
An Authentication Technique to Handle DDoS Attacks in
Proxy-Based Architecture

Poonam Dharam
Computer Science and Information Systems

Saginaw Valley State University
Saginaw, MI, USA

email: pdharam@svsu.edu

Jarin Musarrat
Computer Science and Information Systems

Saginaw Valley State University
Saginaw, MI, USA

email: jmusarra@svsu.edu

Abstract— Recent years have witnessed an increase in
Distributed Denial of Service (DDoS) attacks that overwhelm
available network and backend server resources such as
bandwidth, buffers, etc. To handle such attacks, proxy-based
network architectures have been implemented to manage and
Load Balance incoming traffic by spawning new servers in the
event of unexpected rise in network traffic. However, DDoS
attacks continue to persist with the attack target shifting from
the main backend application servers to proxy servers. The
redirection of users to one of the available proxy servers results
in the discovery of their (proxy server’s) IP address. A botnet
can then be used by the attacker to generate a huge amount of
traffic and direct it to the proxy server, thus causing DDoS. In
this paper, we propose an authentication technique to ensure the
uniform distribution of the incoming requests and to avoid/drop
the illegitimate requests from occupying servers’ resources. Our
simulation results show that the proposed solution detects and
handles DDoS attacks in an efficient manner.

Keywords-Distributed Denial of Service; proxy-based
architecture; flooding attacks.

I. INTRODUCTION

Internet Distributed Denial of Service (DDoS) attacks
have emerged as one of the biggest threats to Internet security,
with thousands of them occurring every year. Hackers are
turning to DDoS to bring down organizations’ services and to
compromise their sensitive data. Recent times have witnessed
a dramatic increase in such attacks due to the declining cost of
launching an attack and the popularity of Internet of Things
(IoT) devices [1] that could be used as botnets. Recently, the
Mirai botnet [2], that brought down major services including
Twitter, Netflix, CNN (Cable News Network), and many
others, was largely made up of IoT devices such as digital
cameras and Digital Video Recorder (DVR) players [3].

The DDoS attack mainly targets the availability of a

service by exhausting the resources associated with the
service. In the context of computer and communications, the
focus is generally on network services that are attacked over
their network connection. A classic flooding DDoS attack [4]
involves a significant amount of malicious traffic directed
towards a target server. The volume of the attack traffic can

be scaled up by using multiple systems that are either
compromised user workstations, PCs, or IoT. For example,
attackers identify devices that use default login credentials to
gain backdoor access to them and install an attack agent that
they can control. A large collection of such systems under the
control of one attacker can be created, collectively forming a
botnet. This traffic overwhelms any legitimate traffic,
effectively denying legitimate users’ access to the server.

Internet Control Message Protocol (ICMP), User

Datagram Protocol (UDP), or Transmission Control Protocol
(TCP) SYN packets are most commonly used for flooding
attacks. Any packet that is permitted to flow over the links,
towards the targeted system, can be used to fill up the
available capacity. Such attacks flood the network link with a
huge number of malicious packets in turn competing with
regular user traffic flowing to the server. Many packets,
mostly valid traffic, will be dropped on the path to the server
due to the congestion caused by flooding. For example, a
DDoS flooding attack on a Web Server involves several valid
Hyper Text Transport Protocol (HTTP) requests, each using
significant server resources. This then limits the server’s
ability to service requests from other users. For instance,
HTTP requests use TCP as transport layer protocol. For each
TCP connection made, some amount of buffer space at the
server’s end is reserved for reliable data transfer, congestion
control, and flow control. Also, the server only has a limited
amount of memory for user buffer space. Once the TCP
connections fill up the server’s buffer, future requests will be
either cached or dropped until the buffer space frees up [5].
Another example would be a Web Server that includes the
ability to make database queries. If a database query that takes
a large amount of time for the server to respond can be
constructed, then an attacker could generate many such
queries to overload the server. This limits the ability to
respond to valid requests from other servers.

Most of the DDoS attacks use forged source addresses to

generate large volumes of packets with the target system as
destination and randomly selected, usually different, source
address for each packet. This, in turn, makes it harder to
identify the attacking system. Also, the volume of network
traffic can be easily scaled up by using multiple systems.

49Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

In order to handle such attacks, proxy-based network
architectures [6] have been implemented to manage and load-
balance incoming traffic by spawning new servers in the event
of unexpected rise in network traffic. Proxy-based
architectures usually have multiple layers of redirection
between the user and the application servers. A Load Balancer
(LB) placed between the proxy server [7] and the backend
server redirects incoming users to one of the available, lightly
loaded proxy servers. Proxy servers hold a copy of the content
present in the original servers and process the incoming user
request on behalf of the original application server. A proxy
server communicates with the original server in the event of
missing or outdated information. Also, in case of unexpected
rise in incoming traffic, cloud services are used to spawn
additional proxy servers to handle the traffic. Thus,
organizations do not have to invest a lot for in house proxy
servers, but instead pay for the duration of usage. With such
an architecture, the attack surface has shifted to proxy servers
and DDoS attacks continue to exist.

To understand the limitations of using a proxy-based

architecture in handling DDoS attacks, consider a Web service
provided by a combination of proxy servers and a backend
application server, as shown in Figure 1. Also, consider a
client trying to access a Web page www.example.com. We
now list the sequence of steps that take place:
1. The client types in the URL in the browser
2. The browser resolves the domain name by talking to the

Domain Name Server (DNS) and getting an equivalent
IP address (that actually corresponds to the Load
Balancer’s IP address)

3. Next, the browser sends an HTTP request to the LB
which then finds a proxy server that is lightly loaded

4. The LB then redirects the user to the assigned proxy
server

5. The client then directly talks to the proxy server.

The LB redirects the session to one of the active proxies at

random. LB-to-proxy redirection by domain name requires
that clients obtain proxy details (IP, port number) by DNS and
then contact their proxies directly. Through this process, the
attacker learns the IP address of an active proxy. Once the IP
address of the proxy server is learnt, a DDoS attack can be
launched by the botnets by generating a huge number of
packets with the proxy server’s IP address as the destination
[8].

One of the main reasons for such attacks to happen is due

to the attackers being aware of the identity of the application
servers (IP address and port numbers) hosting the application
– the LB-to-proxy redirection by domain name where the
client gets the IP address of the proxy server and is on its own
in communicating with the server. Once the IP address of a
proxy server is known, the attacker can directly launch an
attack using a botnet on that proxy server. To handle this
problem, we need to ensure that every user directed to a proxy
is done so by the Load Balancer. Thus, we can guarantee that
the LB is aware of the number of users per proxy. In such
cases, any user request directed to a proxy without contacting
an LB would be a possible attacker traffic

Proxy Server, P3

Load Balancer
(example.com)

Proxy Server, P1

Application Server
(www.example.com)

 Attacker Browser

DNS Server

Proxy Server, P2

Bot Agent

DDoS Attack
Regular Traffic Flow

8. Botnets sending thousands of HTTP requests

BotNets

Figure 1. Example of a DDoS attack in proxy-based architecture.

50Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

http://www.example.com/

The rest of our paper is organized as follows. Related work
is discussed in Section II. Our proposed solution is described
in Section III followed by the experimental setup and results
in Section IV. Future work and Conclusions are discussed in
Sections V and VI, respectively.

II. RELATED WORK

Most of the existing solutions in this area focus on (a)
Moving Target Defense (MTD), and (b) extending the
available resources to support increased user requirements.
MTD provides a dynamic environment to periodically shift or
change the attack surface thus introducing uncertainty for the
attackers, thereby hindering their ability to plan effective
attacks.

In [9], Venkatesan et al. identify an attack pattern called
proxy-harvesting attack which enables malicious clients to
collect information about a large number of proxies before
launching a DDoS attack. To mitigate ongoing attacks due to
proxy-harvesting attack, the authors propose a static client-to-
proxy assignment strategy to isolate compromised clients,
thereby reducing the impact of attacks. Each client has a
binding to a particular server, which persists even if the client
logs outs and logs back in. The main challenge with such a
strategy is the overhead of maintaining the assignment/ state
information and mapping it every time a user request comes
in.

In [10], Jia et al. use cloud platforms to host proxies.
Incoming requests are validated by a lookup server and the
authorized users are directed to one of the existing proxies. In
case of an unexpected rise in traffic targeting them, instances
of proxies are created in the cloud, for a short period of time,
and the existing users associated with the attacked proxies are
distributed among the newly spawned proxies. Random
shuffling of users is done before assigning them to the new
proxies, thus trying to weed out the illegitimate/attacker’s
traffic.

Another Web protection service is Moving Target
Defense Against Internet Denial of Service Attacks
(MOTAG) designed by Wang et al. [11], which works by
hiding the application server location behind the proxy
servers. MOTAG is based on a cloud environment where it
decreases the availability of resources to limit the impact of
an attack. However, there are down points in MOTAG as it
does not handle the situation of overhead associated with
instantiating and maintaining new proxies.

In Wood et al. [12], the authors proposed Denial of
Service Elusion (DoSE), a cloud-based architecture.
In DoSE, each client is associated with a risk value that
estimates the chances of a client getting a DoS attack. Each
proxy is then defined with an upper bound that it can handle.
During the attack, the DoSE redirects the client to proxy

servers based on the risk calculation. This is similar to
MOTAG, and by maintaining a stage for each
client, DoSE limits the proxy numbers used to identify
insiders.

In MOVE [13], a subset of network elements and target

services accept traffic from a subset of overlay nodes. Once
the DDoS attack is mitigated, the target service is moved to a
new host. However, in order to make this mechanism work,
the solution has to rely a lot on large-scale adoption and
network elements. This limits the defense approach that
underlies behind the targeted servers.

In spite of the existence of various mitigation techniques,
DDoS attacks in proxy-based architecture still continue to
exist. One of the main reasons is the overhead involved in
either migrating the existing clients or spawning additional
resources to handle additional traffic. To overcome the
identified challenges, in this paper, we design a client-to-
proxy assignment and authentication scheme that finds a
lightly loaded proxy and returns the IP address along with the
unique ID to the client. The client then talks to the proxy
server by exchanging its unique ID. Only the user with a valid
ID is allowed to communicate with the proxy. We thus make
sure that every user directed to a proxy is authenticated by the
LB.

III. PROPOSED SOLUTION

In this section, we present a unique tag technique that can
be used to authenticate if a client is directed by a LB or not.

The DDoS attack exploits the LB-to-proxy redirection
scheme i.e., when a client request arrives at the Load
Balancer, it returns the IP address of a lightly loaded proxy
server Pi to the client. The client then initiates a TCP
connection directly with the proxy server Pi. An insider client
is an attacker who manages to bypass the authentication
system and connect to the proxy server. Once the insider gets
some information related to a proxy server such as IP address
and port number, the insider in turn shares that information
with an external botnet. Thus, an insider client, aware of the
IP address of the proxy server, can in turn initiate/launch a
DDoS attack targeting the proxy server by directing the attack
traffic from distributed bots towards the proxy server’s IP
address.

One of the possible ways to handle the above discussed

attack scenario is ensuring that each client, requesting a TCP
connection with an available proxy server, is directed by the
Load Balancer.

Let us consider a simple example where Bob wants to

request a Web page from www.example.com and, hence,
types in the URL in his browser, as shown in Figure 2.

51Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

We now list the sequence of steps that takes place:

1. Bob’s browser talks to the DNS server requesting for

example.com’s IP address; DNS returns the IP address
corresponding to the LB;

2. Bob’s browser then sends a HTTP request to the LB,
requesting to access example.com’s home page;

3. The LB generates a unique tag and returns it to the user

along with the IP address of the proxy. The unique tag is
generated as a function of (proxy server, LB, client) IP
address and client’s port number. To avoid the tag being
forged, the tag is encrypted using proxy’s public key;

4. The user then sends a HTTP request to the proxy server

along with the unique tag assigned to it;

5. The proxy first decodes the unique tag, using its

private/secret key and verifies the credentials present in
the tag. On successful verification of the client, the proxy
sends a corresponding HTTP response; otherwise, the
client request/connection is dropped.

We now discuss a few attack scenarios and how our proposed
scheme helps in dealing with such attacks.

1. If more than one user arrives at the proxy with the same
unique tag, this situation implies that the unique tag was
forged and used for another user. In that case, the user IP
address and port number are monitored for possible
attack traffic.

2. If an attacker manages to find the IP address of another
proxy server, through another client, it is possible that
the attacker might direct all the clients with a unique tag
ID towards a single server. To handle this situation, the
function to generate tags is dependent on the client’s IP
address, LB’s IP address, and proxy server’s IP address.
Thus, only when the client arrives at the right proxy
server, its request will be serviced. Thus, we make sure
that the flow of traffic is regulated.

IV. EXPERIMENTAL SETUP AND SIMULATION RESULTS

For our experiments, we simulate a simple network using

socket programming in Java. Each component (LB, clients,
proxy servers, and application servers) is a Java class running
on the localhost i.e., 127.0.0.1. For our experimental setup, we
have a LB that processes incoming requests from the client,
and four proxy servers, which are, in turn, connected to the
application servers.

Proxy Server, P2

Load Balancer
(example.com)

Proxy Server, P1

Application
Server

(www.example.com)Request example.com’s
IP address

example.com’s Load
Balancer IP address

Request example.com’s home page

Redirect to lightly loaded proxy Server,P1
returning a unique tag

Request example.com’s home page (HTTP Request)
Send the unique tag assigned by the LB

Verify the unique tag
If valid tag, respond to user’s request

Botnets sending series of HTTP requests (multiple clients, each with
different IP)

DNS Server
 Attacker Browser

Requests from botnets
are dropped in the

network due to invalid
tag. Only the requests

forwarded by the LB will
have a valid tag.

BotNets

Figure 2. Our proposed solution.

52Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

Our implementation works as follows:

1. Initially, when a user request arrives at the LB, it
generates a unique tag which is a function of
Source/client, LB, and proxy server’s IP address and
encodes it into a secret tag.

2. The user request is then redirected by the LB using HTTP
response 302 Found. The secret tag generated is placed as
a part of the Location field in the HTTP response, along
with the proxy server’s IP address.

3. The redirected user request then arrives at the proxy
server, where the server first extracts the unique tag and
verifies the IP addresses.

4. If the secret tag is a valid one, the user request is
processed; otherwise, the request is dropped. The
requests will be dropped due to invalid/missing secret
tags.

We simulated about 50 valid user requests by hosting client

programs and sending simple HTTP GET requests for a valid
document available at the Application server. Additionally,
we simulated about 30 requests which were mainly attack
traffic. The way we simulated the attack traffic is described
below. We assume user-1 is the attacker.

1. A valid user request is sent to the LB from user-1;
2. The LB then finds a proxy server with the lowest load

and returns the IP address of the proxy with a unique
tag that contains user-1’s IP address and port number;

3. User-1 then generates 30 requests directed to the proxy
servers chosen in step-2;

In terms of performance evaluation, our primitive

implementation resulted in a uniform load distribution, each
proxy server having an average of about 7 users. Additionally,
our proposed model was able to detect malicious/ illegitimate
traffic successfully. All the valid requests were successfully
redirected by the LB to available proxy servers such that the
load on each proxy server was close evenly distributed. In case
of attack traffic, the user requests with unique valid tags were
successfully authenticated and processed by proxy servers,
whereas the attack traffic without valid tags was dropped by
the proxy servers.

V. FUTURE WORK

In our proposed solution, the encryption of the tag using
secret key requires both the LB and the proxy server to
exchange a key periodically that will be used to protect the
transferred data. The encryption process may add a little bit of
overhead during the initial key exchange, converting plain text
to ciphertext at the LB’s end and vice versa at the proxy
server’s end. We intend to study their effects on performance
in terms of the time take to direct an incoming client to one of
the proxy servers, the time it takes to process the client’s
HTTP request, as well as the number of false positives and
negatives during DDoS detection. Additionally, we would like
to compare our work with available solutions and current
commercial state.

VI. CONCLUSIONS

In this paper, we propose an authentication mechanism to

detect and prevent DDoS attacks in a proxy-based
architecture. Our proposed technique ensures that each client
request arriving at a proxy server is directed by the Load
Balancer. A proxy server will only service those clients that
are originally redirected by the Load Balancer. Since the Load
Balancer’s job is to uniformly distribute the incoming client
traffic among existing proxy servers, the chances of a DDoS
attack due to a huge amount of incoming traffic is mitigated.
Thus, the DDoS attacks caused due to botnets can be easily
handled.

REFERENCES

[1] M. Sysel and O. Doležal, “An Educational HTTP Proxy
Server,” In Procedia Engineering, vol. 69, 2014, pp. 128–132.

[2] M. Antonakakis et al., “Understanding the Mirai Botnet,”
USENIX Security Symposium, 2017, pp. 1093–1110.

[3] N. Woolf, “DDoS Attack That Disrupted Internet Was Largest
of Its Kind in History, Experts Say,” in The Guardian,
Guardian News and Media, 26 Oct. 2016, Retrieved from:
www.theguardian.com/technology/2016/oct/26/ddos-attack-
dyn-mirai-botnet [accesses Oct., 2016].

[4] S. Mahrach and A. Haqiq, “DDoS Flooding Attack Mitigation
in Software Defined Networks,” in International Journal of
Advanced Computer Science and Applications, vol. 11, 2020.

[5] K. S. Vanitha, S. V. UMA, and S. K. Mahidhar, "Distributed
denial of service: Attack techniques and mitigation,"
International Conference on Circuits, Controls, and
Communications (CCUBE), 2017, pp. 226-231, doi:
10.1109/CCUBE.2017.8394146.

[6] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a
revolutionary approach for future technology enhancement: a
review,” Journal of Big Data, vol. 6, 2019 doi:
10.1186/s40537-019-0268-2

[7] A. Baptiste, “Use a Load Balancer as a First Row of Defense
Against DDOS,” in Haproxy, Feb. 27, 2012, Retrieved from:
www.haproxy.com/blog/use-a-load-balancer-as-a-first-row-
of-defense-against-ddos/ [accesses Feb., 2012]

[8] P. Jeff, J. Blankenship, and A. Cser, “How The Mirai Botnet is
Fueling Today’s Largest and Most Crippling DDoS Attacks,”
in Akamai Forrester Research 24 Oct. 2016, Retrieved from:
https://www.akamai.com/uk/en/multimedia/documents/white-
paper/akamai-mirai-botnet-and-attacks-against-dns-servers-
white-paper.pdf [accesses Oct., 2016]

[9] S. Venkatesan, M. Albanese, K. Amin, S. Jajodia, and M.
Wright, “A Moving Target Defense Approach to Mitigate
DDoS Attacks against Proxy-Based Architectures,” in
Proceedings of the Communications and Network Security
(CNS), 2016, pp. 198-206.

[10] Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and W. Powell,
“Catch me if you can: A cloud-enabled DDoS defense,” in
Proceedings of the 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN),
2014, pp. 264 – 275.

[11] H. Wang, Q. Jia, D. Fleck, W. Powell, F. Li, and A. Stavrou,
“A Moving Target DDoS Defense Mechanism,” Computer
Communications, vol. 46, June 2014, pp. 10 – 21.

[12] P. Wood, C. Gutierrez, and S. Bagchi, “Denial of Service
Elusion (DoSE): Keeping clients connected for less,” in

53Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

https://doi.org/10.1186/s40537-019-0268-2
https://doi.org/10.1186/s40537-019-0268-2
http://www.haproxy.com/blog/use-a-load-balancer-as-a-first-row-of-defense-against-ddos/
http://www.haproxy.com/blog/use-a-load-balancer-as-a-first-row-of-defense-against-ddos/

Proceedings of the 34th IEEE Symposium on Reliable
Distributed Systems (SRDS), 2015, pp. 94–103.

[13] A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and D.
Rubenstein, “MOVE: An end-to-end solution to network
denial of service,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), February
2005, pp. 81–96.

54Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

	I. Introduction
	II. Related Work
	III. Proposed Solution
	IV. Experimental Setup And Simulation Results
	V. Future Work
	VI. Conclusions
	References

