
An Automated Approach for Selecting Web Services

Alysson Alves, Gledson Elias

Informatics Center

Federal University of Paraíba

João Pessoa, Brazil

e-mail: a.alvesdl@gmail.com, gledson@ci.ufpb.br

Abstract—The task of selecting web services is one of the main

challenges for successfully exploring the Service-Oriented

Architecture (SOA) approach in software development

processes. Whereas the availability of web services tends to

increase rapidly in the software industry, it is impractical to

adopt ad-hoc manual approaches for selecting web services.

Thus, considering a very large and complex search space, it is

required an automated approach for selecting web services. In

such a direction, exploring Search Based Software Engineering

(SBSE) techniques, this paper proposes an automated approach

for selecting web services, whose optimization strategy is based

on functional and structural metrics that evaluate the

functionalities provided by candidate web services, as well as

their dependencies in the architectural level. As main

contribution, experimental results show that the proposed

approach represents an extremely complex problem in a

systematic and structured way, discovering good-enough or
even optimal solutions among the candidate web services.

Keywords-Web Services; Service-Oriented Architecture;

Search Based Software Engineering.

I. INTRODUCTION

The advancements in software engineering approaches
have contributed for increasing productivity in software
development processes [1]. As a promising approach,
software reuse has the potential to reduce development time,
cost and risk during the development of a software product
[2]. In such a context, Service-Oriented Architecture (SOA)
has emerged as one of the main software reuse approaches, in
which software systems can be developed reusing services
available in the internet. Note that, SOA is an architectural
style for building software systems, while Web Services (WS)
are the preferred standards-based way to realize SOA [3].

Ideally, web services are perfectly connected and
integrated without additional adaptation efforts for composing
a software system or even a new web service. However, in
practice, web services can be developed by different software
providers, and, generally, such services can only be integrated
with additional adaptation efforts for resolving
incompatibilities among their required and provided
functionalities [4]. As a consequence, such incompatibility
issues must be already considered during the selection of the
candidate web services, trying to choose more compatible
candidates as a mean to reduce adaptation efforts, and
consequently integration time and cost.

The selection of web services has proven to be a phase of
major complexity in SOA-based development processes.

Most processes for selecting web services take into account
only quality attributes or non-functional requirements of the
candidate web services, such as availability, reliability,
response time and price. However, functional requirements
also have significant impact in the quality of a SOA-based
software product. Indeed, functional requirements make
possible to assess the effectiveness of the integration of all
candidate web services, minimizing integration mismatch
issues. The higher the integration effectiveness, the lower the
amount of incompatibilities that arise from the integration,
and consequently the lower the adaptation efforts for
integrating candidate web services.

Therefore, the selection of web services for a given
architectural specification is a pivotal task that is more
complex than traditional products selection [5]. Besides,
taking into account that the availability of web services tends
to rapidly increase in software industry, it is impracticable the
adoption of ad-hoc manual approaches for selecting web
services. In fact, considering a SOA-based architectural
specification, several candidate implementations can exist for
each web service specification included in the architectural
specification. The amount of possible solutions creates a very
large search space with exponential complexity, in which the
base is the average number of candidate implementations and
the exponent is the number of web service specifications
included in the architectural specification.

As a consequence, considering a very large and complex
search space, it is required an automated approach for
selecting web services. Even adopting an automated approach,
the search space is typically too large to be explored
exhaustively, suggesting the adoption of metaheuristic search
techniques explored in Search Based Software Engineering
(SBSE), in which software engineering problems are
reformulated as optimization problems that can be tackled
with metaheuristics, such as Genetic Algorithms [6].

In such a direction, exploring SBSE techniques, this paper
proposes an automated approach for selecting web services, in
which from a SOA-based architectural specification, web
service specifications are contrasted against their
correspondent candidate implementations, which are selected
by evaluating the effectiveness of their integration,
minimizing integration mismatch issues, and consequently,
reducing adaptation efforts for integrating them. In the
proposed approach, the optimization strategy is based on
functional and structural metrics that evaluate the
functionalities provided by candidate web services, as well as
their dependencies in the architectural level. As main

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

contribution, experimental results show that the proposed
approach represents an extremely complex problem in a
systematic and structured way, discovering good-enough or
even optimal solutions among the candidate web services.

The remainder of this paper is structured as follows.
Section II introduces the main concepts and fundamentals
related to the approach proposed herein. Then, Section III
briefly discusses related work, evincing the contribution of the
proposed approach. In Section IV, the proposed approach is
presented, defining the metrics adopted in the optimization
strategy. Thereafter, Section V presents an experimental
evaluation in three case studies. Finally, concluding remarks
and future work are discussed in Section VI.

II. CONCEPTS AND FUNDAMENTALS

According the OASIS consortium, SOA is a paradigm for
organizing and utilizing distributed services that may be under
the control of different ownership domains [2]. SOA has
emerged as a means to promote software reuse, in which
software systems can be developed reusing services available
in the internet. On the one hand, SOA is an architectural style
for building software systems, which can be implemented
using different strategies or technologies. On the other hand,
Web Services are the preferred standards-based way to realize
SOA. Thus, while SOA is conceptual and abstract, WS-based
architectures and technologies are specific and concrete.

Web Services technologies are built on top of XML based
open standards, which abstract details related to network
protocols, operating systems and programming languages.
Among such standards, Web Services Description Language
(WSDL) has a fundamental role in the context of the approach
proposed herein. WSDL is an interface definition language
that is used for describing the functionality offered by a web
service, including the provided operations and their input and
output parameters. Thus, its purpose is roughly similar to that
of a method signature in a programming language.

SOA concepts and WS-based architectures and
technologies support intra and inter-provider service
integration. However, as already discussed, integration
mismatch issues can arise and must be treated adopting
automated approaches during the selection of the candidate
web services. In such a context, considering a very large and
complex search space, automated approaches for selecting
web services have been proposed in the literature adopting
metaheuristic search techniques explored in the SBSE field.

According Harman and Jones [6], in SBSE, software
engineering problems are reformulated as optimization
problems that can be tackled with metaheuristics, such as
Genetic Algorithms and Simulated Annealing, facilitating
automated and semi-automated solutions in situations typified
by large complex problem spaces with multiple competing
and conflicting objectives. Complementarily, in [7], Harman
argues that software engineering provides the ideal set of
application problems for which SBSE techniques are
supremely well suited, once the virtual nature of software
makes it ideal for search-based optimization.

In order to reformulate a given software engineering
problem as an optimization problem, SBSE-based approaches
ought to define: (i) a representation of the problem, which

must be amenable to symbolic manipulation; (ii) a fitness
function defined in terms of the adopted representation; and
(iii) a set of manipulation operators, which are applied in the
search algorithm for transforming candidate solutions.

The fitness function is the characterization of what is
considered to be a good solution, imposing an ordinal scale of
measurement upon candidate solutions. By contrasting the
value of the fitness function for each candidate solution,
metaheuristic search techniques can find good-enough or even
optimal solutions. Although eventually possible, search
techniques do not guarantee to find the optimal solution.
Besides, due to their non-determinist aspects, they can find
different solutions in different executions.

In the proposed approach, the adopted search technique is
genetic algorithms, which is a class of evolutionary algorithm
that mimics the biological natural evolution process as a
problem-solving strategy, including operators such as
crossover, mutation and selection [8]. In summary, a set of
candidate solutions, represented as chromosomes, are
quantitatively evaluated using the fitness function. Then,
promising candidates are kept and allowed to reproduce using
genetic operators, creating the next generation of candidates.
The process repeats during several generations, making them
into better, more complete or more efficient solutions.

III. RELATED WORK

Selection of web services is a key research field in SOA-
based development processes. As a consequence, it is possible
to find several proposals in the literature
[5][9][10][11][12][13], proving different strategies for
selecting web services in more effective ways in order to
reduce development time and cost. Despite their pivotal
contributions, in general, such available proposals deal with
criteria related to non-functional requirements only, more
specifically those related to Quality of Service (QoS),
including availability, reliability, execution cost and time,
reputation, location and price. Few proposals can be found
that deal with criteria directly related to functional
requirements and structural properties, which clearly is the
main contribution of the approach proposed herein, as will
become clear in the following.

Briefly, this section presents and discuss six approaches
identified in the literature which are related to our work to
some extent. In [9], Fetthallah and coworkers propose a QoS
aware service selection approach based on genetic algorithm.
The Fetthallah’s proposal has the aim of optimizing the
composition of web services based on criteria, such as
response time, availability, reliability, price and reputation.
Lifeng and colleagues [10] define a penalty-based genetic
algorithm for QoS-aware web service composition with
service dependencies and conflicts. The Lifeng’s proposal
also considers QoS criteria only, such as response time, price,
reputation, availability and reliability.

Vescan [11] presents an evolutionary approach for
component selection. Based on genetic algorithms, it adopts
QoS-aware metrics such as cost and reusability, but also
includes a functional metric. Although adopts a functional
metric, unlike the proposed approach, it does not try to
identify mismatch issues among dependent components, but

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

tries only measuring the ratio of functionalities provided by
each component in relation to functionalities required in the
whole system. Clearly, the functional and structural metrics
adopted in the proposed approach are much more precise in
evaluating mismatch issues.

Adopting similar QoS-aware criteria, Maamar and his
fellows [12] have discussed the selection of web services for
composition based on the criteria of execution cost, execution
time and location of provider hosts. Besides, Tang and Cheng
[13] analyzed the optimal location and pricing of web services
from the view of web services intermediary, whose criteria
can contribute to companies for making selection decisions.

Lastly, Feng and associates [5] examine an approach for
web service selection based in six criteria (functional, price,
location, integration and reputation). The functional criterion
takes a rough-grain keyword-based search in a service
repository considering required functionalities that the web
services must fulfill. In contrast, instead of evaluating
keywords related to functional requirements, the proposed
approach evaluates the signature of operations provided and
required by candidate web services, which represents a much
more precise strategy than simple keyword-based search.

IV. PROPOSED APPROACH

By exploring SBSE techniques, the proposed approach has
the goal of automating the web service selection process. In
the proposed approach, the metaheuristic search algorithm is
based on functional and structural metrics that evaluate the
functionalities provided by candidate web services, as well as
their dependencies in the architectural level. Together, both
metrics evaluates the integration effectiveness among
candidate web services. As a result, it is expected to find a
near optimal architectural configuration, which minimizes
integration mismatch issues, and consequently, reduces
adaptation efforts for integrating its constituting web services.
Figure 1 illustrates the stages of the proposed approach.

WSDL
Descriptions

Identifying

Functionalities

and Dependencies

Selecting

Web Services

Integrating

Web Services

Sequence
Diagrams

Architecture
Specification

Service
RepositoryFunctionalities and

Dependencies

Architecture
Configurations

Tuned
Search
Parameters

Figure 1. Stages of the Proposed Approach

The first stage, called Identifying Functionalities and
Dependencies, has the purpose of identifying provided and
required functionalities, as well as services dependencies. To
do that, the first stage adopts as inputs three types of artifacts:
the architecture specification, WSDL descriptions and
sequence diagrams. As explained later, all of them are
produced during the architectural design phase.

Upon identifying functionalities and dependencies, the
second stage, called Selecting Web Services, represents the

core of the proposed approach in which candidate web
services are evaluated and then selected for composing near
optimal architectural configurations that reduce adaptation
efforts for integrating constituting web services. Note that
several architectural configurations can be recommended,
allowing the software development team to choose one that
best meets the needs of the project and organization.

After selecting web services, in the third stage, called
Integrating Software System, the software development team
can integrate and adapt the set of web services included in the
selected architectural configuration.

In this paper, the focus is on the first two stages of the
proposed approach. Due to that, the next subsection
introduces some notes about the identification of
functionalities and dependencies. Then, in a succeeding
subsection, the mathematical representations of the functional
and structural metrics are presented in details.

A. Functionalities and Dependencies

Considering a SOA-based software development process,
the architectural design phase must come before the service
selection phase. In the architectural design phase, the software
architect ought to identify the functionalities provided and
required by each specified service, together with their
dependencies. Such functionalities are specified as interfaces.
When adopting Web Services technologies, interface
specifications are explicitly described using WSDL, allowing
to indicate the set of operations provided by each interface for
each specified web service. Thus, in the proposed approach,
provided functionalities are effortlessly extracted from WSDL
descriptions evaluating a set of XML elements, including
portType, operation, input, output and message.

Differently, required functionalities and dependencies
cannot be explicitly represented in WSDL specifications.
Instead, required functionalities and dependencies can be
implicitly modeled using sequence diagrams associated with
each operation provided by each specified web service. Thus,
in the proposed approach, required functionalities and
consequently service dependencies are extracted in a more
elaborated way, evaluating sequence diagrams that show how
web services collaborate and work together, revealing the set
of operations required by one web service but provided by
other ones. For instance, in Figure 2, it is possible to note that
the getPackage operation, provided by the TravelSrv service,
requires the getFlight operation, provided by the FlightSrv
service. As a conclusion, the TravelSrv service requires the
getFlight operation. Besides, the TravelSrv service depends
on the FlightSrv service.

FlightSrvTravelSrv

1: getPackage()

User

2: getFlight()

3: return flight info
4: return package info

Figure 2. Service Dependency in a Sequence Diagram

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

After identifying provided and required operations, it is
possible to generate an architecture specification that shows
all constituting web services together with their dependencies
(Figure 3). To do that, provided and required operations are
respectively organized in provided and required interfaces,
making the architecture specification to appear like those
adopted in component-based development processes [14]. As
can be noted, each service dependency is characterized by
connecting the related services through their provided and
required interfaces.

CancelReservation

FlightSrv

FlightInfo

HotelSrv

CarSrv

RideTourSrv

TravelSrv

HotelInfo

CarInfo

RideTourInfo

ConsultPrice

MakeReservation

MakePurchage

CancelPurchase

Figure 3. Architectural View for Service Dependencies

B. Functional and Structural Metrics

As already discussed, the proposed approach selects
candidate web services by evaluating integration effectiveness
through functional and structural metrics that evaluate the
functionalities associated with candidate web services, as well
as their dependencies. On the one hand, the structural metric
evaluates how effective is the link between each pair of
dependent services. On the other hand, the functional metric
evaluates how similar are the specification and the
implementation of web services.

In order to measure the structural metric, it is necessary to
evaluate how effective is the integration between the required
interface of the requester service and the provided interface of
the provider service. Figure 4 characterizes a link, including
associated services and interfaces, which together define all
entities to be considered in measuring the structural metric.

Linki

Service

Specification A PSjRSk

Service

Specification B

Service

Implementation A

PIjRIk Service

Implementation B

Figure 4. Characterization of a Link

As can be observed, each link is characterized in terms of
two interfaces in the architecture specification and two
interfaces in the candidate architecture configuration:
RSi - required interface of the requester service specification;
PSi - provided interface of the provider service specification;
RIi - required interface of the requester service
implementation; and PIi - provided interface of the provider
service implementation.

Taking into account such interfaces, it is important to note
that the greater the number of operations in common in such
interfaces the better the integration effectiveness.
Consequently, as indicated in (1), the value of the structural

metric for a link can be defined by the relation between the
number of operations in common in the related interfaces and
the total number of operations in the required interfaces of
both the requester service specification and implementation.
As defined, the value of the structural metric for a link is in
the interval [0, 1], where the closer to 1 is the value, the better
is the integration effectiveness, and so, the lower is the
adaptation effort.

 �� =	 |���		∩	��	�	∩	��		∩	�	�||���		∪	�	�| (1)

As can be observed in (1), the denominator includes
operations in required interfaces only. The reason for that is
the premise adopted in the proposed approach which states the
following: superfluous operations in provided interfaces do
not represent extra adaptation effort. In other words, non-
used provided operations in the provider service do not
impose adaptation effort in the requester service.

Now, considering all links in the architecture
specification, as indicated in (2), the value of the structural
metric for the whole architecture is defined by the relation
between the total sum of the structural metric for each link and
the total number of links in the architecture (L). Thus, the
value of the structural metric for the architecture is also
between [0, 1], where the closer to 1 the value, the better the
candidate architectural configuration.

 �� 	= 	∑ �	����� (2)

Unlike the structural metric that evaluates dependencies
among services, the functional metric contrasts web service
specifications against their correspondent candidate
implementations, evaluating their similarity in terms of
provided and required interfaces. In other words, a candidate
service implementation imposes a lesser amount of adaptation
effort when its provided and required interfaces are more
similar in relation to the corresponding interfaces in the
service specification.

In order to measure the functional metric for a given
service, as illustrated in Figure 5, it is necessary to evaluate
the functional metric for each provided and required interface
of the service.

Service

Specification

Service

Implementation

Spj Srk

PSj

PIj

RSk

RIk
Figure 5. Characterization of Similarity

Considering correspondent provided interfaces in the
service specification and implementation, it is important to
note that the greater the number of operations in common in
such interfaces the better the integration effectiveness. Thus,
as indicated in (3), the value of the functional metric for a
given provided interface can be calculated by the relation

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

between the number of operations in common in the provided
interfaces in the service specification and implementation
divided by the number of operations in the provided interface
in the service specification. Here, once again, the proposed
approach assumes that superfluous operations in provided
interfaces do not represent extra adaptation effort, and so, the
denominator in (3) does not consider operations in the
provided interface in the service implementation.

 ��� = ���� 	∩	�������� (3)

Now, considering correspondent required interfaces in the
service specification and implementation, the greater the
number of operations in common in such interfaces the better
the integration effectiveness. Thus, as indicated in (4), the
value of the functional metric for a given required interface
can be calculated by the relation between the number of
operations in common in the required interfaces divided by the
total number of operations in such interfaces conjointly.

 ��� = |���	∩	��||���	∪	��| (4)

Equations (3) and (4) evaluate individually each provided
and requited interface in a given service. As defined, the

values of the functional metrics ��� and ��� are also in the

interval [0, 1], where the closer to 1 the value, the better the
provided or required interface.

Now, it is needed to derive the functional metric for the
service as a whole, revealing how similar are provided and
required operations in the service specification and
implementation. Thus, considering all provided and required
interfaces of a given service specification, as indicated in (5),
the value of the functional metric for the service is defined by
the relation in which the numerator is the total sum of the
functional metric for each required and provided interface of
the service, while the denominator is the total number of
required and provided interfaces of the service. As defined,
the value of the functional metric for a given service is also in
the interval [0, 1], where the closer to 1 the value, the better
the candidate web service.

 �� =	∑ ��	|��	∪	� |�!" 	#	∑ �$�|%�|�!" 	
|��	∪	�|	#	|��| (5)

As can be seen in (5), in terms of required interfaces, the
functional metric comprises the number of required interfaces
in both the service specification and implementation
conjointly (|&� ∪ &'|). However, in terms of provided
interfaces, the functional metric for the service comprises the
number of provided interfaces in the service specification only
(|(�|). Note that, once more, it is supposed that superfluous
provided interfaces in the service implementation do not
represent extra adaptation effort, and so, the terms in (5) do
not account for provided interfaces in the service
implementation ((').

At this point, considering all candidate services in the
architecture configuration, as indicated in (6), the value of the

functional metric for the whole architecture is defined by the
relation between the total sum of the functional metric for each
service and the total number of services in the architecture (S).
Thus, the value of the structural metric for the architecture is
also between [0, 1], where the closer to 1 the value, the better
the candidate architectural configuration.

)� 	= 	∑ �	����� (6)

Finally, functional and structural metrics should be
combined together in order to derive the fitness function
adopted in the metaheuristic search technique, more
specifically a genetic algorithm. In such a direction, the fitness
function is defined in (7) as a normalized weighted mean of
the functional and structural metrics, in which the terms *+
and *, represent their respective normalized weights. As can
be noticed, the value of the fitness function is in the interval
[0, 1], where the closer to 1 the value, the better the candidate
architectural configuration in terms of adaptation effort.

 -� =	*+ .)� +	*, . �� 0 0 ≤ *+ 	≤ 10 ≤ *, 	≤ 1*+ +*, = 1 (7)

V. EXPERIMENTAL EVALUATION

In order to conduct an experimental evaluation, the
proposed approach was implemented in the Java platform. In
such experiments, the genetic algorithm is parametrized as
follows. For each generation, the population is equal to 300
candidate architecture configurations. The stopping criterion
is reached when the highest ranking solution's fitness becomes
stable in a plateau during 25 successive iterations and no
longer produce better results. The selection of candidate
solutions to breed a new generation is based on the tournament
method. For breeding a next generation, the uniform crossover
method is adopted, together with a mutation ratio of 20%.
Finally, the normalized weights *+ and *4 included in the
fitness function adopt both the value 0,5, representing an equal
contribution for the functional and structural metrics.

The experimental evaluation was performed using a
typical architecture specification composed of five web
service specifications and six dependencies among them.
Each web service specification has 30 candidate
implementations, generating a search space size equal to 305.
The evaluation takes place in three different scenarios,
varying the number of specifications that have perfect
implementations: (i) all specifications with perfect candidates;
(ii) three specifications with perfect candidates; and (iii)
absence of perfect candidates. Such scenarios make possible
to evaluate the proposed approach in the presence or absence
of perfect candidates, including something in the middle.

For each scenario, the proposed approach was compared
against the exhaustive search and the random search. In such
a comparison, the proposed approach and the random search
have been executed 1000 times, and the mean value of the
highest ranking solution's fitness is computed. Besides, the
exhaustive search has been executed just one time for

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

discovering the optimal solution. As show in Figure 6,
experimental results reveal that, in all scenarios, the proposed
approach has always found the optimal solution, which is
confirmed by the exhaustive search. Due to that, in such
experiments, standards deviations are equal to zero, and so,
confidence intervals are not estimated.

Figure 6. Experimental Results

Besides, in relation to random searches, in the first
scenario, in which all specifications have perfect candidates,
the solutions recommended by the proposed approach are
around 33,92% more efficient than those recommended by
random searches, according to the fitness function in (7). In
the second scenario, in which three specifications have perfect
candidates, the efficiency of the proposed approach in relation
to random searches is reduced to approximately 28,04%.
Finally, in the last scenario, in which there is an absence of
perfect candidates, the efficiency of the proposed approach
becomes stable around 30,79%. It is important to stress that,
in the best cases, the efficiency ratios turned to 50,56%,
42,85% and 51,35%, respectively.

As another interesting outcome, it must be highlighted the
low processing cost of the proposed approach, which can be
perceived by its fast convergence around 0,3 seconds, against
the exhaustive search that takes around 300 seconds. In all
scenarios, the genetic algorithm has converged on average
between 5 and 7 generations, ranging from 2 generations in
the best cases to 19 generations in the worst cases.

VI. CONCLUDING REMARKS

Considering the relevance of web service selection in the
context of SOA-based software development, this paper
represents an interesting contribution by presenting an
automated approach based on functional and structural
metrics. The approach provides measures that evaluate the
functionalities provided by candidate web services, as well as
their dependencies at the architectural level. Besides, the
approach proposes a heuristic selection algorithm based on
Genetic Algorithms, which has low processing cost and
mitigates the chances of suggesting a local optimum.

Despite their key contributions, previous work has largely
been concerned with non-functional requirements.
Differently, the proposed approach deals with functional and
structural properties, which clearly represents its main
contribution. As an additional contribution, the proposed
approach represents an extremely complex problem in a
systematic and structured way, discovering good-enough or
even optimal solutions among candidate web services.

Experimental outcomes demonstrate the effectiveness of
the proposed approach not only in terms of the quality of the
recommend solutions, but also in terms of low processing cost
in all evaluated scenarios. Despite contributions and benefits,
as future work, the proposed approach needs to be evaluated
in more complex scenarios, composed by a large number of
highly interconnected services. It is important to note that, in
such future experiments, the expectation is to find more
interesting results, once that, generally, metaheuristic-based
approaches can find better results in contrast with random
search in scenarios with large search spaces.

ACKNOWLEDGMENT

This work was supported by the National Institute of
Science and Technology for Software Engineering (INES –
www.ines.org.br), funded by CNPq, grants 573964/2008-4.

REFERENCES

[1] I. Sommerville, "Software engineering", 9th edition, Addison-
Wesley, 2011.

[2] OASIS, “Reference model for service oriented architecture
1.0”, Committee Specification 1, 2006.

[3] Q. H. Mahmoud, “A service-oriented architecture (SOA) and
web services: the road to enterprise application integration
(EAI)”, 2005. http://www.oracle.com/ technetwork/articles/
javase/soa-142870.html [retrieved: May, 2016].

[4] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky,
and M. Tivoli, “Towards an engineering approach to
component adaptation”, Springer-Verlang. 2006.

[5] G. Feng, C. Wang, and H. Li, “Web services based cross-
organizational business process management”, 7th Asia-
Pacific Web Conference, 2005, pp. 548-559.

[6] M. Harman and B. F. Jones, “Search-based software
engineering”, Information and Software Technology, vol. 43,
2001, pp. 833-839.

[7] M. Harman, “Why the virtual nature of software makes it ideal
for search based optimization”, 13th International Conference
on Fundamental Approaches to Software Engineering, 2010,
pp. 1-12.

[8] R. Linden, “Genetic algorithms: an important tool for
computational intelligence”, 2nd edition, Brasport, Rio de
Janeiro, 2008 (in portuguese).

[9] H. Fetthallah, M. A. Chikh, and D. Y. Mohammed, "QoS-
aware service selection based on genetic algorithm", 3rd
International Conference on Computer Science and its
Applications, 2011, pp. 291-300.

[10] A. Lifeng and M. Tang, "A penalty-based genetic algorithm for
QoS-aware web service composition with inter-service
dependencies and conflicts", 3rd International Conference on
Computational Intelligence for Modelling Control and
Automation, 2008, pp. 738-743.

[11] A. Vescan, “A metrics-based evolutionary approach for the
component selection problem”, 11th International Conference
on Computer Modeling and Simulation, 2009, pp. 83-88.

[12] Z. Maamar, Q. Z. Sheng, and B. Benatallah, “Selection of web
services for composition using location of provider hosts
criterion”, CAiSE Workshops, 2003, pp. 67-76.

[13] Q. C. Tang and H. K. Cheng, “Optimal location and pricing of
web services intermediary”, Decision Support Systems,
vol. 40, issue 1, 2005, pp. 129-141.

[14] J. Cheesman and J. Daniels, "UML components: a simple
process for specifying component-based software", Addison-
Wesley, 2001.

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

