
Open Source Tool for Networks Management Communication

Nuno Tiago Louro Simões
School of Technology and Management

Polytechnic Institute of Leiria
Leiria, Portugal

E-mail: 2130967@my.ipleiria.pt

Carlos Manuel da Silva Rabadão
Research Center for Informatics and Communications

Polytechnic Institute of Leiria
Leiria, Portugal

E-mail: carlos.rabadao@ipleiria.pt

Abstract—Considering the complexity of the networks, one of
the solutions for this complexity could be to centralize its
configuration. Thus the Software-Defined Networking (SDN)
concept may be an important solution. This paper suggests the
implementation of a tool to support the development and testing
of networks and services before they are put into production.
The use of a tool that simplifies the configuration of a network
service makes the networks and services to be less susceptible to
errors and failures by those who set them up, thus allowing
telecom operators, among others, to be able to create new
services, improve the monitorization of their human resources
and, above all, improve their financial results. In the end,
success will be achieved because with a simple interaction and
basic knowledge we are able to manage network services.

Keywords - SDN; network services; network programming;
NSO.

I. INTRODUCTION
The number of electronic devices with Internet access has

been increasing in recent years [1]. Nowadays, it is even
possible to have Internet access with a simple watch. With the
appearance of these devices along with the advances in
Information technology (IT), telecom operators need to
introduce new features to capture the customer’s attention.
One of these innovations could be the creation of new services
in the network. One of the problems that the creation of new
services currently faces is the congestion that the network has.
This makes the configuration of networks complex and
increases the difficulty in creating new services. Nevertheless,
operators have been able to manage both the network and the
services, but it is natural that they are susceptible to failure by
those who manage and implement them. This process is
typically done by a human. Most failures stem from several
factors, including pressure caused by the need to put new
services quickly on the market or by the routine repetition of
processes that limit the potential of the network [2].

We can hardly develop a perfect software immune to
failures and errors, but there are methods that can be used to
try to prevent them, for example, the use of scripts. Scripts
allow us to automate some tasks. As these scripts are
developed by humans, they will be susceptible to failures and
errors, even if they are unintentional.

Taking into account the foregoing considerations, the
scientific community has been looking for new approaches
that can help to reduce limitations. This area is explained in
the next sections. Considering the increasing number of
people using devices with internet access and the consequent

increase of the network complexity, we are motivated to
develop an application to help in the service and network
management so that it can be innovated and improved. The
aim of this paper is to present the development of a tool, based
on the concept of SDN, which allows the testing of a network
and the implementation of services before they are produced.

Concerning the management of services, one of the
approaches associated to it is the SDN concept. SDN is the
basis of this work, which will be introduced in Section II. In
this section we will present some SDN solutions existing in
the market, as well as some of the technologies used. In
Section III, we will present the proposed architecture that
supports this work. The architecture contributes to the
mitigation of previously presented problems. In Section IV,
we will explain the implementation of our proposal. Finally,
in the last section, we will present the conclusions and
suggestions to work.

II. SOFTWARE-DEFINED NETWORKING
This section initially presents some concepts for a better

understanding of the article. After, we will introduce some
commercial SDN solutions that exist in the market and some
technologies used for the implementation of the tool created.

A. Background
According to the Open Networking Foundation, the SDN

is the physical separation of the control plane and the
forwarding plane of the network [3]. With SDN concept, the
networks will be configured and managed in a centralized way
[4], facilitating the development of new standards and
services. The SDN concept emerged at the same time as other
technological solutions, from which the need motivated by
complexity in the network arises. These needs combined with
the fact that operators need to put more services in the market,
as soon as possible, turn the process more complex and more
likely to fail.

 The purpose of SDN is to make the management of the
network easier and transform the network programmable [5].
Thus, it simplifies the understanding of the network, which
means that operators can do their job quicker and easier,
according to the time-to-market’s factor. Consequently, the
operators may have good financial profits, which is an
advantage.

Now we will present some of the existing SDN solutions:
Virtualized Services Controller (VSC), by the internal
company of Alcatel-Lucent, the Nuage Networks [6] [7] and

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

Network Control System (NCS) [8] by Tail-f, currently owned
by Cisco portfolio.

B. SDN solutions
In this subsection we will make a brief analysis of each

SDN solutions studied.

1) Virtualized Services Controller (VSC)
VSC, based on Alcatel-Lucent Service Router OS [9], is

the SDN solution control panel of Nuage Networks and the
most powerful SDN controller in the industry [7] [10]. VSC
works in similar way to the network control plane for the data
center, because it has a complete view of the network and its
services. VSC automatically discovers network parameters,
whatever type they are: Layer 2 (switching), Layer 3 (routing),
Quality of Service (QoS) or security rules. In the VSC, the
connection between the controller and the network routing is
established through the communication protocol - OpenFlow
[11]. This protocol allows the communication between the
service controller and the network layer where it should find
the hardware, i.e., the hypervisor and vSwitch [12].

2) Network Control System (NCS)

The NCS is the solution to control the network established
by Tail-f. Later Cisco acquired Tail-f Company and the name
of the SDN solution set was changed to “Cisco Network
Service Orchestrator (NSO) enabled by Tail-f” [8]. The NSO
is nothing more than a transparent layer, or interface, for those
who configure the network. The NSO was meant to facilitate
the creation and configuration of network services [13]. This
solution is independent of brands and network equipment
manufacturers, whether it is real or virtual. This SDN solution
can be used to interact with both users/network administrators
as well as with management applications that are already used
in a network.

To sum up, all SDN solutions up to now are more or less
similar. They are all are composed by three parts:
implementation, monitoring and infrastructure/network
equipment. This structure is more or less predictable given the
SDN architecture.

C. Technologies used
This subsection will refer briefly to some technologies

used or associated with the development of the proposed
solution and also related to SDN. These technologies are:
YANG, extensible Markup Language (XML) and Network
Configuration Protocol (NETCONF).

1) YANG

The YANG is a data modelling language used for a data
state configuration model. This language is used by the
network configuration protocol - NETCONF - and is
published in the Request for Comments (RFC) 6020 of
September 2010. The YANG is related to the content and
operations in layers of NETCONF [14].

2) XML

The XML is used to describe data. This shape can be easily
used to read and write data. XML is adopted in many areas of

information technology, including networks. It can be
dynamic and it is very similar to the Hypertext Markup
Language (HTML). We can consider that the construction of
XML is done by blocks which are identified by tags [15].

3) NETCONF
The NETCONF is generically used to make the

management of network devices configuration and it is based
on the encoding in XML [16]. This protocol defines basic
operations that are equivalent to commands to be executed
from the Command-Line Interface (CLI). As in XML,
NETCONF also uses tags. One of the manufacturers that uses
NETCONF on its devices is Juniper Networks [17].

III. ARCHITECTURE PROPOSAL
In order to frame the solution/tool to propose, first we must

present a logical structure of the SDN and after we will present
the generic architecture of the solution developed.

The logical structure of the SDN, based on the same
technology architecture, has three main layers, displayed in
Figure 1 that are: Application Plane, Control Plane and Data
Plane.

Figure 1. Logical structure of SDN

Next we will explain each layer mentioned above [18]:
• Application Plane: it can refer to some net apps such

as orchestration applications, business applications
and SDN applications;

• Control Plane: it aims to implement all coordination
protocols that are necessary for the proper functioning
of the Data Plane;

• Data Plane: it serves to analyze the headers of
incoming packets and forward these packets to their
final destination, depending on the routing and
switching tables.

After presenting generically the SDN architecture, it is
time to present an approach to SDN, more dedicated to
network management, adopted to implement this work. The
architecture shown in Figure 2 is quite simple, as it is divided
into three layers: user, orchestration of the network and,
finally, the network itself.

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

Figure 2. Generic architecture implementation performed

The architecture consists of three layers, described below:
• Management Application or User: this layer, as the

name implies, is where the user, who will interact
with the network, has the primary role and where we
think he will spend most of the time;

• Network Service Orchestration: this is the “smart”
layer of the presented architecture. In this layer the
entire process will be unfolded. The Network Service
Orchestration will interpret the user’s input and
transform it so that it can be applied to the network,
which is the next and last layer to be presented;

• Network devices: this last layer is the physical
infrastructure of the network. It is composed by the
core and the access network, where it intends to apply
the settings for network management and for the
creation of services.

After presenting the generic architecture of the solution
implemented, we will make a deeper analysis of the same.

A. Architecture used in the implementation
A more detailed architecture proposed for the

development of this work is shown in Figure 3.

Figure 3. Architecture used in the proposal

In this figure we can observe that from the starting point
(Network Engineer or User) to the end point (Network
Topology), the user only interacts with a WebUI to configure
the network mode as required. The WebUI is the point we have
recreated, being more intuitive, specific and simpler to use,
which is something new, compared to the existing tool. The
novelty consists in the communication between the NSO and
a web interface, as it is made through the Network-wide CLI
and, as we can observe in the figure, this communication cam
be bidirectional. The necessary mechanisms to convert the
high-level user-made settings must be previously configured
and implemented, allowing users with low technical level to
proceed with the configuration of the network and services.
Then the form communicates with the Network Service

Orchestrator through the implementation made in back-end of
WebUI and in command line. Note that this process is abstract
to the final user. It is in the stage of communication between
the NSO and the type of Network that all the fundamental
processes for the correct operation of this took are taken. The
NSO is divided into four parts (three layers and a part relating
to data storage) [13]:

• Service Manager: this is where the intelligence of the
NSO tool is. This layer enables the operator to
manage high-level aspects of the network that are not
supported by the devices that are directly connected
to it. The services should be defined previously. It is
from here that the management (creation, editing or
deletion) of network services will be made;

• Device Manager: its function is to manage the
configuration of transactional devices, supporting the
synchronization feature of bi-directionally settings
and refined changes in real time;

• Configuration Database (CDB): it is here that the
information on the device configurations is all stored,
so there is data synchronization. It is in the CDB that
the synchronization, consistency and reconciliation
with respect to the configuration between the services
and devices occurs;

• Network Element Drivers (NED): they are
responsible for the link between the NSO and network
devices. The NED uses the concept of atomicity, i.e.,
the execution of a command is either correct and runs,
or if a simple thing is wrong, nothing will be executed.
The NSO, according to the device we want to
configure, informs the device type (device-type) of
what to do, independently of the brand/device
manufacturer. The device interface is modeled on
files, using the YANG, and each file is modeled with
the controls - that can be updated – in the respective
device. The philosophy of the NED varies from
device to device. For Cisco and Alcatel, commands
are converted to CLI to run on the device terminal.
For the Juniper equipment, that already uses
NETCONF - based encoding in XML -, the
philosophy is different, i.e., not needing to convert
settings.

As it was said before, the communication between NSO
and the devices should be done by OpenFlow, NETCONF,
XML, CLI or any other. If we do a deeper analysis of the
communication, we will notice that the communication
between the NSO and the network equipments are the
responsibility of the NED or the OpenFlow controllers, as we
can see in [19] document. Note that this communication is
made by the NSO and it was not changed in the proposed tool.

We finally get to the network and the devices, which may
be of different brands and models. In this solution, the NSO
gets to know the equipment by means of the communication
Secure Shell (SSH) protocol.

After the presentation of the proposed tool architecture, we
will explain, in the next section, how it is implemented.

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

IV. PROTOTYPE
The implementation of this tool is based on the

architecture presented in Section III. In this section, we will
deepen the architecture used, namely the implementation
carried out and which ultimately resulted in the presentation
of a simple tool that makes the network services management.

A. Prototype implementation
As mentioned above, our aim is to develop an Open

Source tool where we can test the settings of a network and its
services. The network can be either real or virtual. The
concept behind the tool is SDN. With this kind of tool, the
entire configuration process is centralized and this same
configuration does not require in-depth knowledge of
computer networks. So we can simplify the configuration and
understand a network. From a purely visual point of view, the
developed tool is nothing more than a Graphical User
Interface (GUI) or WebUI. Next, we will explain the process
of implementing this tool. The solution developed is based
upon three main stages:

• Scenario/network topology – where the network
equipment is included;

• Development of the intermediate layer – a layer that
will make the connection between the configuration
and network equipment and which is transparent to
the user. The development basis was the use of the
platform “Cisco Network Service Orchestrator
enabled by Tail-f” and this is the platform that
connects the network topology to the graphical
interface. Cisco NSO is an orchestration technology
that is based on the SDN concept, since the
Orchestrator Apps are part of the Application Plane,
one of the layers that belong to SDN. This phase will
be the back-end for the user;

• Graphical User Interface - primary site of interaction
between the user and the network. Front-end for the
user.

The implementation of these three stages will be presented
in the following subsections.

1) Scenario/network topology
Initially a virtual Linux Ubuntu machine was created to

run the 14.4 version. In this machine a network was developed
on a network simulation software GNS3 [20], shown in Figure
4, where several different manufacturers were set, including
Cisco and Juniper.

In Cisco's routers they used the file “c3725-
adventerprisek9-mz.124-25d.bin” to virtualize the IOS. This
model was the only one to which we had access, although we
know that there are more recent models. As for Juniper, we
had to use a vSRX Open Virtual Application (OVA) image,
more specifically a 12.1X47-D15.4 version of JunOS vSRX.
The only settings made in this equipment were addressing,
routing, the Open Shortest Path First (OSPF) in this case, and
the communication protocol configuration used – SSH.

Figure 4. Network topology defined to test developed in GNS3

To bridge the gap between the topology developed and the
GUI we used, as mentioned above, the NSO solution that we
will explain in detailed in the next subsection.

2) Development of the intermediate layer
After the topology and configuration of the devices is

completed, we have defined some services to be implemented
and tested on the network. One of the objectives of this tool
was that, later, the communication services could be
configured using the GUI. The services implemented were
QoS, Virtual Private Network (VPN) and a basic service of
Virtual Local Area Network (VLAN), as well as the Hostname
configuration of the equipment. One of the aims is to use the
developed prototype to manage the referred network services.
With this prototype we can, in just a few steps, configure QoS,
VPN, VLAN or the hostname in a network. The hostname
service would serve as proof of concept. After setting
communication services, we have set up the configuration
parameters of the service. To do this, we created a “skeleton
service” to be implemented. In this “skeleton” there are
several files, including the modelling of services, using the
YANG. It is in the YANG files’ that the fields, or parameters,
are defined to be ordered for proper implementation of the
services in the network. Figure 5 shows an example of part of
a YANG file (hostname.yang) for implementing the hostname
service, with the purpose of changing the hostname of the
required device. This service, as mentioned previously, was
created to demonstrate the implementation done and will be
reflected in the tested network devices.
module hostname {
 namespace "http://com/example/hostname";
 prefix hostname;
 import tailf-ncs {
 prefix ncs;
 }
 container host {
 list hostname {
 description "Configure
hostname";
 key name;
 uses ncs:service-data;

 ncs:servicepoint "hostname";
 leaf name{
 type string;
 }
 leaf device {
 type leafref {
 path

"/ncs:devices/ncs:device/ncs:name";
 }
 }
 leaf changeto {
 type string;
 }
 }
 }
}

Figure 5. YANG file for modelling a service: Hostname (hostname.yang)

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

In Figure 5 we can see the set parameters which will
support the data to be filled in the NSO. On the YANG model
we can see the name of the device whose hostname we want
to change, and the new hostname we want to give it. If we run
the command to create the Hostname service, it works, but
only on the data storage in NSO CDB. After the change in
YANG file, we must define the service mapping so that the
command is executed and the service created. As for the
mapping setting, this is nothing more than changing the
template (hostname.xml) that is generated when we create the
service in the NSO. In Figure 6 we present an example of
Hostname service. the result may be the template shown next.

Figure 6. Hostname service’s template (hostname.xml)

In Figure 6 we can also note that the template already
follows the hostname configuration, either to a Cisco router,
identified by your operating system (IOS) or to the Juniper
router, identified by your operating system (JunOS).

In Figure 7 we present a command that is an example of
the Hostname service configuration and that may be used for
practical implementation of changing of a device hostname, in
this case, the router p0.

Figure 7. Example of command for Hostname service creation in NSO

After explaining the NSO, we will explain the creation of
the GUI process that, for the network manager, is the only part
that will be used for service management, after the network
and the service are created, naturally.

3) Development tool

The final stage resulted in the development of a graphical
interface where the user is expected to interact most of the
time with regard to the service management part. The
graphical interface was created in WordPress and is very
simple. It is important to note that the main purpose was not
the implementation of a high-level web interface, but the
development of a solution that can serve as a stage prior to the
configuration of the network and production service. We tried
to create a simple and functional interface to make its use as

easy as possible. There are more graphic tools with the
function of network configuration, but most of them have
many concepts which may not be necessary to those who will
manage a network and its services [21]. The Cisco NSO
technology is not very used yet but it is property of a big
network company so it has potential. We have not found any
related work with it, so to the best of our knowledge, our work
is the first of its kind.

The implementation of the WebUI is divided into two
parts: the visible (front-end) and non-visible (back-end),
which are running the most important process. The front-end
is very simple and it is based mainly on buttons and filling out
forms. The back-end is where the data, that was previously
filled in by the user forms, is read. In the back-end of the tool
we have done the proper implementation to interpret and
process everything the user sees. This reading follows the
sequence shown in Figure 8.

Figure 8. Process execution sequence runs in back-end in graphic

interface

In what concerns the database, it is very simple and it is
used mainly to synchronize the data to be presented in the
form with the data on the NSO. The most important command,
through which the connection between the GUI and terminal
NSO is made, is shown in Figure 9.

Figure 9. Access command terminal of NSO

Running a script with this command is reflected in NSO
terminal and later, in the existing network. The
communication mode between the prototype and the NSO was
the NSO [NCS] CLI Scripts [13], since it was the simplest and
quickest way of implementing what we intended to test. Our
NSO CLI Script is a solution available by NSO technology
itself, thus it is a valid option to be used. There were other
communication modes like the Python, REST and Java,
depending on the type of solution to the management of
network we have or we intend to develop.

To conclude the chapter, we present an example test of the
entire process carried out.

B. Test of tool operation
On the graphical interface, the NSO checks the data after

the user fills out a form for the hostname change. The form is
shown in Figure 10.

<config-template xmlns=http://tail-f.com/ns/config/1.0
servicepoint="hostname">
 <devices xmlns="http://tail-f.com/ns/ncs">

 <device>
 <name>{/device}</name>
 <config>
 <hostname

xmlns="urn:ios">{/changeto}</hostname>
 <configuration

xmlns="http://xml.juniper.net/xnm/1.1/xnm">
 <system>
 <host-

name>{/changeto}</host-name>
 </system>
 </configuration>
 </config>

 </device>
 </devices>
</config-template>

admin-ncs(config)# host hostname troca device p0
changeto p0cisco
admin-ncs(config)# commit

$ /home/tail-f/ncs_new/bin/ncs_cli -C -u admin

57Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

Figure 10. Hostname form, part of the graphic tool developed.

The parameters are validated after they are inserted. Only
after their insertion will the commands be executed in the
NSO terminal, the data is stored in the CDB and the mapping
definition is made. This definition is reflected in the template
result in the XML file, previously shown in Figure 6. Finally,
the NED interprets the received data. The command is
executed on the machine and the result is successful, as shown
in Figure 11.

Figure 11. Execution of commands sequence in back-end. Transparent

process for the user.

All network services were implemented on the prototype.
We did not develop all template services, because this work is
expected to be done/developed by network or device
manufacturers. Although we only present the test for
hostname service, for proof of concept of the prototype tool,
the results of testing QoS services will also be successful in
Alcatel router. The changes were confirmed in this specific
router.

We conclude the presentation of the implementation and
of the demonstration of this tool execution.

V. CONCLUSION AND FUTURE WORK
We proposed and implemented an Open Source tool that

can be used to manage a network, and especially its services
before they are put into production. Using the concept of SDN,
the management can be done either in a real network or in a
virtual one, whether it already exists or it is created from
scratch. Its simple use allows the users to spend less time in
the configuration and creation of services and, at the same
time, it can be used to optimize both the network and the
creation of new services. In practice, the process is simple: add
a tool to a network and that tool is ready to be used. The

configuration of the equipments, as it is done nowadays, will
be maintained, but it will use a graphic tool so that this process
becomes more simplistic and abstract to the user.

As future work, we can suggest the implementation of new
services and the consolidation of this tool through a more
optimized prototype. It would be an advantage to present this
prototype to managers or network administrators, who work
in this area daily, in order to improve this tool.

REFERENCES

[1] Cisco Systems, Inc, “Cisco Visual Networking Index: Global
Mobile Data Traffic Forecast Update, 2014–2019”, 2015.

[2] HP Enterprise Business, “Why SDN… Software-defined
Networking?”, 2014. Available from:
<https://goo.gl/kfclyH>. Accessed on: December 05, 2015.

[3] Open Networking Foundation, “Software-Defined
Networking (SDN) Definition. Open Networking
Foundation”. Available from: <https://goo.gl/hMOCuy>.
Accessed on: January 10, 2016.

[4] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg,
S. Azodolmolky and S. Uhlig, “Software-Defined
Networking: A Comprehensive Survey”, Proceedings of the
IEEE (Volume:103 , Issue: 1), January 2015.

[5] Y. Jarraya, “A Survey and a Layered Taxonomy of Software-
Defined Networking”, IEEE Communications Surveys &
Tutorials (Volume:16 , Issue: 4), April 2014.

[6] Nuage Networks, “Products - Nuage Networks”. Nuage
Networks. Available from:
<http://www.nuagenetworks.net/products/>. Accessed on:
December 15, 2014.

[7] Nuage Networks. Virtualized Services Platform, “Nuage
Networks VSP Data Sheet”, June 2014. Available from:
<http://goo.gl/Qj4nqB>. Accessed on: December 15, 2014.

[8] Cisco Systems, Inc., Tail-F Systems, “Cisco Network Service
Orchestrator (NSO) enabled by Tail-f”. Available from:
<https://goo.gl/Oy1BKH>. Accessed on: December 22, 2015.

 [9] HP Enterprise Business. “Leverage SDN: Create consumable,
programmable, and scalable cloud networks”, 2015, pp. 17.

[10] Nuage Networks, “Arista and Nuage Networks: Building
Cloud Datacenters with OpenStack”, Dec. 01, 2015.
Available from: <http://goo.gl/zJ4juN>. Accessed on:
January 07, 2016.

[11] N. McKeown, G. Parulkar, T. Anderson, L. Peterson, H.
Balakrishnan, J. Rexford, S. Shenker and J. Turner,
“OpenFlow: Enabling Innovation in Campus Networks”,
ACM SIGCOMM Computer Communication Review,
Volume 38 Issue 2, April 2008, pp. 69-74, doi:
10.1145/1355734.1355746.

[12] I. M. Kultan and Nuage Networks, “Virtualized Services
Platform (VSP) & Network Services (VNS)”. Vienna,
Austria, pp. 16. 2015.

[13] Cisco Systems, Inc, “Tail-f Network Control System 3.3
Getting Started Guide”, 2014, pp. 1; 3; 51-52; 59.

[14] Cisco Systems, Inc., Tail-F Systems, “What is YANG?”
Available from: <http://www.tailf.com/education/what-is-
yang/>. Accessed on: November 25, 2014.

58Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

[15] M. Rouse, “What is XML (Extensible Markup Language)?”
TechTarget, Dec. 2014. Available from:
<http://goo.gl/v65bZi>. Accessed on: January 10, 2016.

[16] R. Enns, M. Bjorklund, J. Schoenwaelder and A. Bierman,
“RFC 6241 – NETCONF Configuration Protocol”, Jun. 2011.
Available from: <https://tools.ietf.org/html/rfc6241>.
Accessed on: December 31, 2015.

[17] Juniper Networks, Inc, “Junos OS NETCONF XML
Management Protocol Developer Guide”, pp. 3. 2015.

[18] W. Stallings, “Software-Defined Networks and OpenFlow”,
The Internet Protocol Journal, March 2013.

[19] J. J. Jensen, “Multi-Vendor Service Orchestration & Network
automation for today’s networks”, 2016.

[20] GNS3 Technologies, Inc, “What is GNS3?”, 2016. Available
from: <https://www.gns3.com/software>. Accessed on:
February 21, 2016.

[21] L. D. Vecchio “GUI for Netfloc – An OpenSource SDK for
SDN”, January 29, 2016.

59Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4

ICNS 2016 : The Twelfth International Conference on Networking and Services

