

Designing a Fault-Tolerant Satellite System in SystemC

Kashif Javed
Department of Information Technologies

Abo Akademi University
Turku, FIN-20520, Finland

Kashif.Javed@abo.fi

Elena Troubitsyna
Department of Information Technologies

Abo Akademi University
Turku, FIN-20520, Finland
Elena.Troubitsyna@abo.fi

Abstract—Designing fault-tolerant satellite systems is a
challenging engineering task. Often behavior of satellite
systems is structured using notion of modes. Ensuring
correctness of mode transitions is vital for guaranteeing safe
and fault-tolerant functioning of a satellite. In this paper, we
propose an approach to designing fault-tolerant satellite
systems in SystemC. We demonstrate how to develop Attitude
and Orbit Control System in SystemC and verify its
correctness via model checking.

Keywords-component; Fault-Tolerance; Mode-Rich Systems;
Design; Verification

I. INTRODUCTION
Designing a system controlling a spacecraft is a

challenging engineering task. The system should satisfy a
large number of diverse functional and non-functional
requirements. In particular, the designers should aim at
building a fault-tolerant system, i.e., the system that should
cope with faults of various system components. Often
behavior of satellite systems is structured using the notion
of modes – mutually exclusive sets of system behavior.
Fault-tolerance is achieved by putting the system to some
downgraded mode when an error occurs. In this paper, we
consider an Attitude and Orbit Control System (AOCS) – a
generic subsystem of a spacecraft [1]. We demonstrate how
to achieve fault-tolerance via backward mode transitions.

AOCS is a complex control system consisting of several
components. To ensure correctness of mode transition, we
need to guarantee that all components reach a certain state.
Moreover, when a component fails we need to guarantee
that all other components make an appropriate backward
transition.

In this paper, we propose an approach for designing
more-rich system in SystemC programming language. We
propose an algorithm defining mode-transition scheme of
AOCS. To confirm correctness of our algorithm, we have
converted it into Promela [6,7] and the results have been
verified using SPIN model checker [7,8].

Section II presents architecture of the system. Unit
branch state and state transitions have been explained in
Section III and the controller phases & phase transitions of
the AOCS are described in Section IV. Mode transitions and
fault-tolerance procedures for correct functioning of the
satellite under faulty conditions are illustrated in Sections V
and VI respectively. Section VII explains verification of the

implemented system and the paper is summarized in Section
VIII besides giving direction for the future work.

II. ARCHITECTURE
The main purpose of AOCS is to control attitude and

orbit [1] of a satellite. AOCS consists of a number of
components -- AOCS Manager, FDIR (Failure Detection,
Isolation and Recovery) Manager, Mode Manager and Unit
Manager. The AOCS manager plays key role while dealing
with the processing of sensor data, managing actuator
movements relating to the units of Reaction Wheel (RW)
and Thruster (THR) and doing computation for various
controls. The responsibility of FDIR is to timely deal with
such tasks as failure detection, isolation and recovery. Mode
transitions are handled by the Mode Manager whereas the
Unit Manager deals with unit reconfigurations and unit level
state transitions [2,3]. Mode and Unit Manager
Architectures are further elaborated in the following
paragraphs.

A. Mode Manager
The responsibilities of mode include checking of mode

transition preconditions, execution of mode transitions,
management of controller phases and partially management
of related units. There are six different types of controlled
modes (i.e. Off, Standby, Safe, Nominal, Preparation and
Science) in the mode manager and each mode has its own
well-defined unique function. A brief summary of these
modes is given below:

1) Off Mode: The satellite is immediately switched in
the off mode as soon as the AOCS software booting is
completed from the central data management unit.

2) Standby Mode: It is important to check and ensure
successful separation of the spacecraft from the launcher
and this work is continuously monitored and completed by
the software process during the standby mode.

3) Safe Mode: Satellite enters this mode when the
separation from the launcher is done. As soon as the system
is in the safe mode, the relevant portions of Earth Sensor
(ES), RW (Reaction Wheel) and Sun Sensor (SS) are
switched to on state, the coarse pointing controller goes in
the running phase and fine pointing controller is put in the
idle phase. Initially the satellite acquires a stable attitude
and then it achieves the coarse pointing.

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

4) Nominal Mode: When a mode transitions to nominal,
the coarse pointing controller becomes idle and the fine
pointing controller is set to the running phase. The selected
branches of RW, Star Tracker (STR) and THR are switched
to on state. In this mode, the satellite utilizes fine pointing
control so that the Payload Instrument (PLI) in the AOCS is
properly used for measurements.

5) Preparation Mode: The moment the mode is
transitioned to the preparation, the concerned portion of
Global Positioning System (GPS) is set to fine state, the
relevant branch of PLI is switched to standby state and
needed processes of RW, STR and THR go to on state.
Thus, this mode ensures that the fine pointing control is
reached and PLI gets ready for fulfilling its required tasks.

6) Science Mode: In science mode, the selected branch
of GPS remains in the fine state, the concerned branch of
PLI goes in the science state and the relevant parts of RW,
STR and THR maintain their on state. Therefore, the PLI in
this mode is ready to perform the tasks for which it has been
designed. It stays in this mode till the completion of planned
tasks.

B. Unit Manager
The AOCS consists of seven different units and internal

state changes in these units are controlled by the unit
manager. Mode manager controls the components of unit
manager. Seven different controlled units are ES, SS, STR,
GPS, RW, THR and PLI. Their brief description is as
under:

1) ES is a device that measures the direction to the
earth in the sensor’s field of view. ES’s internal state is
either on and off.

2) SS is a tool to measure the direction to the sun in the
sensor’s field of view. It is also in the on or off state.

3) STR is an optical device that measures the position of
stars in its field of view and performs pattern recognition on
these stars in order to identify the portion of the sky at
which it is looking. Two possible STR’s operational states
are on and off.

4) GPS is a sophisticated gadget that receives readings
related to the satellite position and makes calculations to
determine satellite’s attitude. Two possible states of GPS
operation are coarse navigation and fine navigation.

5) RW is a rotating wheel which is essentially required
in order to apply the required torque to the satellite. It is
achieved by accelerating or breaking the wheel. RW’s state
can be either on or off.

6) THR is a position actuator that is used to force the
satellite to change its position and its orbit by emitting gas.
It can also be in either on or off state.

7) The PLI is an instrument which provides required
measurements pertaining to the specific mission. It can
operate in standby or science state.

III. UNIT BRANCH STATE AND STATE TRANSITIONS
Every unit is implemented as a pair of identical devices

to maintain the nominal branch and the redundant branch.
For each unit, one and only one branch is selected at a time.
Every selected branch is in on state and its status is locked.
In other words, a branch in the off state is always allocated
an unlocked status.

In total, there are six states of unit components (i.e. on, off,
coarse, fine, standby and science). Whenever an unit state
goes from off to on, the powering takes place. Similarly,
when the unit switches from on to off state, un-powering
takes place. Powering and un-Powering are associated with
the states and state transitions of a branch of ES, SS, STR,
RW or THR. Occurrence of such states and state transitions
is shown in Figure 1. For the GPS unit, unit state goes from
off to coarse state and coarse to fine state, then powering
and upgrading is carried out respectively. In case of fine to
off state transition, first downgrading is performed then un-
powering is done. States and State Transitions of a Branch
of GPS are depicted in Figure 2.

Figure 1: States and State Transitions of a Branch of ES,
SS, RW, STR or THR [1]

In case of PLI unit, when the unit state goes from off to
standby and from standby to science state, then powering
and upgrading is achieved respectively. In case of science to
off state transition, first downgrading occurs and then un-
powering takes place. Figure 3 demonstrates states and their
transitions of a branch of PLI.

Figure 2:States and State Transitions of a Branch of GPS [1]

Figure 3: States and State Transitions of a Branch of PLI [1]

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

State transitions are very fast to accommodate time
constrains for real-time satellite operations. Hence, any state
transition to powering, un-powering, upgrading or
downgrading takes less than one AOCS cycle. However,
every state transition to off takes minimum three and
maximum four AOCS cycles. Any state transition to on,
coarse, fine, standby or science has a success condition if
the transition gets completed during the first AOCS cycle
when the condition is observed to hold. However, any state
transition to on, coarse, fine, standby or science is
overridden if the associated success condition is not
observed to hold within a predefined number of AOCS
cycles from start of the transition.

IV. CONTROLLER PHASES AND PHASE TRANSITIONS
The AOCS has two controllers -- Coarse Pointing

Controller (CPC) and Fine Pointing Controller (FPC). The
main objective of these two controllers is to direct the line
of sight with a specified coarse accuracy and fine accuracy
respectively. It is an essential requirement and must be met
within given time limits. The following rules have to be
observed during the controller phase transitions when a
certain operational mode is reached:

1) Both controllers go to idle phase when the mode
transition is set to off or standby state.

2) When the mode transition is switched to safe state,
the CPC enters the running phase and the FPC remains in
the idle phase.

3) When the mode transition shifts to nominal,
preparation or science, the CPC goes in the idle phase and
the FPC moves in the running phase.

Only one controller can be in non-idle phase at any point of
time. When a controller phase has to switch from idle to
running, first of all it is set to preparing. After predefined
number of AOCS cycles, the controller is set to ready phase.
Finally, the phase of controller is shifted to running as
indicated in Figure 4. It can also be noticed that the
controller can directly move to the idle phase from any of
the other three phases (preparing, ready and running).

Figure 4: Phases and Phase Transitions of a Controller [1]

V. MODE TRANSITIONS
The following rules are imposed on mode transitions in

order to ensure correct satellite function in nominal (fault-
free) and faulty conditions:

1) When a mode transition to off or standby is
completed, it is ensured that every branch in every unit is
put in the off state.

2) On reaching to the safe mode, the selected branches
of ES, RW and SS are set in the on state and all other
branches pertaining to different units go to the off state.

3) In case of a transition to the nominal mode, the
selected branch of GPS is turned in the coarse state, the
concerned branches of RW, STR and THR are set to on
state, and remaining every branch in every unit is put in the
off state.

4) Completion of a mode transition to preparation
ensures that the relevant branch of GPS is in the fine state,
the chosen branch of PLI is in the standby state, the selected
parts of RW, STR and THR are in the on state, and rest
every branch in every unit is in the off state.

5) A mode transition to science requires that the needed
branch of GPS is in the fine state, the selected branch of PLI
is in the science state, the concerned branches of RW, STR
and THR are in the on state, and all other branches
pertaining to different units remain in the off state.

VI. FAULT TOLERANCE
Fault-tolerance should guarantee that the system

continues to operate in predictable way even in case of
failure of any of its components. Recovery from errors in
fault-tolerant systems can be characterized as either roll
forward or roll back. Forward error recovery aims at
bringing the system to a new error-free state. Backward
error recovery rolls back the system to some previous state
before an error occurrence. In mode-rich systems, the
backward error recovery is achieved via backward mode
transition, i.e., mode downgrading. The mode down-
gradation depends on various errors, which are explained
below:

A. Branch State Transition Errors
A branch state transition error means that when some unit

transitions to on state, the mode coarse, fine, standby or
science gets overridden due to timeout condition. Because
operation and state transition delays have to be avoided, we
should time each mode transition. If a step of transition is not
completed within a specified time limit, timeout signal is
generated to get into a safe condition. The important error
checks concerning to the branch state transitions are:

1) A branch state transition error on the redundant

branch of ES, RW or SS causes a mode transition to off.
2) A mode transition to safe takes place when there is a

branch state transition error on the redundant branch of
GPS, STR or THR and there is no branch state transition
error on the redundant branches of ES, RW and SS.

3) When a branch state transition error on the redundant
branch of PLI occurs, it results into a mode transition to

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

nominal provided that there is no branch state transition
error on the redundant branches of ES, SS, GPS, RW, STR
and THR.

B. Phase Transition Errors
A phase transition error or an attitude error may arise

during the computations done by the selected controller. An
attitude error is generated when there is a problem in the
execution of an AOCS algorithm. It means that an error
occurs only when one of the two controllers (i.e. CPC and
FPC) is in the running phase. The key factors relating to the
attitude errors are:

1) If the current mode is safe, then a non-ignored
attitude error causes a transition to the off mode.

2) In case the existing mode is nominal and a non-
ignored attitude error occurs, a mode transition to safe takes
place.

3) A mode transition to nominal takes place when the
current mode is preparation and a non-ignored attitude error
is generated.

4) The generation of a non-ignored attitude error moves
the mode transition to preparation with the condition that the
existing mode is science.

C. Unit Reconfiguration
Each logical unit consists of two hardware units known

as nominal and redundant. Initially, the nominal unit works
in the active role and provides all the necessary support for
normal operation of the system. The redundant unit serves
as a backup resource. When an error is detected in the
nominal unit, it becomes “reconfigured”. It means that the
nominal unit is switched off and the redundant unit takes
over the operational tasks.

The important errors that take place during the unit
reconfiguration are:

1) A branch state transition error on the nominal branch
of ES, SS or RW causes a reconfiguration of the unit if there
is no branch state transition error on the redundant branches
of ES, SS and RW.

2) A branch state transition error on the nominal branch
of GPS, STR, THR or PLI causes a reconfiguration of the
unit if there is no branch state transition error on the
redundant branches of ES, SS, GPS, RW, STR and THR.

 Figure 6 shows detailed flow chart of the implemented

system.

VII. VERIFICATION
We have implemented mode-transition algorithm in

SystemC language. The SystemC Verification Standard
provides API for transaction based verification, constrained
and weighted randomization, exception handling, and other
verification tasks [4,5]. SystemC supports the use of special
data types which are often used by the hardware engineers.
It comes with a strong simulation kernel to enable the

designers to write good test benches for easy and speedy
simulation. It is extremely important because the functional
verification at the system level saves a lot of money and
time.

The system architecture that is implemented in SystemC
is verified in the SPIN model checker. SPIN [6,7,8] is often
used to verify behavior of distributed and parallel systems.
PROMELA (PROcess MEta LAnguage) is a high level
language which is widely used to specify systems
descriptions and is fully supported by SPIN for the purpose
of verification of software-based applications. SPIN
PROMELA is used to carry out detailed testing and
verification of design and architecture of various systems.

The simplified system architecture for AOCS is shown in
Figure 5.

Figure 5: System Architecture [1]

An example of an interfaces between the FDIR Manager,
Mode Manager and Unit Manager shown in Figure 5 are
given below.

When failure occurs in the system, FDIR detects the
error and issues the requests of mode transition, and then
Mode Manager is responsible for mode transitions to the
downgraded mode on the basis of error type. The following
part of the code represents the Interface I scenario for
Science Mode.

if (Mode==F) // Mode F: Science Mode
{ if (ES==off && SS==off && GPS==fine && STR==on &&

RW==on && THR==on && PLI==science && CPC==idle
&& FPC==run)
{/* The associated code describes that the conditions are valid
for Science Mode. The current mode is Science. */}
else if ((ES!=off || SS!=off || RW!=on) && STR==on &&
GPS==fine && THR==on && PLI==science && CPC==idle
&& FPC==run)
{/* The associated code describes that the conditions are not
valid for Science Mode as error occurs on the unit branch of ES,
SS or RW. It causes the mode transition to Off Mode. */}
else if ((GPS!=fine || STR!=on || THR!=on) && ES==off &&
SS==off && RW==on && PLI==science && CPC==idle &&
FPC==run)
{/* The associated code describes that the conditions are not
valid for Science Mode as error occurs on the unit branch of
GPS, STR or THR. It causes the mode transition to Safe Mode.
*/}
else if (ES==off && SS==off && GPS==fine && STR==on
&& RW==on && THR==on && PLI!=science && CPC==idle
&& FPC==run)
{/* The associated code describes that the conditions are not
valid for Science Mode as error occurs on the unit branch of
PLI. It causes the mode transition to Nominal Mode. */}
else if (ES==off && SS==off && GPS==fine && STR==on
&& RW==on && THR==on && PLI==science &&
(CPC!=idle || FPC!=run))
{/* The associated code describes that the conditions are not
valid for Science Mode as error occurs in the phase of Coarse or

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

Fine Pointing Controller. It causes the mode transition to
Preparation Mode. */}
else
{/* The associated code describes that no transitions take place.
*/ } }

else
{/* The associated code describes that it is an invalid mode. Program is

terminated.*/}
The SPIN’s verification model successfully checks all the

global mode transitions and the fault-tolerance of the system
architecture. We have successfully verified forward and
backward mode transitions and ensured correctness of
global mode transitions with respect to component states.

VIII. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an approach to

designing fault tolerant mode-rich control systems. Our
work aimed at demonstrating how to design satellite control
system in SystemC and verify correctness using model
checking. Our approach has been demonstrated by the
design of Attitude and Orbit Control System – a generic
subsystem of spacecrafts.

 The proposed system has been implemented in
SystemC language as it is being used as a defacto
verification standard in embedded systems. SystemC
specification was easily aligned with Promela which works
as the input language to SPIN for model checking and
verification.

We have presented the design of the system and
verification steps pertaining to unit branch transition errors,
controller phase transition errors and unit reconfiguration.

 Our work complements research done on formal
modeling of mode-rich satellite systems. The formal
modeling undertaken in [9,10] aimed at enabling proof-
based verification of mode-rich systems modeled in Event-
B. In [11] the authors perform failure modes and effect
analysis of each particular mode transition to systematically
design mode transition scheme. Our work aims at building a
gap between formal specification and code. This motivated
our choice of SystemC as a design language and model-
checking based verification.

As a future work, we are planning to investigate design
and verification of decentralized mode-rich systems. In
particular, we will study how to ensure correctness of mode
transitions as a result of negotiation between several mode
managers.

REFERENCES

[1] “DEPLOY Work Package 3 - Attitude and Orbit Control
System Software Requirements Document”, Space Systems
Finland, Ltd., December 2010.

[2] M. Heimdahl and N. Leveson, “Completeness and
Consistency in Hierarchical State-Based Requirements”,
IEEE Transactions on Software Engineering, Vol.22, No. 6,
June 1996, pp. 363-377.

[3] N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga, and J. D.
Reese, “Analyzing Software Specifications for Mode
Confusion Potential”, Proceedings of Workshop on Human
Error and System Development, C.W. Johnson, Editor, March
1997, Glasgow, Scotland, pp. 132-146.

[4] C. Ip and S. Swan, “A tutorial introduction on the new
SystemC verification standard”, Technical report,
www.systemc.org, 2003.

[5] L. Singh and L. Drucker, “Advanced Verification Techniques
: A SystemC Based Approach for Successful Tapeout”,
Springer, 2004.

[6] J. Katoen, “Concepts, Algorithms and Tools for Model
Checking", Lecture Notes, Chapter 1: System Validation,
1999.

[7] N. A. S. A. Larc, “What is Formal Methods?", NASA
Langley Methods, http://shemesh.larc.nasa.gov/fm/fm-
what.html, formal methods program, 2001.

[8] Kashif Javed, Asifa Kashif, and Elena Troubitsyna,
“Implementation of SPIN Model Checker for Formal
Verification of Distance Vector Routing Protocol”,
International Journal of Computer Science and Information
Security (IJCSIS), Vol 8, No 3, June 2010, USA, ISSN 1947-
5500, pp. 1-6.

[9] Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander
Romanovsky, Kimmo Varpaaniemi, Dubravka Ilic, and Timo
Latvala. Developing Mode-Rich Satellite Software by
Refinement in Event B . In Proceedings of FMICS 2010, the
15th International Workshop on
Formal Methods for Industrial Critical Systems, September
2010, LNCS 6371. Springer.

[10] Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander
Romanovsky, and Kimmo Varpaaniemi, Pauli Väisänen.
Verifying Mode Consistency for On-Board Satellite Software,
2010, LNCS 6351, Computer Safety, Reliability, and
Security, Pages 126-141, Springer.

[11] Yuliya Prokhorova, Elena Troubitsyna, Linas Laibinis,
Kimmo Varpaaniemi, and Timo Latvala. Derivation and
Formal Verification of a Mode Logic for Layered Control
Systems. Asia-Pacific Software Engineering Conference.
IEEE Computer, December 2011.

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

Figure 6: System Flow Chart

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

