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Abstract—Recently, there has been a growing ubiquity of con-
nected devices and sensors in wireless sensor networks, health
care systems, smart grids and smart cities, forming the Internet of
Things (IoT). IoT devices generally have limited computation re-
sources, and thus rely on the computational and storage resources
of the cloud. However, IoT applications generally have a real-time
requirement that cannot be fulfilled by mainstream cloud services.
Therefore, a new paradigm called fog computing has emerged to
offload the computation and storage needs of end user devices
to the servers in the network edge. In this paper, we propose
a least loaded sharing method to fully exploit the collaboration
between fog servers and to achieve load balance among them. In
our method, an overloaded server is able to react to temporary
peaks of requests by forwarding the incoming requests to the least
loaded neighbour server. The proposed method helps to reduce
the blocking probability of requests and the delay experienced
by accepted requests. We also develop a computationally efficient
analytical model to evaluate the performance of our proposed
method.

Keywords–fog computing; load balancing; collaboration servers;
buffer sharing.

I. INTRODUCTION

Over the past decade, cloud computing has become a very
popular computing paradigm [1]. By centralizing computing,
storage, and network management functions in data centers,
cloud computing has a high degree of polymerization of ser-
vice computing. It enables end users to universally access on-
demand computing services and frees them from the specifica-
tion of many details. Entirely dependent on the Internet, cloud
computing ensures the maximum utilization of computational
resources by providing flexibility in the availability of data,
software and infrastructure [2].

Recently, cloud computing is increasingly used to support
Internet of Things (IoT) applications, due to the growing
ubiquity of connected devices and sensors in wireless sensor
networks, health care systems, smart grids and smart cities.
Although cloud computing is renowned for its cost-effective
and convenient service, it is encountering several challenges
introduced by the emerging IoT. First, many IoT applications
have a real-time requirement that cannot be fulfilled by main-
stream cloud services [3][4]. Second, the vast and rapidly
growing number of connected IoT devices inflate the amount of
data generated at an exponential rate [5]. If all this data is sent
to the cloud, prohibitively high network bandwidth would be
required in the cloud system. Third, IoT devices generally have
limited computation resources. Thus, they would not be able
to fulfill the needs imposed by the IoT applications. Naturally,
they could make use of the cloud by offloading computation

tasks to it. However, it will be unrealistic and prohibitively
expensive to support the interaction between the cloud and
all those resource-constrained devices, as it involves complex
protocols and resource-intensive processing.

To fill the technology gaps in supporting IoT, a new
paradigm, fog computing, has been proposed. Fog computing
emphasizes the network edge and distributes onerous tasks
closer to end user devices [6][7]. As illustrated in Figure
1, fog computing extends cloud computing by bringing het-
erogeneous resources to the edge of the network, so that a
substantial amount of data storage, computing and control
functions, communication and networking is carried out near
the end user. Besides, fog computing will not be faced with
serious security issue as data travel from fog to end users
within a short distance. Ultimately, the goals of fog computing
are to reduce the data volume and traffic to cloud servers, offer
low latency, and improve Quality of Service (QoS).
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Figure 1. Architecture of fog computing.

Fog computing also shares many similar mechanisms and
attributes with cloud computing [8]. For example, the core
idea behind the two computing paradigms is to transfer load
from end users to servers [9]. It means the problem of load
imbalance is inevitable in both fog and cloud computing
because requests of users arrive at servers randomly and
frequently [10]. For the case of fog computing, servers with
computing and storage capacities can be attached to the base
stations of mobile telecommunication networks so that they are
close to the end users. In the simplest case, an individual server
only needs to execute tasks from its local users. In other words,
each server operates independently. However, with the trend of
deploying small cells, each server generally has some nearby
neighbours. When a server experiences temporary overload, it
could exploit the resources of its neighbours by forwarding
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newly arrived tasks to them. This is particularly attractive for
fog computing, since it is designed to offer real-time service
and thus needs to satisfy stringent QoS requirements, such as
blocking of requests and service waiting time [11]. Under this
situation where a set of servers collaborate with each other to
serve users’ requests, how to maintain load balance among the
servers is an important issue.

In this paper, we propose a least loaded sharing method
to fully exploit the collaboration between servers and achieve
load balance among them. In our method, an overloaded
server is able to react to temporary peaks of requests by
forwarding the incoming request to the least loaded neighbour
server. The proposed method helps to minimize the blocking
probability of requests and reduce the delay experienced by
accepted requests. We also develop a computationally efficient
analytical model to evaluate the performance of our proposed
method. The accuracy of the model is validated by computer
simulations. Numerical results demonstrate that, by having
servers share buffer space with each other, temporary load
peaks can be efficiently relieved.

The remainder of the paper is organized as follows: Section
II reviews some recent research work in optimization of
computational resources in fog computing environments. Sec-
tion III introduces our proposed least loaded scheme. Section
IV presents the performance model of the scheme. Section
V validates our model by simulation results and provides
some numerical results to demonstrate the effectiveness of our
proposed scheme. Finally, Section VI concludes the paper.

II. RELATED WORK

Fog computing allows mobile terminals to have access
to additional computational and storage resources, which are
more abundant than those available in typical user equipment,
by offloading demanding tasks to nearby fog servers. For the
case when each individual fog server only serves its local
users, research efforts have focused on the joint distribution
of computational and radio resources for mobile terminals and
the fog server. Early work covered the management aspects,
the experimental evaluation of energy saving due to offloading,
and the design of offloading criteria which consider the cost
of radio resources of the access networks [12][13]. Since
the optimal energy cost for the data transfer depends on the
channel conditions, the Gilbert-Elliott channel model is used
in [14] to study the radio-cloud interaction. The work provides
some insights about how the quality of the wireless link affects
the transmission rate and the offloading decision. In [15], a
computation offloading distribution between a single user and
the server is derived, taking into account the delay constraint
of tasks and assuming that multiple antennas are available.
Their results provide the optimal transmission strategy and
the optimal distribution of the computational load between the
user and the server. When the number of requests from users
becomes very large, the computational resources of only one
server sometimes may not be enough. In this situation, a num-
ber of servers can cooperate together through the formation
of a cluster. This means that extra computational capacities
can be provided to users. In [16], Barbarossa et al. consider a
multi-user, multi-server and multi-cloud scenario in which the
servers and cloud are organized in a different hierarchy. They
study a joint optimization of computational and radio resources

with the objective to minimize the power consumption of each
user, subject to the latency constraints imposed by each user.

When fog servers form a cluster, how to improve the
QoS delivered to users is also an important issue. In [10],
a load balancing scheme between two fog servers is proposed
to minimize the blocking probability at each server and the
waiting time of the tasks. In this scheme, each server is
assumed to have a buffer to store service requests from users
for subsequent executions. When the buffer of a server is full,
the newly arrived requests are forwarded to the neighbour
server, which accepts the request only if its current queue
length is below a given threshold. The system is modelled as a
two-dimensional Markov chain to evaluate the performance of
the proposed scheme. Numerical results demonstrate that both
blocking probability and waiting time are reduced. The authors
also propose a possible implementation of the load balancing
scheme.

III. LEAST LOADED SHARING

We consider that, in an area of interest, there is a cluster of
servers. Each server receives task requests from its local users,
and executes the tasks on a first-come-first-serve basis. When
a request arrives at a server and finds the server busy, it queues
for its turn of service. Since the requests are expected to have
strict delay requirements, there is a limit on the number of
requests that can queue in a server. When the queue length of
the server has reached the limit, for the case that each server
operates independently, the request is blocked immediately to
avoid excessive waiting time. On the other hand, when our
least loaded sharing method is operated, the request is re-
directed to the server with the shortest queue length. If there
are multiple such servers, the request is re-directed to one of
them randomly. As a result, a request is blocked only if the
cluster of servers has reached the queue length limit.

IV. PERFORMANCE MODELS

Let us assume that there are N servers, and task requests
arrive at each server according to a Poisson process with rate λ
tasks/second, as shown in Figure 2. The time needed to execute
a task is exponentially distributed with mean 1/µ seconds. The
offered traffic to each server is given by ρ = λ/µ. The limit on
the queue length (including the one being served) is set to K.
Here, two metrics are used to evaluate the performance of our
proposed method. The first one is the average waiting time of
tasks, W , which is the average of the time from the arrival of
a task at a server until the time that the server starts processing
the task. The second one is the task blocking probability, pB ,
which is the probability that a task is blocked by the fog
computing system.

First, we present the performance model for the no-sharing
case, i.e., the case in which each server operates independently.
This case will be used for comparison in the next section.
For each independent server, it can simply be modelled as a
M/M/1/K queueing system. Let πi, 0 ≤ i ≤ K, be the
probability that there are i tasks in a server. For ρ 6= 1, it is
well known that [18]

πi = ρi
1− ρ

1− ρK+1
. (1)
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Figure 2. The queueing model of a cluster of fog servers.

The blocking probability is given by

pB = πK =
ρK(1− ρ)
1− ρK+1

, (2)

and the mean waiting time is given by

W =

∑K
i=0 iπi

λ(1− πK)
− 1/µ

=

(
1− (K + 1−Kρ)ρK

(1− ρ)2
− 1

)
1

µ
. (3)

Next, we present the performance model for the least
loaded sharing method. A server is said to be in state i, 0 ≤
i ≤ K, when there are i tasks in its buffer (including the one
being served). Let pji be the probability that server j is in state
i. However, since the system under consideration is uniform,
each server receives the same offered load and has the same
state probabilities. Thus, pji can be simplified as pi. Consider
a tagged server which is in state i and has the shortest queue
length. The probability that there are l−1 other servers at state
i is denoted as F (l|i). Consider that a particular server is full.
Its overflow rate to the tagged server at state i is given by

yi = λpK
N−1∑
l=1

1
l F (l/i)

= λpK
N−1∑
l=1

1
l

(
N−2
l−1

)
pi
l−1

(
K∑

t=i+1

pt

)N−1−l (4)

Let ai be the total overflow rate of tasks to the tagged
server when it is in state i,

ai = (N − 1)yi (5)

The tagged server can be modeled as a Markov chain, as
shown in Fig 3. By using the local balance equation, we have

pi =
λ+ ai−1

µ
pi−1, i = 1, 2, . . . ,K (6)

Therefore,

pi =

∏i−1
j=0(λ+ aj)

µi
p0, i = 1, 2, . . . ,K (7)

Using the normalization condition
∑K
i=0 pi = 1, p0 is given

by

p0 =

[
K∑
i=1

∏i−1
j=0(λ+ aj)

µi
+ 1

]−1

. (8)

Equations (5) and (7) form a set of fixed-point equations.
They can be solved by repeated substitution to obtain pi.
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Figure 3. The Markov chain of a server.

By Little’s theorem, W is given by

W =

∑K
i=0 ipi

λ(1− pK)
− 1/µ (9)

For pB , at a first glance, one may think that it is given
by (pK)N . However, the expression (pK)N assumes that each
server operates independently, which contradicts the fact that
there is dependency among the servers. In order to obtain an
exact value of pB , we need to model the system as a N dimen-
sional Markov chain with totally (K + 1)N states, and then
solve the state probabilities. Unfortunately, efficient methods
for solving the state probabilities are available only for very
small N . For example, in [10], the matrix-geometric approach
of [17] is used for the case of N = 2. For large N or K,
such an approach is analytically intractable. Here, we propose
an approximate closed form solution for pB . First, we assume
that the buffers of individual servers are aggregated together.
Then, the system can be modelled as a M/M/N/NK system.
However, such a model is more efficient than the actual system
and thus under-estimates the blocking probability. Intuitively,
we need to reduce the aggregated buffer size to reduce the
amount of under-estimation. Since, on average, the number of
tasks waiting in the server is W

µ , we postulate that the total

buffer space available for sharing, Keff , is given by N(K−Wµ .
Therefore, we model the system as a M/M/N/Keff queue,
and its blocking probability approximates pB . Using the well
established result of the blocking probability of a M/M/N/k
queue [18], pB is given by

pB = πN

(
A

N

)Keff−N

, (10)

where

πN =

(
E−1
N (A) + ρ

1− ρKeff−N

1− ρ

)−1

, (11)

A = Nλ/µ, and EN (A) is the Erlang B blocking probability
for a M/M/N/N queue with offered traffic A.
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TABLE I. COMPARISON OF BLOCKING PROBABILITY OBTAINED BY (pK)N AND SIMULATION

Buffer size K = 5 K = 10 K =15 K = 20 K = 25 K = 30

λ = 0.85 (pK)N 4.58E-05 8.56E-08 6.77E-10 8.48E-12 1.27E-13 2.06E-15
simulation 1.17E-02 6.13E-04 3.36E-05 8.79E-07 5.06E-08 5.89E-10

λ = 0.90 (pK)N 1.76E-04 7.30E-07 1.56E-08 5.98E-10 3.05E-11 1.80E-12
simulation 2.27E-02 3.27E-03 4.98E-04 7.12E-05 9.67E-06 1.31E-06

V. NUMERICAL RESULTS

In this section, we use the developed analytical model to
evaluate the performance and assess the potential benefits of
the least loaded sharing scheme under various parameters. At
the same time, we validate the analytical model by simulation.
For this purpose, we have built a discrete event simulator in
C++ to generate simulation results. We set µ = 1 second, and
vary the arrival rate λ to obtain different loads. The duration of
each simulation run varies according to the system parameters,
ranging from 107 to 1010 seconds, but the warm-up period is
fixed at 105 seconds.

First, we evaluate the blocking probability for N = 5, with
various K and λ. Table I compares the blocking probabilities
obtained by (pK)N and simulation, for K varying from 5 to
30 with a step of 5, with λ = 0.85 and 0.9, respectively. It
shows that (pK)N under-estimates the blocking probabilities
by several order of magnitudes, and thus justifies the need of
a more accurate way to calculate the blocking probabilities.
Figure 4 and Figure 5 illustrate the effect of buffer size on the
blocking probability for two different loads. It can be seen
that, when K increases, the blocking probability decreases
exponentially. From the perspective of the validity of the pro-
posed M/M/N/Keff model, the analytical results obtained
by (10) are in good agreement with the simulation results.
Furthermore, in comparison to the isolated scheme, the least
loaded sharing scheme exhibits lower blocking probabilities.
The reduction of blocking probabilities increases with buffer
size. Clearly, this is because in the least loaded sharing scheme,
the service and buffer capacity of all servers are aggregated
together to serve the incoming tasks.

Figure 6 and Figure 7 depict the relationship between
average waiting time experienced by tasks and the buffer size
of each server in a fog computing system. It can be observed
that the theoretical delay obtained by (9) is in good agreement
with the results obtained from simulations. For both shared and
isolated schemes, the mean delay of a task increases with the
buffer size because more tasks are allowed to wait in the buffer.
However, the delay incurred in the least loaded sharing scheme
is always smaller than the isolated scheme. This is because,
under the least loaded sharing scheme, tasks are more probable
to enter a buffer with a shorter queue length.

It can be concluded that a single server working in isolation
could reduce its blocking probability by simply increasing its
buffer size. However, incoming tasks will suffer great system
waiting time in such a system. On the other hand, the least
loaded sharing scheme enables a fog computing system with
heavy load and finite buffer size to offer low-latency processing
of requests as well as low blocking probability.
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Figure 4. Blocking probability versus buffer size (λ = 0.85).
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Figure 5. Blocking probability versus buffer size (λ = 0.9).
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Figure 6. Mean delay versus buffer size (λ = 0.85).
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Figure 7. Mean delay versus buffer size (λ = 0.9).

VI. CONCLUSION

In this paper, we have proposed a least loaded sharing
scheme for load balancing in a cluster of fog servers. We have
developed an analytical model to evaluate the performance
of the proposed scheme. The model is based on a state-
dependent Markov chain. After solving the state probabilities
of the Markov chain, the mean waiting time can be obtained.
Also, a computationally efficient method has been developed
to approximately calculate the blocking probability of requests.
Simulation has been used to validate the model and show
that the approximation is acceptable. Compared to the case
when each server operates independently, our proposed scheme
can utilize the resources of the cluster of fog servers more
efficiently, leading to less waiting time and lower blocking
probability experienced by users.
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