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Abstract— Recent years have witnessed an increase in 
Distributed Denial of Service (DDoS) attacks that overwhelm 
available network and backend server resources such as 
bandwidth, buffers, etc. To handle such attacks, proxy-based 
network architectures have been implemented to manage and 
Load Balance incoming traffic by spawning new servers in the 
event of unexpected rise in network traffic. However, DDoS 
attacks continue to persist with the attack target shifting from 
the main backend application servers to proxy servers. The 
redirection of users to one of the available proxy servers results 
in the discovery of their (proxy server’s) IP address. A botnet 
can then be used by the attacker to generate a huge amount of 
traffic and direct it to the proxy server, thus causing DDoS. In 
this paper, we propose an authentication technique to ensure the 
uniform distribution of the incoming requests and to avoid/drop 
the illegitimate requests from occupying servers’ resources. Our 
simulation results show that the proposed solution detects and 
handles DDoS attacks in an efficient manner.  
 

Keywords-Distributed Denial of Service; proxy-based 
architecture; flooding attacks. 

I.  INTRODUCTION  
 

Internet Distributed Denial of Service (DDoS) attacks 
have emerged as one of the biggest threats to Internet security, 
with thousands of them occurring every year. Hackers are 
turning to DDoS to bring down organizations’ services and to 
compromise their sensitive data. Recent times have witnessed 
a dramatic increase in such attacks due to the declining cost of 
launching an attack and the popularity of Internet of Things 
(IoT) devices [1] that could be used as botnets. Recently, the 
Mirai botnet [2], that brought down major services including 
Twitter, Netflix, CNN (Cable News Network), and many 
others, was largely made up of IoT devices such as digital 
cameras and Digital Video Recorder (DVR) players [3]. 

 
The DDoS attack mainly targets the availability of a 

service by exhausting the resources associated with the 
service. In the context of computer and communications, the 
focus is generally on network services that are attacked over 
their network connection. A classic flooding DDoS attack [4] 
involves a significant amount of malicious traffic directed 
towards a target server. The volume of the attack traffic can 

be scaled up by using multiple systems that are either 
compromised user workstations, PCs, or IoT. For example, 
attackers identify devices that use default login credentials to 
gain backdoor access to them and install an attack agent that 
they can control. A large collection of such systems under the 
control of one attacker can be created, collectively forming a 
botnet. This traffic overwhelms any legitimate traffic, 
effectively denying legitimate users’ access to the server.  

 
Internet Control Message Protocol (ICMP), User 

Datagram Protocol (UDP), or Transmission Control Protocol 
(TCP) SYN packets are most commonly used for flooding 
attacks. Any packet that is permitted to flow over the links, 
towards the targeted system, can be used to fill up the 
available capacity. Such attacks flood the network link with a 
huge number of malicious packets in turn competing with 
regular user traffic flowing to the server. Many packets, 
mostly valid traffic, will be dropped on the path to the server 
due to the congestion caused by flooding. For example, a 
DDoS flooding attack on a Web Server involves several valid 
Hyper Text Transport Protocol (HTTP) requests, each using 
significant server resources. This then limits the server’s 
ability to service requests from other users. For instance, 
HTTP requests use TCP as transport layer protocol. For each 
TCP connection made, some amount of buffer space at the 
server’s end is reserved for reliable data transfer, congestion 
control, and flow control. Also, the server only has a limited 
amount of memory for user buffer space. Once the TCP 
connections fill up the server’s buffer, future requests will be 
either cached or dropped until the buffer space frees up [5].  
Another example would be a Web Server that includes the 
ability to make database queries. If a database query that takes 
a large amount of time for the server to respond can be 
constructed, then an attacker could generate many such 
queries to overload the server. This limits the ability to 
respond to valid requests from other servers. 

 
Most of the DDoS attacks use forged source addresses to 

generate large volumes of packets with the target system as 
destination and randomly selected, usually different, source 
address for each packet. This, in turn, makes it harder to 
identify the attacking system. Also, the volume of network 
traffic can be easily scaled up by using multiple systems. 
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In order to handle such attacks, proxy-based network 
architectures [6] have been implemented to manage and load-
balance incoming traffic by spawning new servers in the event 
of unexpected rise in network traffic.  Proxy-based 
architectures usually have multiple layers of redirection 
between the user and the application servers. A Load Balancer 
(LB) placed between the proxy server [7] and the backend 
server redirects incoming users to one of the available, lightly 
loaded proxy servers. Proxy servers hold a copy of the content 
present in the original servers and process the incoming user 
request on behalf of the original application server.  A proxy 
server communicates with the original server in the event of 
missing or outdated information. Also, in case of unexpected 
rise in incoming traffic, cloud services are used to spawn 
additional proxy servers to handle the traffic. Thus, 
organizations do not have to invest a lot for in house proxy 
servers, but instead pay for the duration of usage. With such 
an architecture, the attack surface has shifted to proxy servers 
and DDoS attacks continue to exist. 

 
To understand the limitations of using a proxy-based 

architecture in handling DDoS attacks, consider a Web service 
provided by a combination of proxy servers and a backend 
application server, as shown in Figure 1. Also, consider a 
client trying to access a Web page www.example.com. We 
now list the sequence of steps that take place: 
1. The client types in the URL in the browser  
2. The browser resolves the domain name by talking to the 

Domain Name Server (DNS) and getting an equivalent 
IP address (that actually corresponds to the Load 
Balancer’s IP address) 

 
 

3. Next, the browser sends an HTTP request to the LB 
which then finds a proxy server that is lightly loaded 

4. The LB then redirects the user to the assigned proxy 
server 

5. The client then directly talks to the proxy server. 
 
The LB redirects the session to one of the active proxies at 

random. LB-to-proxy redirection by domain name requires 
that clients obtain proxy details (IP, port number) by DNS and 
then contact their proxies directly. Through this process, the 
attacker learns the IP address of an active proxy. Once the IP 
address of the proxy server is learnt, a DDoS attack can be 
launched by the botnets by generating a huge number of 
packets with the proxy server’s IP address as the destination 
[8].  

 
One of the main reasons for such attacks to happen is due 

to the attackers being aware of the identity of the application 
servers (IP address and port numbers) hosting the application 
– the LB-to-proxy redirection by domain name where the 
client gets the IP address of the proxy server and is on its own 
in communicating with the server. Once the IP address of a 
proxy server is known, the attacker can directly launch an 
attack using a botnet on that proxy server. To handle this 
problem, we need to ensure that every user directed to a proxy 
is done so by the Load Balancer. Thus, we can guarantee that 
the LB is aware of the number of users per proxy. In such 
cases, any user request directed to a proxy without contacting 
an LB would be a possible attacker traffic

 

Proxy Server, P3

Load Balancer
(example.com)

Proxy Server, P1

Application Server
(www.example.com)

       Attacker Browser

DNS Server

Proxy Server, P2

               
                             

Bot Agent

DDoS Attack
Regular Traffic Flow

8. Botnets sending thousands of HTTP requests

BotNets

Figure 1. Example of a DDoS attack in proxy-based architecture. 
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The rest of our paper is organized as follows. Related work 
is discussed in Section II. Our proposed solution is described 
in Section III followed by the experimental setup and results 
in Section IV. Future work and Conclusions are discussed in 
Sections V and VI, respectively. 

 

II. RELATED WORK 
 

Most of the existing solutions in this area focus on (a) 
Moving Target Defense (MTD), and (b) extending the 
available resources to support increased user requirements. 
MTD provides a dynamic environment to periodically shift or 
change the attack surface thus introducing uncertainty for the 
attackers, thereby hindering their ability to plan effective 
attacks.  
 

In [9], Venkatesan et al. identify an attack pattern called 
proxy-harvesting attack which enables malicious clients to 
collect information about a large number of proxies before 
launching a DDoS attack. To mitigate ongoing attacks due to 
proxy-harvesting attack, the authors propose a static client-to-
proxy assignment strategy to isolate compromised clients, 
thereby reducing the impact of attacks. Each client has a 
binding to a particular server, which persists even if the client 
logs outs and logs back in. The main challenge with such a 
strategy is the overhead of maintaining the assignment/ state 
information and mapping it every time a user request comes 
in. 
  

In [10], Jia et al. use cloud platforms to host proxies. 
Incoming requests are validated by a lookup server and the 
authorized users are directed to one of the existing proxies. In 
case of an unexpected rise in traffic targeting them, instances 
of proxies are created in the cloud, for a short period of time, 
and the existing users associated with the attacked proxies are 
distributed among the newly spawned proxies. Random 
shuffling of users is done before assigning them to the new 
proxies, thus trying to weed out the illegitimate/attacker’s 
traffic.  
 

Another Web protection service is Moving Target 
Defense Against Internet Denial of Service Attacks 
(MOTAG) designed by Wang et al. [11], which works by 
hiding the application server location behind the proxy 
servers. MOTAG is based on a cloud environment where it 
decreases the availability of resources to limit the impact of 
an attack. However, there are down points in MOTAG as it 
does not handle the situation of overhead associated with 
instantiating and maintaining new proxies.  
 

In Wood et al. [12], the authors proposed Denial of 
Service Elusion (DoSE), a cloud-based architecture. 
In DoSE, each client is associated with a risk value that 
estimates the chances of a client getting a DoS attack. Each 
proxy is then defined with an upper bound that it can handle. 
During the attack, the DoSE redirects the client to proxy 

servers based on the risk calculation. This is similar to 
MOTAG, and by maintaining a stage for each 
client, DoSE limits the proxy numbers used to identify 
insiders.   

 
In MOVE [13], a subset of network elements and target 

services accept traffic from a subset of overlay nodes. Once 
the DDoS attack is mitigated, the target service is moved to a 
new host.   However, in order to make this mechanism work, 
the solution has to rely a lot on large-scale adoption and 
network elements. This limits the defense approach that 
underlies behind the targeted servers.  
 

In spite of the existence of various mitigation techniques, 
DDoS attacks in proxy-based architecture still continue to 
exist. One of the main reasons is the overhead involved in 
either migrating the existing clients or spawning additional 
resources to handle additional traffic. To overcome the 
identified challenges, in this paper, we design a client-to-
proxy assignment and authentication scheme that finds a 
lightly loaded proxy and returns the IP address along with the 
unique ID to the client. The client then talks to the proxy 
server by exchanging its unique ID. Only the user with a valid 
ID is allowed to communicate with the proxy. We thus make 
sure that every user directed to a proxy is authenticated by the 
LB.   

 

III. PROPOSED SOLUTION 
 

In this section, we present a unique tag technique that can 
be used to authenticate if a client is directed by a LB or not.    
 

The DDoS attack exploits the LB-to-proxy redirection 
scheme i.e., when a client request arrives at the Load 
Balancer, it returns the IP address of a lightly loaded proxy 
server Pi to the client. The client then initiates a TCP 
connection directly with the proxy server Pi. An insider client 
is an attacker who manages to bypass the authentication 
system and connect to the proxy server. Once the insider gets 
some information related to a proxy server such as IP address 
and port number, the insider in turn shares that information 
with an external botnet. Thus, an insider client, aware of the 
IP address of the proxy server, can in turn initiate/launch a 
DDoS attack targeting the proxy server by directing the attack 
traffic from distributed bots towards the proxy server’s IP 
address. 

 
One of the possible ways to handle the above discussed 

attack scenario is ensuring that each client, requesting a TCP 
connection with an available proxy server, is directed by the 
Load Balancer.  

 
Let us consider a simple example where Bob wants to 

request a Web page from www.example.com and, hence, 
types in the URL in his browser, as shown in Figure 2. 
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We now list the sequence of steps that takes place: 
 
1. Bob’s browser talks to the DNS server requesting for 

example.com’s IP address; DNS returns the IP address 
corresponding to the LB; 
 

2. Bob’s browser then sends a HTTP request to the LB, 
requesting to access example.com’s home page; 

 
3. The LB generates a unique tag and returns it to the user 

along with the IP address of the proxy. The unique tag is 
generated as a function of (proxy server, LB, client) IP 
address and client’s port number. To avoid the tag being 
forged, the tag is encrypted using proxy’s public key; 

 
4. The user then sends a HTTP request to the proxy server 

along with the unique tag assigned to it; 
 
5. The proxy first decodes the unique tag, using its 

private/secret key and verifies the credentials present in 
the tag. On successful verification of the client, the proxy 
sends a corresponding HTTP response; otherwise, the 
client request/connection is dropped. 

 
We now discuss a few attack scenarios and how our proposed 
scheme helps in dealing with such attacks. 
 

1. If more than one user arrives at the proxy with the same 
unique tag, this situation implies that the unique tag was 
forged and used for another user. In that case, the user IP 
address and port number are monitored for possible 
attack traffic. 
 

2. If an attacker manages to find the IP address of another 
proxy server, through another client, it is possible that 
the attacker might direct all the clients with a unique tag 
ID towards a single server. To handle this situation, the 
function to generate tags is dependent on the client’s IP 
address, LB’s IP address, and proxy server’s IP address. 
Thus, only when the client arrives at the right proxy 
server, its request will be serviced. Thus, we make sure 
that the flow of traffic is regulated. 

 

IV. EXPERIMENTAL SETUP AND SIMULATION RESULTS 
 
For our experiments, we simulate a simple network using 

socket programming in Java. Each component (LB, clients, 
proxy servers, and application servers) is a Java class running 
on the localhost i.e., 127.0.0.1. For our experimental setup, we 
have a LB that processes incoming requests from the client, 
and four proxy servers, which are, in turn, connected to the 
application servers.  

 
 
 

Proxy Server, P2

Load Balancer
(example.com)

Proxy Server, P1

Application 
Server

(www.example.com)Request example.com’s 
IP address

example.com’s Load 
Balancer IP address

 
Request example.com’s home page

Redirect to lightly loaded proxy Server,P1
returning a unique tag

Request example.com’s home page (HTTP Request)
Send the unique tag assigned by the LB

Verify the unique tag
If valid tag, respond to user’s request

Botnets sending series of HTTP requests (multiple clients, each with 
different IP)

DNS Server
       Attacker Browser

Requests from botnets
are dropped in the 

network due to invalid 
tag. Only the requests 

forwarded by the LB will 
have a valid tag. 

BotNets

Figure 2.  Our proposed solution. 
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Our implementation works as follows: 
 

1. Initially, when a user request arrives at the LB, it 
generates a unique tag which is a function of 
Source/client, LB, and proxy server’s IP address and 
encodes it into a secret tag. 

2. The user request is then redirected by the LB using HTTP 
response 302 Found. The secret tag generated is placed as 
a part of the Location field in the HTTP response, along 
with the proxy server’s IP address. 

3. The redirected user request then arrives at the proxy 
server, where the server first extracts the unique tag and 
verifies the IP addresses. 

4. If the secret tag is a valid one, the user request is 
processed; otherwise, the request is dropped. The 
requests will be dropped due to invalid/missing secret 
tags. 

 
We simulated about 50 valid user requests by hosting client 

programs and sending simple HTTP GET requests for a valid 
document available at the Application server. Additionally, 
we simulated about 30 requests which were mainly attack 
traffic. The way we simulated the attack traffic is described 
below. We assume user-1 is the attacker. 

1. A valid user request is sent to the LB from user-1; 
2. The LB then finds a proxy server with the lowest load 

and returns the IP address of the proxy with a unique 
tag that contains user-1’s IP address and port number; 

3. User-1 then generates 30 requests directed to the proxy 
servers chosen in step-2; 

 
In terms of performance evaluation, our primitive 

implementation resulted in a uniform load distribution, each 
proxy server having an average of about 7 users. Additionally, 
our proposed model was able to detect malicious/ illegitimate 
traffic successfully. All the valid requests were successfully 
redirected by the LB to available proxy servers such that the 
load on each proxy server was close evenly distributed. In case 
of attack traffic, the user requests with unique valid tags were 
successfully authenticated and processed by proxy servers, 
whereas the attack traffic without valid tags was dropped by 
the proxy servers. 

V. FUTURE WORK 
 

In our proposed solution, the encryption of the tag using 
secret key requires both the LB and the proxy server to 
exchange a key periodically that will be used to protect the 
transferred data. The encryption process may add a little bit of 
overhead during the initial key exchange, converting plain text 
to ciphertext at the LB’s end and vice versa at the proxy 
server’s end. We intend to study their effects on performance 
in terms of the time take to direct an incoming client to one of 
the proxy servers, the time it takes to process the client’s 
HTTP request, as well as the number of false positives and 
negatives during DDoS detection. Additionally, we would like 
to compare our work with available solutions and current 
commercial state.  

VI. CONCLUSIONS 
 
In this paper, we propose an authentication mechanism to 

detect and prevent DDoS attacks in a proxy-based 
architecture. Our proposed technique ensures that each client 
request arriving at a proxy server is directed by the Load 
Balancer. A proxy server will only service those clients that 
are originally redirected by the Load Balancer. Since the Load 
Balancer’s job is to uniformly distribute the incoming client 
traffic among existing proxy servers, the chances of a DDoS 
attack due to a huge amount of incoming traffic is mitigated. 
Thus, the DDoS attacks caused due to botnets can be easily 
handled.  
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