack of an open and standard
interface for forwarding application programming on these
devices. In most cases, these devices are still programmed
by vendors and shipped to users in the form of virtual or
physical appliance. Some open-source soft switches, such as
Open Virtual Switch (OVS) [1], allow user to modify its
behavior but apparently this process is labor intensive and
target dependent. Hence, the application model of these FEs
is not so much different from those built with fixed-function
switch chips based on Application Specific Integrated Circuit
(ASIC).

While not fully programmable, ASIC chips are usually
configurable to some extent and able to handle most of popular
Data Center (DC) switch applications. ASIC-based FEs can be
considered to have pre-installed packages or standard library
functions. With certain negotiation process, such as Table
Type Pattern (TTP) Negotiable Datapath Model (NDM) [2],
ASIC-based FEs can still be controlled under the same SDN
framework, as if they were programmed by the controller.

Recently, a new breed of SDN-optimized programmable
chip is investigated [3]–[5]. These chips aim to support flexible
SDN application programming without compromising perfor-
mance. If succeed, this new contender will further accelerate
the SDN transformation. It is worth to mention that Field
Programmable Gate Array (FPGA), a reconfigurable chip by
nature, can also potentially play a similar role with proper
design-flow refactoring. SDNet [6] represents such an effort.

For the foreseeable future, diverse FEs built with different
chips will coexist in various network segments. As such, it is
critical to have a unified framework, not only to control and
program these FEs, but also to hide the heterogeneous substrate
architecture and present a unified programming interface to
SDN controller and applications. We position OpenFlow [7]
as the center pillar of this framework. OpenFlow abstracts
the SDN data path as a pipeline of tables and actions. This
model is arguably the easiest way to map the forwarding
functions to any target FEs. However, further investigation and
work are needed to address some of the challenges with the
current approach (e.g., fixed protocol support and stateless data
path) [5], [8].

We believe the next generation of OpenFlow (e.g., Open-
Flow 2.0) should offer the following capabilities: (1) Allow
a protocol-oblivious data plane so that no packet format and
network behavior need to be hard-coded in FEs. This capability
is important to maximize SDN’s flexibility and extensibility.
(2) Allow an FE-agnostic SDN controller so that the data plane
abstraction can help isolate the controller from the FE im-

92Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

plementation details. This capability is important to minimize
SDN’s efforts to program heterogeneous substrate platforms.
(3) Allow coexistence of static programming through the use
of packages or library functions and dynamic runtime pro-
gramming/reconfiguration through the use of flow instructions.
This capability extends the usability of diversified FEs and
can offer the needed flexibility to satisfy some special SDN
use-case requirements. While audacious, these goals represent
the right direction for OpenFlow evolution. In this paper, we
present an OpenFlow-based SDN FE programming framework
and provide our experience on realizing it.

The remainder of the paper is structured as follows: Section
II describes the proposed programming framework; Section III
provides a case study on an NPU-based platform; Section IV
discusses the related work; and Section V concludes the paper.

II. UNIFIED PROGRAMMING FRAMEWORK

The unified SDN data-plane FE programming framework is
depicted in Figure 1. The center pillar of this framework is the
standardized OpenFlow 2.0 interface, which provides a set of
generic instructions, as well as other data-plane provision and
monitoring mechanisms. The interface provides a decoupling
point between the control plane and the data plane. It is
versatile and protocol/platform-agnostic [8].

OpenFlow 2.0

High Level
Language

Platform
Independent

Compiler

GUI/CLI Lib

APP

Classical
ASIC

SDN ASIC CPU NPU

Platform
Specific

Compiler

Platform
Specific

Compiler

Platform
Specific

Compiler

Platform
Specific

Compiler

APP
APP

Platform
Optimized Lib

customized

interactive

standard

in
terp

ret

in
terp

ret

N
ative exec

Figure 1: SDN Data Plane Programming Framework

A. Intermediate OpenFlow Interface

OpenFlow is pivotal for the data plane programmability.
The key to a successful design of such a programming interface
is to make it work at the right abstraction levels. In particular,
the interface should not be tied to a particular FE architecture.
Instead, it should allow programs to be easily mapped to any
target while allowing specific optimizations to fully exploit the
target-specific capability.

To this end, we propose a simple yet generic abstract
forwarding model, as shown in Figure 2. In this model, the
“In Ports” and “Out Ports” are the source and sink of a packet
under processing. The port can be either physical or logical.
It can be anything that is out of the scope of the processing
directly programmed by user. For example, the controller, a
service card, some black-box network functions, and packet

recirculation can all be abstracted as ports. This abstraction
guarantees only a single packet is in the processing pipeline at
a time and the packet is uniquely identified by its input port.

The packet processing is abstracted as a sequence of search
tables and the corresponding actions triggered by table lookup
results. Note that this view is also roughly held by OpenFlow
but we purify it to an extreme. The table can match on any
designated packet field or metadata, and the matching result
points to an action which comprises a block of instructions.

The abstract forwarding model can easily describe any
packet processing tasks. For example, to map to some target
hardware with a front-end parser, the very initial table is
defined as a port table and the following action contains
instructions which parse packets and extract header fields. The
number of instructions allowed in an action depends on the
target hardware and the performance constraints. A target-
specific compiler can also find the parallelism opportunities
within an action and takes advantage of it.

Figure 2: Abstract Forwarding Model

The core of our proposed OpenFlow 2.0 interface is a
set of generic “flow” instructions (i.e., POF Flow Instruction
Set (FIS)) [9], which are used to program the actions. These
instructions function as the intermediate language between
the platform-independent programming environment and each
individual target platform. The instructions are grouped and
summarized as follows:
• Packet/Metadata editing: set field, add field, delete

field, math/logic operations on field in packet or
metadata

• Flow Metadata manipulation: read, write global data
(e.g., counters, meters) for stateful operations

• Algorithm/Function procedure: checksum, hashing,
random number generating, etc. Extensible to include
other standalone black-box functions

• Table access: go to table (non return), search table
(return to calling instruction) with keys extracted from
packet and metadata

• Output: to physical/virtual/logical port, with
sampled/data-path generated packets, or
original/modified/mirrored/cloned packets

• Jump/Branching: conditional and unconditional, abso-
lute and relative

• Active data path: insert/delete/modify flow entry, in-
sert/delete flow table

• Event: timers
These instructions operate on the objects such as packet

data, meta data, and flow tables. Note that the instruction set
we defined by no means complete. More instructions can be
included in the future as the scope of packet processing is
extended to cover tasks such as queuing and scheduling.

93Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

In addition to making the flow instructions protocol-
oblivious, we propose other new features to enhance the
programmability and to enable performance optimization. One
notable addition is the ability to abstract the actions associated
with each flow entry as a piece of program. This provides sev-
eral advantages. For example, it allows decoupling match keys
and actions. The actions for flow entries, in form of instruction
blocks, can be downloaded to FEs separately from flow entry
installations. When each instruction block is assigned a unique
identifier (ID), the flow entry only needs to include a block
ID to infer the associated actions. By doing this, not only
different flow entries can share the same instruction block
while an instruction block is only downloaded and stored
once, but also there would theoretically be no limit on how
many instructions one flow entry can execute. By using the
goto-table instruction within an instruction block, the table
traversing order (i.e., the processing flow) can be dynamically
changed. Instruction block update is also easy: one can simply
load a new instruction block, update the block ID in affected
flow entries, and then revoke the old instruction block if it is
not needed anymore.

To facilitate instruction block sharing and at the same
time enable differentiated flow treatment, we augment the flow
entry with a parameter field. This field can be leveraged by
application developers to define any parameters used by the
associated instruction block. For example, in an egress table,
when all the entries execute an output action, they may have
different target output ports. While the output action is coded
in an instruction block and shared by all the flow entries, the
output port number is stored in the parameter field of each flow
entry. This is just an overly simplified example. In reality, this
mechanism is efficient in code space reduction.

We also abstract the globally-shared memory resource
as a flow metadata pool. Flow metadata can be shared by
flow entries to store statistics (i.e., counters) or any other
information such as flow states. This is another enhancement
on top of the existing packet metadata mechanism which is
only dedicated to each packet. In particular, the expressivity
of flow metadata enables stateful data-plane programming.

B. Programming over OpenFlow Interface

Above the OpenFlow interface, any network forwarding
application needs to be converted to the standard OpenFlow
configuration commands and instruction blocks first. There
are three ways to do it. First, it would be handy to use
some high-level language to program network applications
on devices. The high-level language provides another layer
of abstraction that supports modularity and composition [10].
With the help of a high-level language, developers can focus
on application functions rather than dealing with particular
FE architecture and conducting error-prone table and flow
manipulations. Some SDN programming languages have been
proposed in literature [11], [12]. However, they are more
focused on network-wide policy deployment on FEs built with
fixed-function chips. Recently, a device-level programming
language called P4 was proposed [13]. Some latest NPU chips
are made C-programmable [14], [15], albeit only accessible
by device developers. No matter which language is picked, a
new compiler needs to be developed for sure. But, using a
popular language can shorten the learning curve and increase
the productivity. We are exploring the possibility of using C
and Java as our choice of high level language. However, this

is still an open and active research area. Until we thoroughly
fathom the feasibility, we do not exclude other possibilities.

Although programming in a high-level language is meant to
be forwarding-platform-independent, we realize that in the near
future, many different forwarding architectures will coexist.
For example, some chips (notably ASIC-based chips) have
a physical front-end packet parser which parses packets in
a centralized way but some other chips (notably NPU-based
chips), for performance reason, prefer incremental packet
parsing where packets are parsed layer by layer along the
packet processing pipeline. Moreover, each kind of chip may
have its own feature extensions, hardware-accelerated modules,
and other nuances in hardware resource provisioning. Without
discerning these differences, a generic program would pose
significant challenges to the complier, which may lead to poor
performance or even worse, failure to compile at all. Therefore,
the application program should follow some programming
style constraint upfront and may include some preprocessor
directives to guide the compiling process. The key point is
that the language itself must be general enough. The platform-
independent compiler compiles the application programs by
calling the platform-optimized library and generates an Inter-
mediate Representative (IR), which will be passed down to FEs
through the OpenFlow interface. This is not a perfect solution
from a purist’s perspective. However, as long as the FE chips
do not converge to a single architecture, we have to live with
it. The good thing is, if in the future the chip architectures do
converge, the design flow and interface do not need to change.

Another method is to directly use Graphical User In-
terface (GUI)/Command Line Interface (CLI) for interactive
and dynamic data plane programming at runtime. This could
be considered similar to low-level programming in assembly
language. Although it needs to handle flow level details, this
method is fast and can fully explore the FE flexibility. The
GUI/CLI can be used to handle fast runtime reconfigurations
and can also be used to directly download compiled applica-
tions to FEs. We have implemented an open-source GUI to
support this programming method [16].

At last, there are many prevailing network applications
and forwarding processes today. For example, the basic Layer
2 (L2) switching and Layer 3 (L3) Internet Protocol (IP)
forwarding are still widely used. It would be counterproductive
to try to develop them again and again. Also, some appli-
cations on some particular target platforms may have been
deeply optimized to achieve the best possible performance. It
would be difficult for inexperienced developers to implement
these applications with a similar performance. Therefore, pre-
compiled applications can be provided in a library by any third
party and directly used to program the network. Conceptually,
this is in line with the TTP developed by Open Networking
Foundation (ONF) Forwarding Abstraction Working Group
(FAWG) [2]. Once the specifications of these library appli-
cations are standardized or publicized, any third party can
develop and release them. Users can also maintain their private
library and download the program through GUI or CLI.

Note that these programming approaches are not mutually
exclusive. In other words, an application could be implemented
through the simultaneous use of more than one approach.
In a typical scenario, the basic forwarding process is either
customized by using the high-level language or taken from
a standard library application, and then GUI/CLI is used for
library application download, dynamic runtime updates, and

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

interactive monitoring.

C. Programming Diversified Platforms

Once the program in the form of standard IR is conveyed
to the FEs through OpenFlow messages, the FEs may have
its own platform-dependent compiler which compiles or maps
the program to its local structures. Note that this platform-
dependent compiling process can also happen in controller.
In this case, the burden on FEs is alleviated but the controller
would need to retain extra knowledge about the target platform.
The pros and cons of both options are still open to debate,
but we believe our choice represents a clean architectural
cut and is better for a coherent OpenFlow interface which
can seamlessly support both configuration and operation. We
roughly categorize FEs into four groups based on the type of
main forwarding chips on them.

1) Conventional ASIC-based: Conventional ASICs for FEs
typically have a fixed feature set and are not openly pro-
grammable. However, since they are designed to handle clas-
sical forwarding scenarios at high performance, they are still
usable in SDN but in a more restrictive way. In this case,
the standard library applications are the most suitable way
to “program” the FEs. Some ASICs are configurable and can
switch between different modes to support different applica-
tions. In this case, customized programming is not impossible
but needs to be applied in a highly-disciplined way to ensure
compatibility.

2) SDN ASIC-based: Recent research has started to pay
more attention to SDN-optimized chips [3], [17]. Some com-
panies are planing or have started to develop chips to better
support flexible network application programming [4]. We can
also put FPGA, if properly designed, into this category. These
chips have embedded programmable capability for general
packet handling but are also heavily populated with hardware-
accelerated modules to handle common network functions
for high performance. For these chips, it is feasible to use
any kind of programming method. Due to the architectural
limitations (e.g., hardware pipeline), low level interactive pro-
gramming may not be well supported in these FEs. Therefore,
the customized programming and application installation are
preferred. A target-specific compiler is needed to compile the
IR into the chip’s local structure.

The compiler, no matter how well-designed, may cause
some performance loss due to the extra level of indirection.
When the OpenFlow 2.0 is standardized, it is conceivable that
in the future we could even design a chip that can natively
execute the POF-FIS instructions without even needing a
compiler in data plane.

3) CPU-based: CPU is no doubt the most flexible platform.
Albeit having lower performance compared with the other
platforms, it can easily support any programming method.
Software-based virtual switches (e.g., OVS) are widely used in
data centers. The switch implementation in CPU can basically
run in two different modes: compiler mode and interpreter
mode. The former compiles an application in IR into machine
binary code (akin to the customized programming approach)
and the latter requires the forwarding plane to directly interpret
and execute OpenFlow instructions dynamically (akin to the
interactive programming approach). The interpreter mode is
more straightforward to implement and allows more flexible
usage of the switch. The open source soft switch presented
in [16] works in interpreter mode. It is unclear to us which

mode has higher performance. We are working on a compiler-
mode implementation based on x86 platform which targets on
OVS.

4) NPU-based: NPUs are software programmable chips.
They are designed specifically for network applications. An
NPU typically contains multiple processing cores to enhance
the parallel processing capability. NPUs can be broadly catego-
rized into two types: pipeline and Run-To-Completion (RTC).

A representative pipeline NPU is EZchip’s NP family
chip [18]. In a pipeline NPU, each stage processor only handles
a portion of packet processing tasks. Although the pipeline
NPU’s architecture seems to match OpenFlow’s processing
pipeline model, in reality it is not easy to perfectly map the two
pipelines together because OpenFlow’s pipeline is function-
oriented and NPU’s pipeline is performance-oriented. The
compiler needs to carefully craft the job partition to balance
the load of pipeline stages.

In an RTC NPU, each processor core is responsible for the
entire processing of a packet. This architecture maximizes the
programming flexibility, which is similar to CPUs. However, it
has limited code space per core and needs to share resources
(e.g., memory) among cores. The code space constraint re-
quires the code size to be compact enough in order to accom-
modate the whole processing procedure (e.g., we cannot afford
to repeat the storage of the same set of actions for every flow
in a large flow table). The resource sharing constraint requires
both the number of memory accesses and the transaction size
per memory access to be minimized in order to meet the
performance target. Fortunately, the new features we proposed
for the OpenFlow 2.0 interface allow software developers to
program efficiently with these constraints in mind.

NPU-based FEs can also be programmed in compiler
mode or interpreter mode. In the next section, we discuss
the implementations of both modes on an NPU-based FE and
compare their performance.

III. NPU-BASED CASE STUDY

The NPU-based FE prototype works on Huawei’s NE-5000
core router platform. The line card we used has an in-house
designed 40G NPU and each half slot interface card has eight
1GbE optical interfaces. The multi-core NPU runs in RTC
mode.

A. Forwarding Programming in C

To support high level data plane programming, we model
three entities: Metadata, Table, and Packet. The program sim-
ply manipulates these three entities and forwards the resulting
packets based on the table lookup results. For our NPU, the
three entities are all realized in registers. Metadata is used to
hold the packet metadata which is represented as a customized
structure; Table is the associated data of flow entries loaded
from table matches, which is also represented as a customized
structure; Packet is typically the packet header under process
which is described in another structure.

Figure 3 shows the structures of Metadata, Table, and
Packet for an L3 forwarding application. A piece of program
that processes a packet is shown in Figure 4. It combines the
IP address and the Virtual Private Network (VPN) ID as a new
key to conducts another table lookup.

Once the packet processing flow is described in C, it is
straightforward to compile the program into IR, which include
protocol parsing rules, table specifications, and flow actions.

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

struct Metadata_L3 {
uint8 L3Stake; //L3 Offset
uint16 VpnID; //VPN ID
uint16 RealLength; //Packet Length
uint16 SqID; //QOS Queue ID

};
struct Table_Portinfo {

uint16 VpnID; //VPN ID
uint16 SqID; //QOS Queue ID

};
struct IPV4_HEADER_S {

uint4 Version;
uint4 HeaderLength;
union {

uint8 TOS;
uint6 DSCP;
uint3 Precedence;

};
uint16 TotalLength;
uint16 FragReAssemID;
IPV4_FRAG_HWORD_S FragHWord;
IPV4_TTL_PROT_HWORD_S TtlProtWord;
uint16 Checksum;
uint32 SIP;
uint32 DIP;

};

Figure 3: Structures for L3 Forwarding

(Metadata_L3 *) p_metadata;
(Table_Portinfo *) p_table;
p_metatada->VpnID = p_table->VpnID;
p_ipheader = p_packet + 14;
Goto_Table(TableID, p_metadata->VpnID, p_ipheader->DIP);

Figure 4: Code Example

Although the programming style appears to be platform inde-
pendent, the Goto Table library function could be specific for
each different forwarding platform in the above example. To
infer the different platform implementation to the compiler, an
NPU-specific proprietary library is included.

B. Interpreter Mode FE Implementation

In interpreter mode, each POF-FIS instruction in a flow
action (i.e., an instruction block) corresponds to a piece of
code written in NPU microcode which realizes the instruction’s
function. The code translation is straightforward. However, due
to the flexibility embedded in the POF-FIS instructions, the
efficiency of the microcode is problematic.

For example, the Goto Table instruction may lead to a
complex microcode processing flow. First, it needs to read the
corresponding table information and initialize a buffer to hold
the search key, then it enters a loop to construct the search
key piece by piece depending on the number of header fields
involved in the instruction. Each iteration of the loop contains
many steps. It needs to locate the target field using the offset
and length information, copy the field into the key buffer, and
mask the field. This process requires a lot of pointer shift,
data move, and other logic operations. Finally, the search key
is sent to the target flow table and the thread is hung up to
wait for the lookup result.

The inefficiency comes from three sources: (a) the mi-
crocode instruction count, (b) the number of thread switch, and
(c) the bandwidth of loading flow table entries. The microcode

instruction count is determined by the microcode instruction
set and the complexity of POF-FIS instructions. The thread
switch is caused by the loops that force to break processing
pipelines, as well as the latency for table lookups. Each table
lookup will return an instruction block. If parameters are
directly carried within instructions, the bandwidth of loading
such instruction blocks are considerably expanded. As a result,
the throughput suffers. The last inefficiency can be addressed
by allowing the flow entry to carry the parameters but this is
not enabled in our prototype yet.

In general, the interpreter mode implementation is suitable
for the interactive programming approach in which the data
path is fluid and can be constantly changed. While this mode
is less likely to be widely used in production networks, it
is interesting in experimental and research environments for
quick design verification.

C. Compiler Mode FE Implementation

In compiler mode, the application is considered a whole
and a relatively static entity. This allows the compiling process
to simplify the microcode. Since there are a set of registers
R0 ∼ Rn in NPU, the compiler can resolve the pointer offsets
and directly map the data into registers. This eliminates the
need of pointer manipulations in microcode. The compiler also
handles the length evaluation and directly translates that into
assignment statement. These can help to reduce the microcode
instruction count by more than 50%.

The compiler mode implementation can easily take ad-
vantages of the flow parameter mechanism which reduces the
instruction block size. This lowers the bandwidth requirement
for memory access and further boosts the throughput and
latency performance.

D. Performance Evaluation

The packet forwarding performance in NPU is evaluated
by throughput (R) and packet latency (L). We know that R =
c ∗ f/i and L = t/R in which c is the number of processing
cores, f is core frequency, i is microcode instruction count per
core, and t is the number of threads. Given an NPU, c and f
are fixed, so the performance is mainly determined by i and t.
Reducing table lookup latency and memory access bandwidth
have direct impact on t. Table I compares the performance
of different Goto Table implementations (n is the number of
match fields in the search key).

TABLE I: Goto Table Performance Comparison

instr. count # thread switch
Interpreter Mode 37 + 33n 7 + 3n
Compiler Mode 13+n 1

Table II summarizes the performance comparison for basic
IPv4 forwarding. The conventional non-SDN implementation
is used as a benchmark, which has exactly the same function as
the SDN-based implementations. The conventional implemen-
tation can fully exploit the hardware features (e.g., protocol
parsers) and the microcode is deeply optimized.

Through extensive experiments, we found that the
compiler-mode implementation performs consistently better
than the interpreter-mode implementation. For a typical IP for-
warding process in routers, the compiler-mode implementation

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

TABLE II: Performance Comparison for IPv4 Forwarding

non-SDN Interpreter Compiler
instr. count 496 1089 550
thread switch 94 146 74
thruput (Mpps) 77.5 35.3 69.8
latency (cycle) 4468 6361 4022

needs 57% less microcode instructions than the interpreter-
mode implementation. Compared with the conventional im-
plementation, the compiler-mode implementation is just 11%
worse. With the same number of micro cores, a compiler-
mode implementation can easily double the throughput of an
interpreter-mode implementation.

IV. RELATED WORK

This paper is concerned with the SDN data plane program-
ming issues. To put it in context, interested readers can refer
to Kreutz et al. [5] for an up-to-date comprehensive survey
of SDN research and practice.

P4 language is based on an abstract forwarding model [13].
The use of P4 is akin to our customized programming ap-
proach. For an application, it defines the header parse graph
and the switch control program. The control program basically
describes the tables, the action set supported by each table,
and the table dependencies. The model also needs a platform-
dependent compiler to map the configuration to each specific
target switch. After configuration, the controller can then
populate the tables with actual flow entries at run time.

Open Compute Project (OCP) networking project ad-
vocates open switches with open-programming environ-
ments [19]. Quite a few open switch specifications and open-
source softwares have been released since the project debut
in 2013. However, at its current stage this project still falls
short of SDN support: (1) It focuses on programming in an
open Linux-based Network Operating System (NOS) envi-
ronment for each individual switch but not in a centralized
SDN programming environment; (2) The current open switch
specifications heavily rely on existing ASIC-based chips and
Software Development Kit (SDK)/Application Programming
Interface (API) provided by chip vendors. The programming
flexibility is limited by the chip architecture and the degree of
openness the chip vendors would like to offer. We believe a
truly open switch also means open silicon chips or at least a
universal and complete API. The project might evolve towards
a similar direction as we proposed.

V. CONCLUSION AND FUTURE WORK

We believe it is plausible to assume that the next generation
SDN will require total programmability over an open data
plane. An FE could be programmed as easily as a bare-metal
server can be programmed today. However, the diversified
chips used to build the FEs today and in the foreseeable future
are far from a convergence. This poses a challenge for the
desired uniform and coherent SDN programming experience.
Until we solve this problem, we cannot claim a vertical-
decoupling of the SDN layered architecture is fully achieved.
With the current SDN approach, it could become difficult to
build an efficient ecosystem in which players would work at
different layers independently.

In this paper, we presented our initial exploration and
experience on this hard problem. We propose a programming

framework which centers on the next-generation OpenFlow
interface, targets various FEs, and supports different program-
ming approaches. In particular, we experiment on an NPU-
based platform and show that the complier-mode implemen-
tation is superior to the interpreter-mode implementation in
terms of performance, although interpreter mode implementa-
tion offers much better runtime flexibility.

Our future work includes completing the proposed SDN
programming framework by implementing the missing pieces
in Figure 1 (e.g., platform-dependent compilers for other FE
platforms) and demonstrating real-world SDN applications
through the full programming process. We are also working
on extending OVS to support POF and making it runnable
in Mininet environment, so the idea is more accessible to
the research community. This programming framework can be
considered as a proposal for the OpenFlow 2.0 standard.

REFERENCES
[1] Open vSwitch, http://openvswitch.org/ [retrieved: March, 2015] .
[2] ONF Forwarding Abstraction Working Group (FAWG),

https://www.opennetworking.org/working-groups/forwarding-
abstractions [retrieved: March, 2015].

[3] Pat Bosshart et al., “Forwarding Metamorphosis: Fast Programmable
Match-action Processing in Hardware for SDN,” in Proceedings of the
ACM SIGCOMM, 2013, pp. 99-110.

[4] White Box Week: Chip Startups Take Aim at Broadcom,
https://www.sdncentral.com/news/white-box-week-chip-startups-
take-aim-broadcom/2013/11/ [retrieved: March, 2015] .

[5] Diego Kreutz and Fernando Ramos and Paulo Esteves Verissimo and
Christian Esteve Rothenberg and Siamak Azodolmolky and Steve Uhlig,
“Software-Defined Networking: A Comprehensive Survey,” Proceed-
ings of the IEEE, January 2015, pp 14-76.

[6] Software Defined Specification Environment for Networking,
http://www.xilinx.com/applications/wired-communications/sdnet.html
[retrieved: March, 2015] .

[7] Nick McKeown et al., “OpenFlow: Enabling Innovation in Campus Net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
April 2008, pp. 69-74.

[8] Haoyu Song, “Protocol-Oblivious Forwarding: Unleash the Power of
SDN through a Future-Proof Forwarding Plane,” in ACM SIGCOMM
HotSDN Workshop, 2013, pp. 127-132.

[9] Jingzhou Yu and Xiaozhong Wang and Jian Song and Yuanming Zheng
and Haoyu Song, “Forwarding Programming in Protocol-Oblivious
Instruction Set,” in IEEE ICNP CoolSDN Worshop, 2014, pp. 577-582.

[10] Nate Foster et al., “Languages for Software Defined Networks,” IEEE
Communication Magazine, Feburary 2013, pp. 128-134.

[11] ——, “Frenetic: A Network Programming Language,” in ACM SIG-
PLAN ICFP, 2011, pp. 279-291.

[12] Andreas Voellmy and Paul Hudak, “Nettle: Taking the Sting Out of
Programming Network Routers,” in PADL, 2011, pp. 235-249.

[13] Pat Bosshart et al., “P4: Programming Protocol Independent Packet
Processors,” Computer Communication Review, 2014, pp. 87-95.

[14] EZchip NPS, http://www.ezchip.com/ [retrieved: March, 2015].
[15] Netronome Flow Processor, http://www.netronome.com/ [retrieved:

March, 2015].
[16] Protocol Oblivious Forwarding, http://www.poforwarding.org [re-

trieved: March, 2015].
[17] Martin Casado and Teemu Koponen and Daekyeong Moon and Scott

Shenker, “Rethinking Packet Forwarding Hardware,” in ACM SIG-
COMM HotNets Workshop, November 2008, pp. 1-6.

[18] Ran Giladi, “Network Processors: Architecture, Programming, and
Implementation (Systems on Silicon),” Morgan Kaufmann, 2008.

[19] Open Compute Project, http://www.opencompute.org/ [retrieved:
March, 2015] .

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

