ICONS 2011 : The Sixth International Conference on Systems

A Hardware-in-the-Loop Testing Platform
Based on a Common Off-The-Shelf Non-Real-Time Simulation PC

Daniel Ulmer*, Steffen Wittel!, Karsten Hiinlichf and Wolfgang Rosenstielt
*IT-Designers GmbH, Esslingen, Germany
Email: daniel.ulmer@it-designers.de
tDistributed Systems Engineering GmbH, Esslingen, Germany
Email: {steffen.wittel karsten.huenlich} @distributed-systems.de
iUm'versity of Tiibingen, Department of Computer Engineering, Tiibingen, Germany
Email: rosenstiel @informatik.uni-tuebingen.de

Abstract—The rapidly growing amount of software in em-
bedded real-time applications such as driver assistance func-
tions in cars leads to an increasing workload in the field of soft-
ware testing. An important issue is thereby the timing behavior
of the software running on the target hardware. For testing
this issue, real-time capable Hardware-in-the-Loop platforms
are needed. These testing platforms are mostly custom-made,
proprietary and in consequence expensive. Moreover, many
software developers usually have to share few instances. This
paper shows an approach for a real-time capable Hardware-in-
the-Loop platform based on a common off-the-shelf PC running
a non-real-time operating system. Thereby, the simulation
software runs on the developer’s desktop computer while an ex-
tended I/O interface ensures the real-time communication with
the System Under Test even for complex timing requirements
as shown in an example.

Keywords-Testing; Hardware-in-the-Loop; Embedded Real-
Time Systems; Temporal Behavior;

I. INTRODUCTION

Software development for embedded real-time systems, in
particular closed-loop control applications in the automotive
industry running on Electronic Control Units (ECUs), re-
quires a reliable testing of the timing behavior on the target
hardware. Highly frequent hardware-software integration
tests of the software module under development are required,
especially if the software development is done in an agile or
rapid prototyping manner. These tests are normally executed
on a Hardware-in-the-Loop (HiL) testing platform.

The established HiL testing platforms are usually complex
devices based on proprietary hardware and software, which
makes the platforms very expensive. Often these testing
platforms are based on standard PC hardware in combination
with an Real-Time Operating System (RTOS) and therefore
operated by separate tool chains. Since these testing plat-
forms are very complex and hence expensive, they are usu-
ally shared by several developers and are located in separate
laboratories instead of being close to the developers’ desk,
which inhibits the rapid prototyping development cycle.

The approach introduced in this paper uses an extended,
real-time capable I/O interface denominated as Real Time

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

Adapter (RTA) designed for the usage with a non-real-time
desktop computer directly at the developers’ desk. The PC
is used to perform the simulation models and to define
the expected timing behavior while the I/O interface is
responsible for keeping and observing the timing towards
the System Under Test (SUT). Unlike most commercial
HiL testing platforms, this approach allows to specify an
arbitrary timing behavior concerning the communication
to the embedded SUT. Furthermore, the approach enables
the engineer to use the same software tools for function
development or unit testing as well as for testing on the
target hardware.

ECUs for driver assistance functions are often connected
via bus interfaces to their surrounding ECUs and can there-
fore be stimulated by supporting the corresponding bus
interface. Even ECUs communicating via analogue or digital
I/O ports with their environment are mostly capable of
separating their application function from the I/O interfaces
by stimulating the application functions via a common
communication bus. Hence a HiL platform for functional
testing on the target hardware is possible for this case.

Conducted experiments and the results obtained in an
industrial setting addressing the tests of embedded systems
connected via the industry standard Controller Area Network
(CAN) [1] show that the combination of a real-time I/O
interface and standard desktop hardware are as effective
as established HiL testing platforms—but in a much more
efficient way—enabling a much higher test frequency.

The following two sections of this paper give an insight
into the testing of interconnected ECUs and the operating
principles of the RTA as an intelligent I/O device. In Section
4, a comparison relating to timing issues is done between
current HiL platforms and the introduced approach based on
the RTA. Section 5 finally shows an example for a test setup
used in the automotive industry.

II. TEST OF INTERCONNECTED ECUs

Significant parts of vehicle functions, especially modern
driver assistance functions, are realized with the help of

30

ICONS 2011 : The Sixth International Conference on Systems

software. Commonly, several ECUs and their respective
software contribute to implement a vehicle function that can
be experienced by the driver [2].

The distribution of software in different ECUs of the
vehicle requires that the ECUs are able to communicate
with each other. A common widely accepted approach for
interconnecting the ECUs is by sending messages on a bus
system such as CAN. In order to obtain a deterministic
timing behavior the majority of the messages are sent in
a cyclic manner with a pre-defined cycle time as shown
in Figure 1. ECUI periodically sends its calculation results
to ECU2 and vice versa. Especially for closed-loop control
vehicle functions—such as an Adaptive Cruise Control (ACC)
[3]-it is important to meet the given timing requirements.
The ECUs usually monitor the compliance with the pre-
defined cycle strictly, because a violation can result in
failure, which might be life-threatening to the passengers
of the vehicle.

Since the CAN bus itself is not deterministic [4], the
ECU is responsible for the correct communication timing.
Additionally, the priority of a CAN message is depending on
its message ID. The precision of the bus timing of a certain
message is hence depending on the precision of the ECUs’
RTOS and on the predefined message ID. Both, the ECU
and the CAN bus contribute to a deviation of the intended
cycle time that can be measured on the bus. If a message is
supposed to be sent with a cycle time of 20 ms, the cycle
time on the bus will be not exactly 20ms. The ECUs will
tolerate such an inaccuracy as long the deviation is below a
specified limit.

However, modern driver assistance functions narrow pro-
gressively the tolerance band of the allowed timing faults
while the CAN bus is populated by more and more ECUs
with increasing bandwidth requirements that exacerbate the
situation. Seen from a testing perspective, it is thus essential
that the reaction on corrupted bus timing is tested. This
implies that the testing device itself is able to meet the
timing requirements in the first instance and moreover to
manipulate it arbitrarily.

The first integration step in the development cycle, where
the timing behavior of an ECU’s CAN interface can be

|[ECU1

0

>

4

>

T

i

i

i
S I
i

1

i

i
oo
1

i

i

i

i

i

1

i
R

ECU2
=
Q
=

B Transmit Siot [[] Receive Slot [Wait [] Calculation

Figure 1. Cyclic communication of ECUs

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

tested, is the execution of the developed software on the
target hardware. A common approach is to do this on HiL
testing platforms.

Further on, it is useful having the HiL testing platform
close to the software-developers’ desk, especially if the ECU
software is developed in an agile manner with frequent
integration steps that require frequent testing on the target
hardware. Commonly, different software parts for driver
assistance functions are coded and tested by several devel-
opers in parallel. If these software parts are integrated into
one ECU, the developers have to share the available HiL
platforms. Instead of having a HiL testing platform waiting
for the developer, the developer often needs to wait for the
HiL platform.

III. REAL TIME ADAPTER

The RTA [5] combines the functionality of a mobile data
logger and an intelligent I/O device for CAN. Its core
functions [6] are implemented in VHDL to increase the
execution speed and run them as parallel as possible on
the built-in FPGA. In the case of the mobile data logger
the CAN messages from the SUT can be stored locally
on the device, whereas in the case of the I/O device the
messages are transferred to an external PC and vice versa
via an Ethernet connection.

As illustrated in Figure 2, the PC can process the provided
information and calculate the transmit time of the response
based on high precision time stamps added by the RTA to
each received CAN message. Hence, a variable processing
time on the PC within the tolerance range does not matter.
The RTA takes care about the correct sending points of the
CAN messages as well as detects timing violations caused
by messages with time stamps that cannot be transmitted
in time. It decouples the non-real-time behavior of the PC
from the precise real-time behavior towards the SUT, which
even allows the performing of complex test cases with the
exact timing at each test run. The timing of each message is
thereby treated separately by the RTA and thus the transmit
time can be simply manipulated during a test run. Especially,
this characteristic is important for test cases that validate the
correctness of the SUT communication timing.

Time Stamping !
L t,

ion Message(m,, t;) !
1

Message(m,, t;)

/ Idle Time
A

e \Tolerance Range

1
1 Processing Time '
1 1

Message(m,) | | ,;tz

Figure 2. Sequence diagram of CAN RX/TX with an RTA

31

ICONS 2011 : The Sixth International Conference on Systems

IV. HIL PLATFORMS

In the following current HilL approaches are discussed
with a closer look on their timing behavior. Additionally, the
new approach that addresses the requirements for an agile
usage as well as for the timing issues is introduced.

A. HiL Platform Based on an RTOS

Current Hil. platforms, as they are introduced in [7],
usually focus on ECU testing from a functional and non-
functional perspective. This means that the testing platform
covers the testing of the reaction to electrical errors as well
as the test of the functions required by a driver assistance
function. The approach of testing the whole test plan at
only one testing platform makes this platform very complex
from the hardware as well as from the software point of
view. Although current solutions, as proposed by ETAS [8],
are based on off-the-shelf computer hardware, they have
to be expanded by several special software and hardware
components needed to achieve the required functionality.
One important software component is the Residual Bus
Simulation (RBS), which is responsible for imitating the
environment around the ECU seen from a communication
point of view. If the SUT is connected via CAN buses to
its surrounding components, the RBS needs to ensure the
same communication behavior as established by the real
environment of the SUT. For guaranteeing the real-time
behavior of the CAN communication, an RTOS is used to
implement the RBS for the CAN bus and the additionally
required software components such as environment models.
If the schedule of the RTOS is set up correctly, a precise
execution of the desired CAN schedule is guaranteed within
the tolerance of the RTOS.

Figure 3 shows the measured time between two CAN
messages with the same message ID during a HiL test at
a platform based on an RTOS [9][10][11]. According to the
CAN schedule, the message is supposed to have a 20ms

20.8 A ge: 10_0“2
Deviation: 0.197 ms

20.6

204} 1 1

At [ms]

19.4

19.2

0 200 400 600 800
Message

1000 1200 1400

Figure 3. RTOS HiL - 20 ms cycle time message

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

cycle. The plot displays that this implementation achieves an
average cycle time of almost 20 ms with a standard deviation
of about 200 ps. Single outliers are reaching up to a period of
20.8 ms between two consecutive messages. In this example
the measured timing still fulfils the SUT requirements.

B. HiL Platform for Functional Testing

For testing the functional behavior of different software
modules running on the same ECU, it is helpful to have
several testing platforms close to the developers’ desks. Of
course, for testing the ECUs reaction to electrical errors it is
still necessary to use the complex platforms introduced be-
fore. For a quick test of a change in a hardware independent
software module, HiLL platforms based on a Common Off-
The-Shelf (COTS) computer can be built that are connected
via a CAN interface to the SUT. In this context using COTS
components not only refers to hardware but additionally to
software including a non-real-time Operating System (OS),
typically Microsoft Windows. Additionally within the con-
text of large companies, the IT support determines the use of
virus scanners and other tools, if the PC interconnects with
the corporate network. Using a standard computer means
that it might also be a laptop. In this case it is easily possible
to use the HiL setup within a test vehicle or while being at a
field trial. Another advantage of using the standard desktop
OS is that the already existing tool chain can be used to set
up the HiL platform. Especially, the libraries of environment
models for Model-in-the-Loop (MiL) and Software-in-the-
Loop (SiL) simulations from earlier integration steps of the
driver assistance function can be reused without the need of
being ported to an RTOS environment.

Figure 4 shows the time between two consecutive CAN
messages of the same message ID during a Hil test on
such a platform without an RTOS. The plot displays that
the implementation based on a COTS computer and a CAN
interface achieves an average cycle time of 20ms with

Average: 20.023 ms
Deviation: 0.878 ms

26.0 ' f

20.0

18.0 "

0 500

1000
Message

1500

Figure 4. Non-real-time OS HiL — 20 ms cycle time message

32

ICONS 2011 : The Sixth International Conference on Systems

a more than fourfold standard deviation of approximately
900 us. Getting worse, in this case outliers of up to 8 ms
can be seen. This approach only works, if the ECU tolerates
such outliers.

A major drawback of this approach is that the environment
models and the RBS have to be either implemented on the
OS of the COTS computer or at least the RBS has to be
shifted to the CAN interface. In the first case, the timing
behavior of the RBS is depending on the timing behavior of
the non-real-time OS. In the latter case, a separate tool chain
is necessary to implement the RBS on the CAN interface.
This leads to a fix communication schedule, which can
be only manipulated at runtime if a complex handshake
between the PC and the RBS is set up. If the implementation
of the timing supervising software within the ECU is not too
strict, the first approach works in practical use.

C. HiL Based on a COTS Computer and an RTA

Since the timing requirements of the ECUs tighten and
the implemented driver assistance functions require more
and more precise data at an accurate point in time, the
timing behavior shown in Figure 4 is not acceptable any-
more. Additionally, if the implemented function, e.g., for
interacting vehicles [12], is not only depending on the data
value but also on its arrival time, the targeted testing of
the reaction on certain bus timing becomes necessary. A
HiL platform, which solves the timing issues while leaving
the RBS on the COTS computer (PC), is introduced in [5]
and [6]. The approach leaves it up to the PC to define the
intended sending time of a message. This time stamp is then
handed over together with the payload to the RTA. While the
computer is responsible for calculating timing and content,
the RTA precisely plans, executes and supervises the desired
timing. If for any reason the desired timing cannot be kept
within a certain tolerance, the RTA informs the simulation
software on the computer. It is then up to the simulation
application to repeat the test case. Thereby, an upper limit
prevents the HiL testing platform from repeating the same
test case too often.

Timing violations usually originates from the non-real-
time OS on the PC in combination with the time consuming
or concurrent execution of programs during a test run,
e.g., anti-virus scanners, mail software or automatic update
clients. The test implementation itself and the resources
consumption associated with it also affect the timing. Test
cases, which need more processing time on the PC for one
simulation step as the expected cycle time of the SUT, are
not suitable to be executed on this platform.

Figure 5 shows the result of the introduced solution for a
current ECU with driver assistance functions. The intended
cycle time of 20ms is kept with a standard deviation of
5 us. Even the outliers, which occur in this case due to the
occupied bus, are less than 40 ps.

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

Average: 20.007 ms
Deviati

20.03 0.005.ms

20.02

20.01

20.00

At [ms]

19.99

19.98

19.97

0 200 400 600 800
Message

1000 1200

Figure 5. RTA HiL — 20 ms cycle message

The performance of the HilL testing platform primarily
depends on the COTS hardware used to set up the platform,
which determines the test case limitations in terms of timing.
Practical experiences with a prototypical implementation
show that approximately one of 1000 test cases has to
be repeated. Moreover, measurements during the evaluation
revealed an average pass through time of about 4ms to
receive a CAN message from the SUT and send the response
back. The time also includes the calculation of a common
test step within the simulation on the PC. In the example
this means that the HiL testing platform has roughly 16 ms
at a cycle time of 20ms to compensate outliers occurred
during the performing of a test case. Based on these obtained
results the outliers are not an exclusion criterion for the use
in a production environment, because they are detected and
reported by the RTA.

V. EXAMPLE

An example for a test setup used in the automotive
industry is displayed in Figure 6, which comprises of a
standard PC with an RTA as well as of the SUT itself
consisting of two CPUs that are connected to the same
clock oscillator. Thereby, the PC and the RTA are used to
simulate the ECU’s environment. For safety critical reasons,
some applications within the ECU are tested on module level
embedded into the final hardware. The Communication CPU
has two tasks with 20ms cycle time. On the one hand, it

System Under Test (SUT)

PC Ethernet CAN bus @

CLK:

C e PN
CPU CPU

(20ms Cycle) [*(40ms Cycle)

f f

v

Figure 6. Example for a test setup

33

ICONS 2011 : The Sixth International Conference on Systems

implements the bus communication that consists of receiving
and transmitting messages and updating the internal signal
database. On the other hand, this CPU is used to validate
the results of critical functions running on the Application
CPU. The Application CPU runs at 40 ms cycle time and is
responsible for processing the implemented driver assistance
functions.

One software module running on the Application CPU
implements a safety critical requirement. In this example
we assume that a sensor sends a signal denominated Object
Type. This signal is specified to be zero for two CAN
cycles and four for the following three CAN cycles, if
the sensor is faulty. The safety critical requirement of the
software module is to detect this situation and to prevent
a driver assistance function from interfering. The correct
implementation of the software module is to be tested on
the target hardware and hence at a HiLL platform. Since the
clocks of the SUT and the HiL platform are independent, it
cannot be guaranteed that the sequence is received correctly
at the SUT’s internal data interface. To achieve reproducible
test results, it is necessary to synchronize the testing platform
with the SUT. The synchronization mechanism is shown in
Figure 7. Some Application Results are handed over from
the Application CPU to the Communication CPU, which
transmits the corresponding CAN message on the CAN bus.
The RTA delivers this message together with a receive time
stamp to the PC running the environment simulation. After
calculating the simulation environment model, the result is
handed over to the RTA for being sent 41 ms ahead in time.
This ensures that the result is available for the Application
CPU right before a new application cycle begins.

Listing 1 shows a pseudo code sample for an implemen-
tation on a PC based platform for functional testing. Since
the sending time of the message is in this case depending
on the scheduling of the TransmitThread of the non-real-

App.
cPU
7 7| | e
) T .y t T . “ t [ms]
120 40 60 80 100 120 140
Comm. iA;:)p. Result ! EObject Type : : D
CPU
— t [ms]
CAN —mmbb e Vo Vo L
e At=41ms !
RTA * Time Stamp ' Wait for Time Triggered Send
v %
% % A‘: “»t [ms]
: é«--orfset: +41ms l Application Result
Ethermet -t ‘ [] simulation Result
ermet = . [] Application Cycle
pC ' [Transmit/Receive Slots
¥ : Wait
2, 2, 1 ¢ ms) B Validation of App. CPU
Figure 7. Synchronization of the testing platform with the SUT

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

time OS, it cannot be guaranteed that the sequence is sent
as specified.

WHILE (NOT quit)
BEGIN

// Receive CAN Message
Receive (in_message)

// Calculate Environment Simulation Model
out_message = CalcEnvModel (in_message)

// Calculate Output Message Time Stamp
time_stamp = in_message.time_stamp + 41

// Transmit CAN Message using the Windows
// Event Timer in a separate Thread
TransmitThread (out_message, time_stamp)

// Wait until next Cycle
WaitForNextWindowsTimeEvent ()

END

Listing 1. Standard PC synchronization mechanism

Listing 2 illustrates that in case of an RTA based HiL
testing platform the precise sending of the message is done
by the RTA and therefore independently of the OS timing
deviations. In the worst case, a message is sent too late to
the RTA and the test case is then being declared invalid and
repeated.

WHILE (NOT quit)
BEGIN

// Receive CAN Message
RTA_ReceiveMessage (in_message)

// Calculate Environment Simulation Model
out_message = CalcEnvModel (in_message)

// Calculate Output Message Time Stamp
time_stamp = in_message.time_stamp + 41

// Transmit CAN Message to RTA

RTA_TTS_TransmitMessage (out_message, time_stamp)

// Wait until next Cycle
RTA_WaitForNextCycle ()

END

Listing 2. RTA synchronization mechanism

Figure 8 shows the results achieved on the CAN bus with
a bus load of 60 % and a cycle time of 20 ms for the CAN
messages. The sequence of two cycles zero and three cycles
four is precisely executed. In the project context we have
implemented this testing challenge on the RTA based HiL
platform since this platform is available at every developers’
desk and the modification of the existing simulation code
has been limited to adding a constant offset to the time
stamp of an incoming message. We have decided against
an implementation on an RTOS HiL since there is only one
instance available, which can either be used for implement-
ing new features or for running tests. Synchronizing the time

34

ICONS 2011 : The Sixth International Conference on Systems

Object Type =0
! » Object Type = 4

(2 Cycles) N\
3 Cycles)
Value /_ (
‘k 1 1

4

t » Cycle
0 2 5 7 10 12 15 17

Figure 8. CAN trace for cyclic stimulation

slice based RTOS to the SUT would have meant to change
the complete simulation kernel and therefore several days of
implementation work.

VI. CONCLUSION AND FUTURE WORK

The measurements demonstrate that it is possible to
implement a HiL testing platform fulfilling the timing re-
quirements of modern driver assistance functions and the
requirements of an agile or rapid prototyping development
process within the automotive industry. It has also been
shown that current testing platforms address one of these
aspects while the RTA approach addresses both. It has also
been argued that the achieved timing on the CAN bus of the
RTA based HiL platform is more precise than the timing
of the RTOS HiL. It is left for future work to study the
advantages of the RTA approach in terms of the definition
and flexible manipulation of the timing behavior, e.g., for
deterministic robustness tests of the function software. One
aspect might be the modeling of a statistic temporal distri-
bution where the parameters can be influenced by random
testing or by evolutionary testing. Additionally, the RTA
approach might be used as a cost efficient HiLL setup for
a continuous integration tool chain for embedded software
development. Due to the usually large number of variants
on the level of hardware-software integration, a high test
volume must be considered here. However, each test can
be executed at maximum in real-time for each variant. This
means that for quick results many parallel HiLL platforms are
necessary. The price efficient HiL testing platform based on
the RTA is a necessary step to implement this idea.

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

(1]

(2]

(3]

(4]

[5]

(6]

(7]

(8]

[9]

[10]

(11]

[12]

REFERENCES

1SO, ISO 11898-1:2003: Road vehicles — Controller area
network (CAN) — Part 1: Data link layer and physical
signalling. International Organization for Standardization,
1993.

C. Marscholik and P. Subke, Road vehicles - Diagnostic
communication: Technology and Applications. Hiithig, 2008.

Daimler AG, “The challenge of accident prevention”, Mile-
stones in Vehicle Safety. The Vision of Accident-free Driving,
2009.

K. Etschberger, Controller Area Network. Basics, Protocols,
Chips and Applications. 1XXAT Automation, 2001.

IT-Designers GmbH, “RZA”, Access Date: November 10,
2010. [Online]. Available: http://www.it-designers.de/RTA

D. Ulmer, A. Theissler, and K. Hiinlich, “PC-Based Mea-
suring and Test System for High-Precision Recording and
In-The-Loop-Simulation of Driver Assistance Functions”, in
Proceedings of the Embedded World Conference, 2010.

C. Marscholik and P. Subke, Datenkommunikation im Auto-
mobil. Hiithig, 2007.

ETAS GmbH, “LABCAR System Components - ETAS
Products”, Access Date: November 10, 2010. [Online].
Available: http://www.etas.com/en/products/labcar_system_
components.php

ETAS GmbH, “LABCAR-RTPC Real-Time Simulation
Target for HiL. Testing”, Access Date: November 10, 2010.
[Online]. Available: http://www.etas.com/en/products/labcar_

rtpc.php

G. Wittler and J. Crepin, “Real-time and Performance Aspects
of Hardware-in-the-Loop (HiL) Testing Systems”, ATZonline,
2007.

J. Kiszka, “Xenomai: The RTOS Chameleon for Linux”,
Real-Time Systems Group, Leibniz Universitit Hannover,
Tech. Rep., 2007.

D. Ulmer and A. Theissler, “Application of the V-Model for
the development of interacting vehicles and resulting require-
ments for an adequate testing platform”, in Proceedings of
the Software and Systems Quality Conferences, 2009.

35

