
Client Driven Rate Adaptation Algorithm for Streaming over HTTP

Waqas ur Rahman and Kwangsue Chung

Department of Electronics and Communications Engineering

Kwangwoon University

Seoul, Korea

Email: waqas@cclab.kw.ac.kr, kchung@kw.ac.kr

Abstract— Video streaming services make up a large

proportion of Internet traffic throughout the world. Adaptive

streaming allows for dynamical adaptation of the video bitrate

with varying network conditions, to guarantee the best user

experience. We propose an adaptive bitrate scheme that

intelligently selects the video bitrates based on the estimated

throughput and buffer occupancy. We show that the proposed

algorithm selects a high playback video rate and avoids

unnecessary rebuffering while keeping a low frequency of

video rate changes.

Keywords- Rate adaptation; Quality adaptation; Quality of

Experience; HTTP Streaming; Multimedia

I. INTRODUCTION

High speed broadband networks and improvements in
display technology of various devices have enabled video
streaming to become one of the most popular applications.
Video traffic dominates Internet traffic on both fixed and
mobile access networks all over the world.

Initially, the video clients completely downloaded the
video before the streaming could start. This was followed by
the progressive download with which the clients begin the
playback at a defined video rate before the download is
complete. Recently, video streaming services are based on
Hypertext Transport Protocol (HTTP) over TCP for
streaming multimedia over computer networks. Network
conditions and video clients’ capabilities vary with time and
place; therefore, adaptive streaming over HTTP allows the
adaption of video quality based on the available resources on
the path between the server and client. Multiple versions of
the multimedia content are stored at the server. The server
shares the information about the characteristics of the stored
multimedia content with the client. The adaptive bitrate
(ABR) algorithm at the video client is responsible for
selecting a suitable bitrate depending on the system
conditions such as throughput and the occupancy of the
playback buffer.

ABR algorithms strive to maximize the user experience
by meeting conflicting video quality objectives in different
environments. Some of the potential objectives include
selecting a set of video bitrates that are the highest feasible,
avoiding needless video bitrate switches and preserving the
buffer level to avoid interruption of playback [1][2].
Maximizing the video rate increases the risk of playback

interruption whereas mitigating the frequency of video rate
switches results in lower average video rate.

One way to pick video bitrates is to make an estimate of
the future throughput from past observations. An inaccurate
estimation may lead to selecting the video bitrate that results
in extensive rebuffering. If the selected video rate is higher
than the available throughput, the client’s playback buffer
drains which may result in interrupted playback. To avoid
interrupting playback, ABR algorithms add playback buffer
occupancy as an adjustment parameter on top of throughput
estimation to select video bitrates.

In this paper, we show that the proposed algorithm selects

the video rates based on the buffer occupancy by exploiting

the variation of the sizes of the upcoming segments. The

results show that our approach provides better viewing

experience by delivering higher average video rate without

unnecessary rebuffering while maintaining a low frequency

of video rate changes. The rest of the paper is organized as

follows. The related works are presented in Section II. The

proposed scheme is presented in Section III. The

experimental results are provided in Section IV, and finally

the concluding remarks are given in Section V.

II. RELATED WORK

The main objective of all adaptive video rate algorithms
is to improve the user’s viewing experience. Adaptation
algorithms mainly select video rates based on the estimated
throughput and the state of the playback buffer. Segment
throughput is calculated as the ratio of the segment size to
the time that it takes to download the segment [3]. In many
commercial clients, the moving average of the throughput of
previous segments is used to estimate the throughput [4].
Once the throughput has been estimated, clients pick the
video rate of the next segment based on the throughput [5-7].

Many ABR algorithms consider playback buffer along
with the throughput to select the video rate of the next
segment. The buffer is divided into predefined ranges and
different decisions are taken to select the video rates when
the buffer level stays in different ranges [8][9]. The method
in [9] is more stable as compared to the method in [8] but it
is late to react to the changes in the throughput as it waits for
the playback buffer to reach a threshold before selecting a
higher video rate. We propose an adaptive bitrate scheme
[10] that intelligently selects the video bitrates based on the
estimated throughput and buffer occupancy. The scheme

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

improves viewing experience by achieving a high video rate
without taking unnecessary risks and by minimizing the
frequency of changes in the video quality. Huang et al [11]
propose a video rate adaption algorithm that selects the video
rate by observing only the client’s playback buffer. The
video rate is increased and decreased as the playback buffer
builds up and drains respectively. Furthermore, the algorithm
selects the video rates considering the sizes of the upcoming
segments. In this paper, we propose a scheme that is similar
to the schemes proposed in [8][9][13] as it selects the video
rates based on both the estimated throughput and the buffer
occupancy. The current schemes in the literature pick the
video rates based on the predefined buffer ranges whereas
the proposed scheme dynamically selects the buffer ranges to
optimally pick the video rates based on the upcoming
segment sizes to optimize the QoE.

III. PROPOSED SCHEME

A. System Model

The HTTP client downloads a video stream divided into
multiple segments. The video stream is stored at the server
and the adaptive bitrate algorithm at the client decides which
segment to download next. All the segments have an equal
duration of τ seconds. The set of representations available for
the video stream is denoted by R where R = {Rmin, R2, R3,…,
Rmax}. The client dynamically selects a video rate from the
set R for the next segment. Rmin and Rmax are the
representations with the highest and lowest video rates in the
set R. Any video rate higher and lower than currently
selected video rate is denoted by R↑ and R↓ respectively.

B. Adaptive Bitrate Algorithm

Available bandwidth estimation plays an important part
in the selection of the video rate. The clients estimate the
throughput of the next segment based on the throughput
observed over the download of the previous segments.
Segment throughput is calculated as the ratio of segment size
divided by the time it takes to download the segment. The
selection of the video rate for the next segment based on the
throughput T(i-1) of the last downloaded segment keeps the
playback buffer stable but results in a fluctuating video rate
curve. In this paper, we use the McGinely dynamic indicator
for the throughput estimation measure TE(i) to overcome the
fluctuating video curve which is given by [12]:

4)

)(

)(
(

)()(
)()1(

iT

iT
N

iTiT
iTiT

E

E
EE

 (1)

The numerator of the second term gives a sign, up or

down and the power of 4 gives the calculation an adjustment
factor which increases more sharply as the difference
between the observed throughput of ith segment and
estimated throughput of segment i increases. N is the
tracking factor which we set equal to 1.

The buffer dynamics are considered when the segment is
completely downloaded. Let B(i-1) be the buffer level at the
end of the download of segment i-1, then B(i) is given by:

]
)(

)(
[)1()(

iT

iR
iBiB k (2)

where Rk(i) is the kth video rate from the set R and T(i) is

the throughput observed during the download of segment i.
(2) shows that if the selected video rate is greater than the
available throughput, the playback buffer drains. As each
segment contains duration of τ seconds, Ck(i), the size of the
ith segment is τ×Rk bits. Given the available throughput T(i)
and video rate Rk(i), the change in buffer level during the
download of ith segment is equal to B*:

)(

)(

)(

)(
)1()(*

iT

iC

iR

iC
iBiBB k

k

k (3)

 where the playback buffer fills with Ck(i) / Rk(i) seconds

of data and the buffer drains with Ck(i) / T(i) seconds of data.

(2) can now be written as:

 *)1()(BiBiB (4)

If Rk(i) > T(i), B* becomes negative, which means that

the buffer is drained at a rate faster than the rate at which it
fills, therefore, B(i) will be less than B(i-1). We assume that
the available throughput cannot be less than Rmin= R1. We
denote the change in the buffer level when T(i) = Rk-1 and the
client overestimates the throughput and selects the next
higher video rate Rk for the ith segment as Bk*. We denote
Bk(i) as the minimum buffer level occupancy to select the kth
video rate for the ith segment.

k

m m

m

m

m
k

m
mk

R

iC

R

iC
BiB

2 12

*)()(
)(

k

m mm

mmmm

RR

RiCRiC

2 1

1)()(
 (5)

(5) ensures that if the client selects the kth video rate

when at least Bk(i) amount of buffer is available and the
throughput drops to Rmin, there will be one segment (τ
seconds) available in the buffer at the end of the segment
download. Most of the streaming services encode videos in
variable bitrate (VBR) where static scenes are encoded with
fewer bits and active streams with more bits. In VBR, video
is encoded at an average video rate and the instantaneous
video rate of each segment varies around the average rate.
This allows flexible and efficient use of bits. As the size of
each segment is different and Bk(i) depends on the segment
size, the value of Bk(i) will change every time a segment is
downloaded. This makes the video rate change frequently.
Furthermore, for a given throughput a segment of a larger
size will take more time to get downloaded; hence will
consume more video in the buffer than a smaller segment. To

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

this end, we take the average of the next 10 segment sizes
and calculate Bk(i) after every 10 segments based on their
average sizes.

k

m mm

mmmm
k

RR

RCRC
iB

2 1

1)((6)

where C̅m is the average of every 10 segment sizes. (6)

makes sure that Bk(i) gets its value recalculated after every
10 segments to reduce the video rate switches. If the
upcoming segments are larger, the buffer thresholds to select
a given video rate will be greater than when segments are
smaller to minimize the risk of buffer underflow. If we select
the average segment size based on more than 10 upcoming
segments, it might not correctly depict the segment size trend
whereas calculating Bk(i) based on fewer segments will result
in a higher frequency of video rate switches.

The algorithm’s pseudo-code is provided in Algorithm 1.
We consider that Algorithm 1 is invoked to select the video
rate of ith segment. The streaming session is divided into two
phases of operation: the startup phase and the steady phase.
The startup phase starts when the buffer is building up from
being empty, to be followed by the steady phase.

Algorithm 1: Adaptation Algorithm

if Startup phase conditions hold true

 if B(i-1) < BLOW then

 if R ↑ < α1 ×T(i-1) then

 Rk(i) = R ↑

 else
 if R ↑< α2 ×T(i-1) then

 Rk(i) = R ↑

else

 if B(i-1) < Bmin then

 R(i) = Rmin

 else if R(i-1)==Rk && Bk-1(i) < B(i-1) then

 R(i) = R(i-1)

 else if R(i-1)≠Rmin && B(i-1)<Bk-1(i) then

 R(i) = R ↓

 else if R(i-1)≠Rmax&&B(i-1)>Bk↑&&TE(i) >TE(i-1) then

 R(i) = R ↑

 else

 R(i) = R(i-1)

During the startup phase, the buffer builds up from being

empty. A conservative approach is considered at the start and
as the buffer gradually fills up and climbs above the buffer
threshold BLOW, we take more risk in selecting the video rate.
Minimum available video rate Rmin is selected to download
the first segment. This approach reduces the delay after the
client requests the video and before the client streams the
video. For B(i-1) < BLOW, the client switches to a higher
video rate if R↑< α1×T(i-1). For B(i-1) > BLOW, a higher video
rate is selected if R ↑< α2×T(i-1) where α1 and α2 are the
safety margins and α1 < α2. When the buffer size is small, the
client will increase the video rate faster in the startup phase.
When the buffer size is large, it may take time for the client

to accumulate buffer up to BLOW which may result in
underutilization of the resource when the available
throughput is high. To avoid this scenario, we set the
condition that if Rstartupphase < Rsteadyphase the algorithm
switches to steady phase. Rstartupphase and Rsteadyphase are the
video rates suggested by the client during the startup and
steady phase respectively. The proposed scheme stays at the
startup phase until any of the following conditions are not
satisfied: (i) B(i-2) < B(i-1); or (ii), Rstartupphase > Rsteadyphase.
The motivation behind the startup phase is to quickly fill up
the buffer without risking playback interruption. Afterwards,
we use steady phase to select the video rate of the upcoming
segments.

In the steady phase, to select the kth video rate, two
conditions should be satisfied:

1) The buffer level should be higher than Bk(i)

2) Rk(i) < α3 ×TE(i)
The client will select Rk(i) if the buffer level is greater

than Bk(i). This condition helps in avoiding the buffer
underflow in case the client overestimates the throughput or
there is a sudden drop in the throughput. The condition of
Rk(i) < α3×TE(i) uses a safety margin α3 to compute the
bitrate to avoid throughput overestimation.

First we consider the scenario where buffer level falls
below Bmin = B2(i). In this case, Rmin is always selected. B2(i)
is the minimum buffer occupancy to select the video rate
R2(i). The reason is that it is of the primary importance to
avoid interruption of the playback.

Now, we consider the scenario when the throughput and
the buffer level drops. We do not immediately react to this
drop in the throughput; we stay at the current video rate until
the buffer level drops below Bk-1(i). This is because we can
minimize the number of video rate switches if we don’t react
to short-term fluctuations. Once the buffer level falls below
Bk-1(i), we continue to reduce the video rate until the
condition Rk(i) < α3×TE(i) is satisfied.

Next, we consider the scenario of an increase in
throughput and the buffer level. To increase the video rate in
response to the increase in throughput and buffer level, the
following conditions should be satisfied:

1) TE(i) > TE(i-1)

2) The buffer level should be greater than Bk↑
The first condition makes sure that there isn’t a recent

drop in throughput while the client decides to increase the
video rate. Bk↑ is the buffer threshold to select the higher
video rate R↑. As the video rate cannot be adapted until the
download of the next segment, in case of a sudden drop in
throughput the second condition reduces the risk of buffer
underflow. When the conditions of switching up and
switching down the video rate are not satisfied, we maintain
the current video rate.

IV. PERFORMANCE EVALUATION

We implement the proposed scheme in ns-3 to evaluate its

performance. We compare the proposed method with the

schemes proposed in [8] and [9]. We refer to the algorithms

proposed in [8] and [9] as AAAS and QAAD respectively.

The topology implemented in this paper is shown in Figure 1.

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

The topology consists of an HTTP server, HTTP client and a

pair of network elements. The link between the network

elements is our bottleneck link. We add the UDP traffic

between the network elements to vary the throughput across

the bottleneck. To achieve adaptive streaming, the HTTP

server offers the client four different video rates which

include 450, 850, 1500 and 2500kbps. The length of each

segment and playback buffer size is 4 and 60 seconds,

respectively. BLOW is set to 30% of the buffer size. The

safety margins are set to (α1, α2, α3)=(0.5, 0.75, 0.9).

HTTP

Server
HTTP

Client

Network

Element

Network

Element

Bottleneck

Figure 1. Network topology

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

B
it

ra
te

 (
k
b
p
s)

Segment Index

Video Rate Throughput

Figure 2. Response of the proposed scheme to small drop in throughput

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

B
it

ra
te

 (
k
b

p
s)

Segment Index

Proposed Scheme QAAD AAAS Throughput

Figure 3. Comparison of the schemes in response to large throughput

fluctuation

0

500

1000

1500

2000

2500

3000

3500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

B
it

ra
te

 (
k
b
p
s)

Segment Index

Proposed Scheme QAAD AAAS Throughput

Figure 4. Comparison of the schemes in response to highly variable

available bandwidth

Figure 2 shows the response of the proposed scheme to

short term throughput fluctuations. It shows that the

proposed scheme is stable in the face of short term
throughput fluctuations while maintaining a high video rate.

Figure 3 shows that the proposed scheme does not vary
the video rate quickly as it maintains video rate at the
expense of drop in buffer level below Bk(i-1). The motivation
behind maintaining the video rate at the expense of drop in
buffer level is that the objective of ABR algorithm is not to
keep the buffer full but to provide better user experience.
AAAS scheme shows a stable response to the throughput
fluctuations but stays at a lower video rate. QAAD scheme
varies the video rate as the throughput fluctuates in order to
avoid buffer underflow.

Figure 4 shows that the proposed scheme tries to
maintain the higher video rate but reacts swiftly to large drop
in throughput to avoid any playback interruption. The AAAS
scheme is the most conservative of all the schemes. The
reason is that it waits for the playback buffer to cross a
predefined threshold before stepping up or down the video
rate. The proposed scheme achieves an average of video rate
of 350kbps higher than AAAS. QAAD has slightly higher
video rate than the proposed scheme but at the expense of
twice the number video rate switches which greatly degrades
the user experience.

V. CONCLUSION AND FUTURE WORK

Video rate adaptation techniques are used to adapt the
quality of the video to the varying network resources of the
computer network. In this paper, we proposed an adaptive
bitrate streaming algorithm to improve the viewing
experience of the multimedia streaming applications. The
proposed algorithm achieves high video rate and minimizes
the frequency of changes in video quality while preventing
interruption in playback to guarantee QoE. In this paper, we
consider a single client scenario. For the future work, we
plan to extend our algorithm to a multi-user scenario where
multiple clients share the bottleneck.

ACKNOWLEDGMENT

This work was supported by ICT R&D program of

MSIP/IITP. [R0101-16-293, Development of Object-based

Knowledge Convergence Service Platform using Image

Recognition in Broadcasting Contents]

 REFERENCES

[1] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A.
Ganjam, J. Zhan, and H. Zhang, "Understanding the impact of
video quality on user engagement," ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, Sep. 2011,
pp. 362-373.

[2] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen,
"Flicker effects in adaptive video streaming to handheld
devices," Proc. of ACM International Conference on
Multimedia, Feb. 2011, pp. 463-472.

[3] T. C. Thang, Q. D. Ho, J. W. Kang, and A. T. Pham,
“Adaptive streaming of audiovisual content using MPEG
DASH,” IEEE Transactions on Consumer Electronics, vol. 58,
no. 1, Feb. 2012, pp. 78-85.

[4] T. Y. Huang, N. Handigol, B. Heller, N. McKeown, and R.
Johari, "Confused, timid, and unstable: picking a video

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

streaming rate is hard," Proc. of ACM Conference on Internet
Measurement, Nov. 2012, pp. 225-238.

[5] S. Akhshabi, A. C. Begen, and C. Dovrolis, "An experimental
evaluation of rate-adaptation algorithms in adaptive streaming
over HTTP," Proc. of ACM Conference on Multimedia
Systems, Feb. 2011, pp. 157-168.

[6] T. C. Thang, Q. D. Ho, J. W. Kang, and A. T. Pham,
“Adaptive streaming of audiovisual content using MPEG
DASH,” IEEE Transactions on Consumer Electronics, vol. 58,
no. 1, Feb. 2012, pp. 78-85.

[7] C. Liu, I. Bouazizi, and M. Gabbouj, "Rate adaptation for
adaptive HTTP streaming," Proc. of the ACM Conference on
Multimedia Systems, Feb. 2011, pp. 169-174.

[8] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz,
"Adaptation algorithm for adaptive streaming over
HTTP," Proc. of the IEEE Packet Video Workshop, May.
2012, pp. 173-178.

[9] D. Suh, I. Jang, and S. Pack, "QoE-enhanced adaptation
algorithm over DASH for multimedia streaming," Proc. of

IEEE Conference on Information Networking, Feb. 2014, pp.
497-501.

[10] W. Rahman and K. Chung, “ Buffer-based adaptive bitrate
algorithm for streaming over HTTP,” KSII Transactions on
Internet and Information Systems, vol. 9, no. 11, Nov. 2015,
pp. 4585-4622.

[11] T. Huang, R. Johari, and N. McKeown, "Downtown abbey
without the hiccups: Buffer-based rate adaptation for http
video streaming," Proc. of ACM SIGCOMM workshop on
Future Human-centric Multimedia Networking, Aug. 2013 ,
pp. 9-14.

[12] J. R. McGinley, “McGinley Dynamics,” Market Technicians
Association Journal, issue 48, 1997, pp. 15-18.

[13] P. Juluri, V. Tamarapalli, and D. Medhi, "SARA: Segment
aware rate adaptation algorithm for dynamic adaptive
streaming over HTTP," Proc. of IEEE International
Conference on Communication Workshop, June. 2015, pp.
1765-1770.

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

