
CurTail: Distributed Cotask Scheduling with
Guaranteed Tail-Latency SLO

Zhijun Wang
The University of Texas at Arlington

Arlington, USA
email: zhijun.wang@uta.edu

Hao Che
The University of Texas at Arlington

Arlington, USA
email: hche@uta.edu

Hong Jiang
The University of Texas at Arlington

Arlington, USA
email: hong.jiang@uta.edu

Abstract—Today’s user-facing interactive datacenter services,
such as web searching and social networking, have to meet
stringent tail latency Service Level Objectives (SLOs). Unfor-
tunately, due to the scale-out nature of the workloads, how to
enable both tail-latency-SLO guarantee for such services and high
resource utilization remains a critical challenge. In this paper,
we propose a distributed Cotask scheduler with guaranteed
Tail-latency SLO (CurTail), aiming at providing both job tail-
latency-SLO guarantee and high resource utilization. CurTail
is a top-down, holistic approach. It decouples an upper job-
level design from a lower task-level design. At the job level,
a decomposition technique is proposed to translate a given job
tail-latency SLO into task-level performance budgets for tasks
in a cotask, i.e., the collection of tasks spawned by a job. At
the task level, the task budgets are translated into both task
compute and networking resource demands, hence allowing for
distributed cotask scheduling. The preliminary testing results
based on simulation indicate that CurTail can indeed provide
job tail-latency SLO guarantee at high resource utilization.

Index Terms—Tail latency SLO guarantee, cotask scheduling,
datacenter.

I. INTRODUCTION

To date, datacenter service providers generally overprovi-
sion datacenter resources to provide high assurance of meeting
Service Level Objectives (SLOs) for datacenter services, e.g.,
stringent tail-latency SLOs for user-facing interactive services.
For instance, aggregate CPU and memory utilizations in a
12,000-server Google cluster are mostly less than 20% and
40%, respectively [1]. As datacenters are approaching their
capacity limits, in terms of, e.g., computing capacity and
power budget [2], how to improve datacenter resource uti-
lization while providing SLO guaranteed services becomes
an important design objective for job scheduling, called the
objective for short hereafter. To this end, however, one must
successfully tackle two key challenges.

The first challenge is how to translate job-level SLOs into
precise runtime system resource demands at the task level.
Today’s user-facing interactive services are predominantly
scale-out by design. Namely, a job may spawn a large number
of tasks (the exact number is called the job fanout degree),
collectively known as a cotask [3], to be dispatched to,
queued at, processed by workers and the resulting data flows,
collectively known as a coflow [4]–[10], returned from a large
number of servers. The job response time is determined by
the time the resulting data of the slowest task is returned

and hence, is a strong function of job fanout degree. Clearly,
a job scheduler must know the exact cotask/coflow resource
demands, so that the right amounts of compute and networking
resources can be allocated to achieve the objective.

The second challenge is that the objective calls for joint
compute and networking resource allocation. With interleaved
task dispatching, task computing, and resulting data returning
per job execution, it becomes clear that compute and network-
ing resources must be jointly allocated to be effective.

The existing solutions are simply not up to the above
challenges. First, largely due to the lack of a means to
do the translation, the existing cotask-aware (e.g., [3], [9],
[11], [12]) and coflow-aware job scheduling solutions (e.g.,
[4]–[6]) are centralized by design and hence not scalable,
and exclusively focused on average performance targets, e.g.,
minimizing average job/coflow completion time, rather than
meeting job-tail-latency SLOs.

Second, most existing job scheduling and resource provi-
sioning solutions are point by design, concerned with either
compute (e.g. [13]–[17]) or networking (e.g., [6], [7], [18],
[19]) aspects of resource provisioning, rather than both jointly.
This makes it difficult for the existing solutions to achieve the
objective.

Third, the existing tail-latency-aware job scheduling so-
lutions (e.g., [20]–[24]) are exclusively focused on storage
applications and jobs with fanout degree of one only. Some
solutions focusing on outlier alleviation have been developed
to shorten the job tail latency. For example, several solutions
of task-size-aware task reordering in a task queue have been
proposed [25]–[27] to avoid head-of-line blocking of small-
sized tasks by large-sized ones to reduce the overall task
tail latency. CPU power control schemes [28], [29] have
been designed to Dynamically adjust Voltage and Frequency
Scaling (DVFS) for task servers based on task execution time
to save energy and maintain low task tail latency. However,
the approaches taken by such solutions cannot be applied to
jobs with job fanout degrees larger than one, as the resource
demands for tasks belonging to jobs with different fanout
degrees are different.

To achieve the objective of high resource utilization while
providing tail latency guarantee, this paper proposes a dis-
tributed Cotask scheduler with guaranteed Tail-latency SLO
(CurTail). CurTail is a top-down, holistic approach. It decou-
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ples the upper job-level design from the lower task-level or
runtime-system design. At the job level, by leveraging a prior
work [30], [31], we propose a decomposition technique that
translates a given job tail-latency SLO into a task performance
budget shared by all the tasks in the cotask of a job. This
effectively decomposes a complex job-level cotask/coflow
resource allocation problem into individual task/flow resource
allocation subproblems at the task level. The design at this
level is independent of the underlying runtime systems to be
used and, hence, is portable to any datacenter platforms.

At the task or runtime system level, the task performance
budgets are first translated into task compute and networking
resource demands. Then, the proposed distributed task and
flow schedulers allocate the resources to match the resource
demands, hence, achieving the objective. The major contribu-
tions of the paper are:

• CurTail is a top-down approach, it decouples an upper
job-level design from a lower task-level design and is
independent on underlying systems, and hence it can be
easily implemented;

• Curtail jointly allocates compute and networking re-
sources based on the task resource demand to meet tail
latency SLO, and hence can greatly improve system
resource utilization.

The preliminary testing results based on datacenter simula-
tion demonstrates that CurTail can indeed provide tail-latency-
SLO guarantee and high resource utilization.

The rest of paper is structured as follows. Section II gives
the detailed descriptions of CurTail and Section III presents
the performance evaluation of CurTail, finally Section IV
concludes the paper.

II. CURTAIL

CurTail schedules cotasks in two distinct logical steps. First,
at the job level, the job tail-latency SLO for a given service is
translated into task response time budgets for all the tasks a job
spawns. Second, at the task level, the right amount of compute
and networking resources are allocated to individual tasks that
meet the task budgets, hence, achieving the objective. In what
follows, we first give an overview of CurTail and then discuss
the two steps, separately.

A. CurTail Overview

With reference to Figure 1, CurTail works as follows. When
a job scheduler in a master receives a job with a given tail-
latency SLO and a given fanout degree, K, it translates the
tail-latency SLO into a task response time budget shared by
all the tasks the job spawns. As long as the task response time,
i.e., the sum of the task dispatch time, task queuing time, task
compute time, and flow completion time for every flow in the
task coflow is within the task budget for the tasks belonging
to the job, the tail-latency SLO for that job is guaranteed to be
met. This effectively decouples a complex job-level resource
allocation problem into distributed task-level subproblems at
individual workers the tasks are mapped to. The design at this
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Fig. 1. A job scheduler, J-S, runs in a master node and distributed task
schedulers, T-S, run in individual workers in the cluster, each of which is
mainly composed of a compute controller, C-C, and a flow scheduler, F-C,
per flow emitted from the worker.

TABLE I
THE 99-TH PERCENTILE TAIL-LATENCY VS. JOB FANOUT DEGREE

Fanout degree 1 10 100 1000

Tail-latency (ms) 23.03 34.51 46.03 57.54

level is runtime system independent and hence, can be pre-
computed offline for jobs of different fanout degrees and is
portable to any datacenter platforms.

Then, the tasks, together with the task budgets, are dis-
patched to K workers in a cluster to be processed. CurTail
does not dictate what task dispatching algorithm should be
used, and hence, can work with any task dispatching algo-
rithms. It focuses on the task compute and task flow resource
allocation at individual workers. Upon the arrival of a task at
a worker, based on the budget, the task scheduler, T-S, in the
worker, then sets parameters in a task compute controller, C-
C, and a flow controller, F-C. Collectively, these controllers
ensure that datacenter compute and networking resources are
allocated with high precision to meet task budgets, and hence,
SLOs for individual jobs at high resource utilization.

B. Job-Tail-Latency-to-Task-Budget Translation

We leverage an existing solution for a general black-box
Fork-Join model (i.e., with all the fork nodes treated as black
boxes) [30], [31]. This solution states that the pth-percentile
job tail-latency xp can be approximately expressed in terms of
the mean (E) and variance (V ) of task response time, and job
fanout degree (K), i.e., xp ≈ xp(K,E, V ) (see [30], [31] for
details). This approximation is found to be sufficiently accurate
at high load (e.g., 80% or above) for a wide range of Fork-
Join structures of practical interests. In particular, with tail
cutting [32], [33], or equivalently, light-tailed task execution
time distribution, the solution is found to be accurate even
at low load. Since tail-cutting techniques have been widely
deployed to combat stragglers in practice [32], we assume
that the approximation is accurate at any load level in practice.
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In what follows, we make three important observations with
regard to this approximation.

First, we observe that xp ≈ xp(K,E, V ) is an increasing
function of K. As K increases, the slowest task in the cotask
of a job is likely to become slower, resulting in a longer job
tail-latency. For example, assume that E = 5 ms and V = 25
ms2, the 99th-percentile (i.e., p = 99) tail-latency for jobs
with different fanout degrees are listed in Table I. As one can
see, it increases from about 23 ms to 35 ms and then to 59
ms as job fanout degree increases from 1 to 10 and then to
1000. These results also indicate that the job tail-latency is a
strong function of job fanout degree.

Second, we note that xp ≈ xp(K,E, V ) must also be an
increasing function of both E and V , simply because the
slowest task gets slower as E and/or V increases and hence,
the job tail-latency also increases. As a result, E and V can
be viewed as task performance budgets in order to meet xp.
Specifically, to ensure that the job tail-latency is no larger than
xp, the means and variances of the task response time for all
the tasks in cotasks must not exceed E and V , respectively.
Moreover, we observe that to keep xp unchanged as job fanout
degree K increases, either E or V or both must be reduced.
The implication of this observation is significant. It means that
to meet the job tail-latency SLO for a given service in terms
of xp, the task budgets, and hence, per-task resource demand,
for jobs with different fanout degrees are different.

Third, we note that the translation of a given job tail-latency
xp to the task budgets is one-to-many, admitting virtually
unlimited number of {E, V } budget pairs. This is because
the change of xp due to the increase (decrease) of E can be
offset by properly decreasing (increasing) V and vice versa.
In other words, a smaller budget in terms of V allows a bigger
budget in terms of E, and vice versa. One may narrow down
to one pair of task budgets by letting

√
V = αE, where α

is a tunable parameter, which as we shall discuss in more
detail, may be estimated based on measurement. Now by
taking the inverse of xp ≈ xp(K,E, V ) ≡ xp(K,E, α), we
have, E ≈ E(K,α, p, xp), the task budget in terms of the
task mean response time. It means that for a service with tail-
latency SLO in terms of xp and α that guarantees that V will
be met, as long as a job scheduler can ensure that the mean
task response time for all the tasks is within E(K,α, p, xp),
the job tail-latency SLO is guaranteed.

As an example, for a service with the job tail-latency SLO
in terms of x99 = 100 ms, Figure 2 (a) gives the mean task
response time budgets at various α values for jobs with fanout
degrees 1, 10 and 100, respectively. We can see that the mean
task budget is sensitive to α. When α increases from 0.4 to
2.0, the mean task budget decreases from about 44, 33, and
27 ms to 10, 6, and 4 ms for jobs with fanout degree 1, 10
and 100, respectively.

Figure 2 (b) gives the mean task response time budget versus
fanout degree at α = 0.5, 1 and 2, respectively. The budget
is sensitive to job fanout degree when it is small (from 1 to
10), and then become less sensitive as it further increases. The
budget decreases from about 38, 22, and 10 ms to 28, 15, and

Fig. 2. Mean task response time budget: (a) varying with α; and (b) varying
with job fanout degree.

6 ms as the fanout degree increases from 1 to 9 at α = 0.5,
1 and 2, respectively. It confirms that the jobs with different
fanout degrees may have quite different task budgets. In other
words, the task resource demands for tasks from jobs with
different fanout degrees can be significantly different.

C. Task Resource Allocation

This step is runtime system dependent, and hence, must
be carried out at individual workers at runtime. We assume
that the task dispatch overhead is small and can be treated
as a small fixed task delay ∆E, which is assumed to have
been deducted from E already. Namely, E now represents the
mean task response time budget for task queuing, compute and
task result return. Consider a service with the tail-latency SLO
defined by xp and task budget E(K,α, p, xp) for jobs of fanout
degree K. Further, consider task k in the jth job mapped to
worker q, and denote rcj,k and rfj,k as the task compute rate
and task flow rate at worker q, respectively. Then, we let,

rcj,k ≥ Λc
K,q, rfj,k ≥ Λf

K,q, j ∈ S(K), (1)

where S(K) is the set of all jobs with fanout degree K, and
Λc
K,q and Λf

K,q are the minimum compute rate and flow rate
constraints for any task in job j mapped to worker q, which
in turn, satisfy the following inequalities,

W c

Λc
K,q

+
W f

Λf
K,q

≤ E(K,α, p, xp), (2)

where W c and W f are the predicted mean task compute
workload size and mean flow size for all tasks in that service.

Clearly, as long as both the compute rate, rcj,k, and flow rate,
rfj,k, satisfy the above inequalities for all K tasks in the cotask
of a job, the job is guaranteed to meet its tail-latency SLO.
Note that this guarantee is on a per job basis and hence, works
even when different jobs have different tail-latency SLOs, i.e.,
different jobs are assigned different xp and p pairs.

Now, the questions remain to be answered are how to
estimate α, or equivalently, V , and how to determine and
allocate the minimum compute rate, Λc

K,q, and the minimum
flow rate, Λf

K,q. Assume that the task compute response time
and the associated flow completion time are independent
random variables. Then V = Vc + Vf [34], where Vc and Vf
are the budgets for the variances of the task compute time
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and flow completion time, respectively. In what follows, we
deal with flow related parameters, Λf

K,q and Vf , separately
from compute related parameters, Λc

K,q and Vc. In CurTail,
the network condition can be measured through packet round
trip time and the unloaded job tail latency can be computed
based on the task response time by excluding the queuing
time, and hence its overheads are light.

Estimating Λf
K,q and Vf : Since the datacenter network

resources are shared by all the flows, one has limited control
over these two parameters. So in CurTail, these parameters
are, to a large extent, obtained based on measurement.
CurTail applies Minimum Rate Guarantee (MRG) [35],
a soft minimum flow rate guaranteed congestion control
protocol, to maintain an average flow completion time with
high probability, which serves as the flow controller, F-C, in
Figure 1. Based on the measurement of the network condition,
a proper minimum rate Λc

K,q that can be sustained with high
probability is set in MRG. Likewise, Vf will simply be set at
the measured variance of the flow completion time.

Estimating Λc
K,q and Vc: Again, Vc is simply set at

the measured variance of the task compute time. Together
with the estimated Vf above, V is set at Vc+Vf , with possibly
a small extra margin to guard against the measurement errors.
With given V , K, and xp, α or E = E(K, p, xp, α) is then
uniquely determined. From Eq. (2), we have,

W c

Λc
K,q

≤ E(K,α, p, xp)− W f

Λf
K,q

≡ Ec(K,α, p, xp), (3)

where Ec(K,α, p, xp) is the task compute budget. While
Λf
K,q and W f are well defined and measurable, Λc

K,q and
W c are not easy to quantify and measure. Hence, in the
CurTail design, instead of attempting to directly estimate the
minimum compute rate, Λc

K,q, we focus directly on how to
allocate the task compute resource to meet the compute budget,
Ec(K,α, p, xp).

Let T c
q be the unloaded mean task compute response time

for a service at worker q. By ”unloaded”, we mean that the
entire compute resource in a worker is allocated to the task
without resource contention at worker q. We assume that T c

q

can be acquired by measurement. Clearly, we must have, T c
q ≤

Ec(K,α, p, xp), otherwise, the compute budget cannot be met,
even with the entire worker compute resource allocated to the
task. In each worker, tasks are scheduled using a time-sharing
scheduler, i.e., the compute controller, C-C, in Figure 1. To
meet the compute response time budget, the scheduler at a
worker allocates at least pcK,q = T c

q /Ec(K,α, p, xp) percent
of the total compute resource to the task from that service. If
all the workers have equal compute resource, then T c

q = T c

and pcK,q = pcK , ∀q.

III. SIMULATION TESTING

Simulation setup: Consider two datacenter services, one
with a tail-latency SLO, whose jobs are called T-jobs, and
the other without SLO requirement, whose jobs are called

B-jobs. We treat B-jobs as a single best-effort job and all
the B-tasks, i.e., the tasks from B-jobs, share a First-in-Fisrt-
Out (FIFO) queue at each worker, handled by a single thread.
Each T-task, i.e., a task from a T-job, arriving at a worker, is
handled by a new thread in the worker. CurTail allocates all the
additional compute resources to the B-tasks, provided that pcK
percent of the total compute resource is allocated to a T-task.
In the absence of a B-task at a worker, the additional worker
resources are then equally shared by T-tasks. Obviously, so
long as the sum of pcK’s for all the T-tasks mapped to the
worker is less than one, the task compute budgets for all
the T-tasks can be met. The additional compute resource, if
available, will then be dedicated to the first B-task from the
B-task FIFO queue.

The task processing time is time sliced with the slice size
set at 1 ms. Each T-task is serviced for multiple time slices
on average before context switching. If the execution time of
a task is less than 1 ms, it can be switched out before the end
of the time slice. This ensures that a context switching will
consume no more than a few percent of the CPU resource, as
each context switching takes about 50 µs to finish [36], [37].

As aforementioned, CurTail does not specify how tasks
should be dispatched. To avoid the possible bias as a result of
the use of a specific task dispatching algorithm, we consider
two extreme task dispatching algorithms, one with the global
information and the other with no information at all. For the
former one, when a job arrives at a job scheduler, the tasks of
the job are distributed to different workers which have the least
numbers of tasks. For the latter one, upon a job arrival at a
job scheduler, the tasks for the job are randomly distributed to
workers. We test the performance of CurTail against a baseline
case where each worker runs two strict priority FIFO queues.
The high/low priority queue stores T-tasks/B-Tasks. The tasks
from low priority queue cannot be served unless the high
priority queue is empty.

Consider a datacenter with a 5x5 leaf-spine network topol-
ogy and with each rack having 80 hosts (4 job schedulers
and 76 workers). The bandwidth/propagation delay is set at
10Gbps/10µs between a host and a leaf node and 10Gbps/20µs
between a leaf node and a spine node. While individual
jobs in B-job are large jobs in terms of task execution time,
representing background batch applications, T-jobs are small
jobs, representing user-facing interactive applications. About
equal numbers of the two types of jobs are generated, which
arrive following a Poisson process. The task execution time for
each task follows an exponential distribution with averages of
40 ms and 5 ms for the B-jobs and T-jobs, respectively.

Some background flows running among randomly selected
worker pairs are also generated. The flow arrival process is a
Poisson process and the flow arrival rate is adjusted so that
the total network traffic load is the same as the compute load.
This ensures that both compute and network resources will be
simultaneously stressed as the load increases.

We further assume that each T-task or B-task execution gen-
erates a single task flow with flow size randomly selected from
1K to 500 Kbytes, resulting in an average size, W f = 250
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TABLE II
THE COMPUTE BUDGETS, Ec , AND THE PERCENTAGES OF COMPUTE

RESOURCE, pcK , IN A WORKER HAVE TO BE ALLOCATED FOR A T-TASK
FROM A JOB WITH FANOUT DEGREE K .

Fanout degree (K) 5 10 15 20 25

Ec(ms) (load≤80%) 13.1 11.5 10.7 10.2 9.8

Ec(ms) (load 90%) 12.1 10.5 9.7 9.2 8.8

pcK (%) (load ≤ 80%) 38.2 43.5 46.7 49.0 51.0

pcK (%) (load 90%) 41.3 47.6 51.5 54.3 56.8

Kbytes for T-tasks. The flow rate Λf
K,q that can be guaranteed

is found to be 1 and 0.75 Gbps, ∀q, at the network loads of
80% or less and 90%, respectively. Then, the corresponding
mean flow budget for T-tasks is set as 3 ms and 4 ms (including
about ∆E=1 ms for task dispatch time) for load 80% or less
and load 90%, respectively.

In this study, the fanout degrees for B-jobs and T-jobs are
randomly selected from 1 to 50 and from the set of values (5,
10, 15, 20, 25), respectively. All the T-jobs share the same
tail-latency SLO, with the 99th-percentile tail-latency set at
100 ms. By considering both the measured variances of the
task flow and task compute times, α = 1 is found to allow
the variance budget guarantee. Then, we have the following
task response time budgets (derived from [30]): 16.1, 14.5,
13.7, 13.2 and 12.8 ms for T-jobs with fanout degrees 5, 10,
15, 20 and 25, respectively. Finally, the compute budgets and
the percentages of compute resource that have to be allocated
in a worker (as the unloaded mean task compute time is 5
ms) are computed and listed in Table II.

Simulation results and analysis: First, we consider
the case with global information. The 99th percentile tail-
latency for T-jobs and the average job response times for
both job types are used as the performance metrics. Figure
3 depicts the testing results. We see that for the baseline
solution, the 99th-percentile tail-latency increases from about
150 ms to more than 250 ms when both compute and network
loads increase from 50% to 90%, simultaneously. Note that
all the tail latencies presented are measured for all T-jobs
as a whole. Due to the lack of space, the tail-latencies
for jobs of individual fanout degrees which are also found
to meet the tail-latency SLO, are not given. The results
indicate that a scheduler even with global information and
using strict priority queuing cannot provide job tail-latency
guarantee at medium and high loads (50% or higher), as
in-service B-tasks can still block T-tasks from getting the
worker resources. This explains why to date, the datacenters
have to run at 20% to 50% resource utilization, in order
to meet stringent tail-latency SLOs. On the other hand, for
CurTail, the tail-latency increases from about 45 ms to about
80 ms only, below the tail-latency SLO of 100 ms. The
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Fig. 3. Task dispatching with global information
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reason why CurTail can perform better than that required by
the tail-latency SLO even at high load is that with global
information for task dispatching, T-tasks still have good
chances to find low load workers to map to, even though the
overall load is high. As a result, they are still able to garner
some additional compute and network resources to further
push the tail-latency lower than the required SLO.

For CurTail, with the needed resources allocated to T-jobs
with high precision, the average T-job response time increases
from about 20 ms to 40 ms when the load changes from 50%
to 90%. As a result, the overall average job response time for
T-jobs also improves by about 50% at high load compared
to the baseline solution. Meanwhile, CurTail offers almost the
same performance for B-job as the baseline solution even at
high load. CurTail achieves up to 20% better performance for
overall job response time at high load.

Now, consider the case with random task dispatching. In
this case, the task placement is much less balanced than
the previous case, resulting in much longer tail-latency and
average job response time. Figure 4 gives the testing results.
As we can see, despite the less balanced load, CurTail still
meets the tail-latency SLO, reaching about 90 ms at 90%
load, close to the tail-latency SLO, whereas the tail-latency
for the baseline solution reaches more than 300 ms. Due to
the randomness of task placement, T-tasks have much less
chance to find workers with low load, making it less likely
to be able to garner much additional resource at high load.
This clearly demonstrates the importance of using a solution
like CurTail to meet the stringent tail-latency SLO, especially
at high resource utilization. Similarly, CurTail performs about
70% better and has slightly better performance for average
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T-job response time and overall job response time over the
baseline solution, respectively, at the cost of less than 10%
increase of the average B-job response time.

The above results strongly suggest that CurTail indeed
provides tail-latency guarantee and high resource utilization
for single Fork-Join job structure. An open issue is how to
extend CurTail to deal with jobs with multi-stage Fork-Join
structures or even a general Directed Acyclic Graph (DAG)
workflow.

IV. CONCLUSIONS

In this paper, we propose CurTail, a distributed Cotask
scheduler with guaranteed Tail-latency SLO (CurTail) aiming
at providing job tail-latency-SLO guarantee and high resource
utilization. CurTail is a top-down and holistic approach. It
decouples an upper job-level design from a lower task-level
design. At the job level, a decomposition technique is proposed
to translate a tail-latency SLO to a task performance budget
at the task level, which is runtime system independent and
hence, portable to any datacenter platforms. In turn, the task
performance budget is further translated into task resource
demands at individual workers the tasks are mapped to. A
distributed budget-aware cotask scheduling is developed. The
preliminary testing results based on datacenter simulation
indicate that CurTail can indeed provide job tail-latency SLO
guarantee at high resource utilization.
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