
Towards Applying Normalized Systems Concepts
to Modularity and the Systems Engineering Process

Peter De Bruyn, Herwig Mannaert
Department of Management Information Systems

University of Antwerp
Antwerp, Belgium

{peter.debruyn, herwig.mannaert}@ua.ac.be

Abstract—Current organizations need to be able to cope with
challenges such as increasing change and increasing complex-
ity. Modularity has frequently been suggested as a powerful
means for reducing that complexity and enabling flexibility. As
Normalized Systems (NS) theory has proven to introduce this
evolvable modularity in software systems, this paper further
explores the generalization of NS systems engineering concepts
to modularity and the systems engineering process in general,
and organizational systems in particular. After emphasizing
the distinction between blackbox and whitebox perspectives on
systems, we focus on the importance of employing exhaustively
defined interfaces as a prerequisite to obtain ‘true’ black-
box modules. Some aspects of the functional/constructional
transformation are discussed. Finally, six additional interface
dimensions are proposed as possible aspects to be included
in such exhaustive interfaces when considering organizational
modularity.

Keywords-Normalized Systems, Modularity, Systems engi-
neering, Evolvability, Systems theoretic stability

I. INTRODUCTION

Current organizations need to be able to cope with increas-
ing change and increasing complexity in many or all of their
aspects. In this regard, modularity has previously been sug-
gested as a powerful means for reducing that complexity by
decomposing a system into several subsystems. Moreover,
modifications at the level of those subsystems in stead of
the system as a whole are said to be facilitating the overall
evolvability of the system. More specifically, Normalized
Systems (NS) theory has recently proven to introduce this
evolvable modularity, primarily at the level of software
systems. First, the theory states that the implementation
of functional requirements into software constructs can be
regarded as a transformation of a set of requirements R into
a set of software primitives S [1], [2], [3]:

{S} = I{R}

Next, in order to obtain evolvable modularity, NS the-
ory states that this transformation should exhibit systems
theoretic stability, meaning that a bounded input function
(i.e., bounded set of requirement changes) should result
in a bounded output values (i.e., a bounded impact or
effort) even if an unlimited systems evolution is considered.

Furthermore, Mannaert et al. [2] have formally proven that
this implies that modular structures should strictly adhere to
the following principles:

• Separation of Concerns, enforcing each change driver
to be seperated;

• Data Version Transparency, enforcing communication
between data in version transparant way;

• Action Version Transparency, requiring that action com-
ponents can be updated without impacting calling com-
ponents;

• Separation of States, enforcing each action of a work-
flow to be seperated from other actions in time by
keeping state after every action.

As this results in very fine-grained modular structures,
NS theory proposes to build information systems based on
the aggregation of instantiations of five higher-level soft-
ware software elements, i.e., action elements, data elements,
workflow elements, trigger elements and connector elements
[1], [2], [3]. Typical cross-cutting concerns (such as remote
access, persistence, access control, etc.) are included in these
elements in a way which is consistent with the above-
mentioned theorems.

However, we claim that many other systems could also be
regarded as modular structures. Both functional (i.e., require-
ments) and constructional (i.e., primitives) perspectives can
frequently be discerned, modules can be identified and thus
the analysis of the functional/constructional transformation
seems relevant. Indeed, Van Nuffel has recently shown the
feasibility of applying modularity and NS theory concepts
at the business process level [4], [5] while Huysmans did
so at the level of enterprise architectures [6]. However,
the extension of NS theory to these domains has not been
formalized yet. Consequently, as NS theory proved to be
successful in introducing evolvable modularity in software
systems, and as it is clearly desirable to extend such
properties to other systems, this paper focuses on a first
step towards generalizing NS theory concepts to systems
engineering in general. More specifically we will focus on
and stress the importance of a complete and unambiguous
definition of the interface of modular subsystems as an

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

essential part of each systems engineering process. Next, by
way of illustration, we discuss an initial attempt of applying
our approach to organizational systems, motivated by the
frequently observed discrepancy between the uttered need
to more systematically engineer organizational artifacts [7],
[8] and empirical findings suggesting that mostly only ad
hoc approaches are employed in practice [9].

The remainder of this paper is structured as follows.
Section II will discuss some extant literature on modularity,
emphasizing the work of Baldwin and Clark. Next, we
propose a more unambiguous definition of modularity after
discussing functional and constructional perspectives on sys-
tems (Section III) and outlining some of the transformation
properties (Section IV). Finally, some exemplifying addi-
tional interface dimensions when considering organizational
modules will be suggested (Section V), as well as some
conclusions and opportunities for future research (Section
VI).

II. RELATED WORK

The use of the concept of modularity has been noticed to
be employed in several scientific domains such as computer
science, management, engineering, manufacturing, etcetera
[10]. While no single generally accepted definition is known,
the concept is most commonly associated with the process
of subdividing a system into several subsystems [11], [12].
This decomposition of complex systems is said to result in
a certain degree of complexity reduction [13] and facilitate
change by allowing modifications at the level of a single
subsystem in stead of having to adapt the whole system at
once [14], [10], [15].

As such, Baldwin and Clark defined modularity as fol-
lows: “a unit whose structural elements are powerfully con-
nected among themselves and relatively weakly connected
to elements in other units” [15, p. 63]. They conceive each
system or artifact as being the result of specifying values for
a set of design parameters, such as the height and the vessel
diameter in case of a tea mug. The task of the designer is
then to choose the design parameter values in such a way,
that the ‘market value’ of the system as a whole becomes
maximized. Some of the design parameters might be depen-
dent on one another, as for example the value of the vessel
diameter should be attuned to the value of the diameter of
a mug. Consequently, modularization is conceived as the
process in which groups of design parameters — highly
interrelated internally, but loosely coupled externally — are
to be identified as modules and can be designed rather
independently from each other, such as for instance the drive
system, main board and LCD screen in case of a simplified
computer hardware design. A set of design rules (visible
information) is used to secure the compatibility between
the subsystems in order to be assembled into one working
system later on, while the other design parameters are only
visible for a module itself. Finally, they conclude that this

modularity allows multiple (parallel) experiments for each
module resulting in a higher ‘option value’ of the system in
its totality. Instead of just accepting or declining one system
as a whole, a ‘portfolio of options’ can be considered, as
designers can compose a system by purposefully selecting
among a set of alternative modules. Systems evolution is
then believed to be characterized by the following six
modular operators [15]:

• Splitting a design (and its tasks) into modules;
• Substituting one module design for another;
• Augmenting, i.e., adding a new (extra) module to the

system;
• Excluding a module from the system;
• Inverting, i.e., isolating common functionality in a new

module, thus creating new design rules;
• Porting a module to another system.
Typically, besides traditional phyisical products, many

other types of systems are claimed to be able to be re-
garded as modular structures as well. First, all different
programming and software paradigms can be considered
as using modularity as a main concept to build software
applications [1]. Furthermore, while Baldwin and Clark
primarily illustrate their discussion by means of several
evolutions in the computer industry, they also explicitly
refer to the impact of product modularity on the (modular)
organization of workgroups both within one or multiple
organizations, and even whole industry clusters [15]. Also,
Campagnolo and Camuffo [12] investigated the use of mod-
ularity concepts within management science and identified
125 studies in which modularity concepts arose as a design
principle of organizational complex systems, suggesting that
the principles of modularity offer powerful means to be
applied at the organizational level.

Within the field of Enterprise Engineering, trying to give
prescriptive guidelines on how to design organizations, mod-
ularity equally proved to be a powerful concept. For instance,
Op’t Land used modularity related criteria to merge and
split organizations [16]. Van Nuffel proposed a framework
to deterministically identify and delimit business processes
based on a modular and NS theory viewpoint [4], [5],
and Huysmans demonstrated the usefulness of modularity
with regard to the study of (the evolvability) of enterprise
architectures [6].

III. TOWARDS A COMPLETE AND UNAMBIGUOUS
DEFINITION OF MODULES

While we are obviously grateful for the valuable con-
tributions of the above mentioned authors, we will argue
in this section that the definition of modularity, as for
example coined by Baldwin and Clark [15], already de-
scribes an ideal form of modularity (e.g., loosely coupled
and independent). As such, we will first discuss the need to
distinguish the functional and constructional perspectives of
systems. Next, we will propose to introduce the formulation

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

of an exhaustive modular interface as an intermediate stage,
being a necessary and sufficient condition in order to claim
‘modularity’. The resulting modules can then be optimized
later on, based on particular criteria.

A. Blackbox (Functional) versus Whitebox (Constructional)
Perspectives on Modularity

When considering systems in general — software sys-
tems, organizational systems, etcetera — both a functional
and constructional perspective should be taken into account
[17]. The functional perspective focuses on describing what
a particular system or unit does or what its function is [18].
While describing the external behavior of the system, this
perspective defines input variables (what does the system
need in order to perform its functionality?), transfer func-
tions (what does the system do with its input?) and output
variables (what does the system deliver after performing
its functionality?). As such, a set of general requirements,
applicable for the system as a whole, are listed. The
structural perspective on the other hand, concentrates on
the composition and structure of the system (i.e., which
subsystems are part of the system?) and the relation of each
of those subsystems (i.e., how do they work together to
perform the general function and adhere to the predefined
requirements?) [19].

Equivalently, one could regard the functional system view
as a blackbox representation, and the constructional system
view as a witebox representation. By blackbox we mean that
only the input and output of a system is revealed by means
of an interface, describing the way how the system interacts
with its environment. As such, the user of the system does
not need to know any details about the content or the inner
way of working of the system. The way in which the module
performs its tasks is thus easily allowed to change and
can evolve independently without affecting the user of the
system, as long as the final interface of the system remains
unchanged. The complexity of the inner working can also
be said to be hided (i.e., information hiding), resulting in
some degree of complexity reduction. The whitebox view
does reveal the inner way of working of a system: it depicts
the different parts of which the system consists in terms
of primitives, and the way these parts work together in
order to achieve the set of requirements as listed in the
blackbox view. However, each of these parts or subsystems
is a ‘system’ on its own and can thus again be regarded in
both a functional (blackbox) and constructional (whitebox)
way.

The above reasoning is also depicted in Figure 1: both
Panels represent the same system SysA, but from a con-
ceptually different viewpoint. Panel (a), depicting the func-
tional (blackbox) view, lists the requirements (boundary
conditions) R1, R2, . . . imposed to the system. These are
proposed as ‘surrounding’ the system in the sense that they
do not say anything about how the system performs its tasks,

but rather discuss what it should perform by means of an
interface in terms of inputs and outputs. Panel (b) depicts the
constructional (whitebox) view of the same system: the way
of working of an aggregation of instantiations of primitives
P1, P2, . . . (building blocks), collaborating to achieve the
behavior described in Panel (a). Each of the primitives in
Panel (b) is again depicted in a blackbox way and could,
at their turn, each also be analyzed in a constructional
(whitebox) way.

B. Avoiding Hidden Coupling by Strictly Defining Modular
Interfaces

Before analyzing and optimizing the transformation be-
tween both perspectives, the designer should be fully confi-
dent that the available primitives can really be considered as
‘fully fledged, blackbox modules’. By this, we mean that the
user of a particular module should be able to implement it,
exclusively relying on the available interface, thus without
having any knowledge about the inner way of working of
the concerned module. Stated otherwise, the interface of the
module should describe any possible dependency regarding
the module, needed to perform its functionality. Conse-
quently, every interaction of the system with its environment
should be properly and exhaustively defined herein. While
this may seem rather straightforward at first sight, real-life
interfaces are rarely described in such a way. Indeed, typical
non-functional aspects such as technological frameworks,
infrastructure, knowledge, etc. are consequently also to be
taken into account (cf. Section V). Not formulating these
‘tacit assumptions’ results in hidden coupling: while the
system is claimed to be a module, it actually still needs
whitebox inspection in order to be implemented in reality,
diminishing the pretended complexity reduction benefits.

Consider for instance a multiplexer for use in a typical
processor, selecting and forwarding one out of several input
signals. Here, one might conceptually think at a device
having for example 8 input signals, 3 select lines and 1
output signal. While this is conceptually certainly correct, a
real implementation on a real processor might for example
require 120µ by 90µ CMOS (i.e., material) to make the
multiplexer physically operational on the processor, while
this is not explicitly mentioned in its conceptual interface.
As such, this ‘resource dimension’ should be made explicit
in order to consider a multiplexer as a real black box
in the sense that the module can be unambiguously and
fully described by its interface. A person wanting to use a
multiplexer in real-life in a blackbox way, should indeed be
aware of this prerequisite prior to his ability of successfully
implementing the artifact.

A more advanced example of hidden coupling includes the
use of a ‘method’ in typical object-oriented programming
languages, frequently suggested as a typical example of
a ‘module’ in software. Indeed, in previous work, it was
argued to consider the multidimensional variability when

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

(a) Blackbox (functional) representation of SysA. R1, R2, etc.
represent the requirements imposed to SysA as a whole.

(b) Whitebox (constructional) representation of SysA. Requirements
R1, R2, etc. are ‘realised’ through the collaboration of a set of
instances of primitives P1, P2, etc. in SysB, SysC, etc. At their
turn, SysB, SysC, etc. are represented here in a blackbox way.

Figure 1. Blackbox (functional) and whitebox (constructional) representations of system SysA.

analyzing the evolvability of programming constructs (such
as data structures and processing functions) and that in
typical object-oriented programming environments these di-
mensions of variability increase even furter as they make it
possible to combine processing actions and data entities into
one primitive (i.e., a single class) [2]. Hence, it was argued
to start the analysis of object-oriented modular structures
already at the level of methods instead of only considering
a class as a possible ‘module’. However, while it is usually
said that such a method in object orientation has an interface,
this interface is not necessarily completely, exhaustively and
fully defined and thus such a method cannot automatically
be considered as a ‘real module’ according to our con-
ceptualization. Consider for example the constructor of the
class in which the method has been defined. Typically, the
constructor has to perform certain actions (e.g., making an
instantiation (object) of the concerned class) before one can
execute the concerned method. Also member variables of
the class might introduce hidden coupling: first, they can
be manipulated by other methods as well, outside control
of the considered method. Second, they have to be created
(‘exist’) before the module can perform its functionality.
Finally, employing external libraries in case a method wants
to be deemed a genuine module, would imply that ór the
library should be incorporated into the module (each time)
ór the external library should be explicitly mentioned in the
interface.

Hence, in our view, one has a genuine module as soon
as one is able to define a complete interface which clearly

describes the boundaries and interactions of the subsystem
and allows it to be used in a blackbox way. Modulariza-
tion is then the process of meticulously identifying each
dependency of a subsystem, transforming an ambiguously
defined ‘chunk’ of a system into a clearly defined module
(of which the borders, dependencies, etc. are precisely, ex-
ante, known). Compared to the definition of Baldwin and
Clark cited previously, we thus do not require for a module
to exhibit already high intramodular cohesion and low
intermodular coupling at this stage. Modules having these
characterics are nevertheless obviously highly desirable.
However, we are convinced that defining in a first phase such
a complete interface, allows to ‘encapsulate’ the module in
an appropriate way and avoid any sort of hidden coupling.
Indeed, at least four out of the six mentioned modular opera-
tors in Section II require real blackbox (re)usable modules as
a conditio sine qua non. More specifically, in order to use the
operators Substituting, Augmenting, Excluding and Porting
in their intended way, complete and exhaustively defined
interfaces are a prerequisite. On the other hand, Splitting and
Inverting concern the definition of new modules and design
rules. Hence, they are precisely focused on the process of
defining new modular interfaces themselves, thus usually
involving some form of whitebox inspection.

Finally, while defining modules with such a strict interface
will not directly solve any interdependency, evolvability, . . .
issues, it will at least offer the possibility to profoundly study
and optimize the ‘quality’ of the modules (e.g., with regard
to coupling and cohesion) in a next stage.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

IV. TOWARDS APPLYING SYSTEMS ENGINEERING ON
THE FUNCTION/CONSTRUCTION TRANSFORMATION

In the same way as the implementation of software is
considered as a transformation I of a set of functional
requirements into a set of software primitives (constructs) in
[2], the design or engineering of systems in general could
be considered as a transformation D of a set of functional
requirements Rj into a set of subsystems or primitives Pi:

{Pi} = D{Rj}

This transformation D can then be studied and/or opti-
mized in terms of various desirable system properties. In
this section, we present a very preliminary discussion on
the meaning of several important system properties in this
respect.

Stability: As discussed in [2] for the software imple-
mentation transformation, any design transformation can be
studied in terms of stability. This means that a bounded
set of additional functional requirements results only in a
bounded set of additional primitives and/or new versions
of primitives. As elaborated by Mannaert et al. [2], this
would require the absence of so-called combinatorial effects
resulting in an impact of additional functional requirements
that is proportional to the size of the system. An example
of an unstable requirement is for instance a small software
application in an “office” environment that needs to become
highly secure and reliable, requiring a completely new and
different implementation.

Scalability: Scalability would mean that the increase in
value of an existing functional requirement has a clearly
defined and limited impact on the constructional view. An
example of such a scalable requirement is the amount of con-
current users of a website, which can normally be achieved
by adding one or more additional servers. Examples of
unscalable requirements in current designs are the increase
in the number of passengers in an airplane, leading to the
design of a completely new airplane, or the increase in the
target velocity of a rocket, leading to the design of a totally
different rocket.

Normalization: It seems highly desirable to have a linear
design transformation that can be normalized. This would
imply that the transformation matrix becomes diagonal or in
the Jordan form, leading to a one-to-one mapping of func-
tional requirements to (a set of) constructional primitives.
Such a normalized transformation is explored in [1], [2] for
the implementation of elementary functional requirements
into software primitives (in this case elements as structured
aggregations of primitives).

Isentropicity: Entropy is defined in statistical thermody-
namics as the number of microstates for a given macrostate,
corresponding to the uncertainty of the detailed internal
system state with respect to the observable external state
[20], [21]. In our view, an isentropic design would therefore

imply that the external observable state of SysA completely
and unambiguously determines the states of the various
subsystems. An example of such an isentropic design is a
finite state machine where the various registers can be read.
Indeed, the inputs and register values that are externally
observable completely define the internal state of the finite
state machine.

This approach to systems design or engineering also
seems to imply that we should avoid to perform functional
decomposition over many hierarchical levels, before start-
ing the composition or aggregation process [22]. Studying
and/or optimizing the functional to constructional transfor-
mation is a very delicate activity that can only be performed
on one or two levels at a time. Therefore, the approach seems
to imply a preference for a bottom-up or meet-in-the-middle
approach, trying to devise the required system (i.e., the set of
functional requirements Rj) in terms instantiations of a set
of predefined primitives (i.e., Pi), over a top-down approach.

V. ON A COMPLETE AND UNAMBIGUOUS DEFINITION
OF ORGANIZATIONAL MODULES

In Sections I and II we argued that not only software
applications can be regarded as modular systems, but also
many other types of artifacts, such as (for example) organi-
zations. Hence, Sections III and IV focused on a first attempt
to extend NS theory concepts to modularity and the systems
engineering process in general. In this section, by means
of example, we will illustrate some of the implications
of our proposed engineering approach when applied to
organizational systems. Indeed, several authors have argued
for the need of the emergence of an Enterprise Engineering
discipline, considering organizations as (modular) systems
which can be ‘designed’ and ‘engineered’ towards specific
criteria [7], [8], such as (for example) evolvability. More
specifically, we will primarily focus our efforts here on
the complete and unambiguous definition of organizational
modules, as this is in our view a necessary condition to
be able to study and optimize the functional/constructional
transformation at a later stage.

Consequently, when also considering modules at the or-
ganizational level, a first effort should equally be aimed
at exhaustively listing the interface, incorporating each of
its interactions. For instance, when focusing on a payment
module, not only the typical ‘functional’ interface such
as the account number of the payer and the payee, the
amount and date due, etc. (typical ‘arguments’) but also the
more ‘configuration’ or ‘administration’ directed interface
including the network connection, the personnel needed, etc.
(typical ‘parameters’) should be included. As such, we might
distinguish two kinds of interfaces:

• a usage interface: addressing the typical functional
(business-oriented) arguments needed to work with the
module;

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

• a deployment interface: addressing the typical non-
functional, meta-transaction, configuration, administra-
tion, . . . aspects of an interface.

Although some might argue that this distinction may
seem rather artificial and not completely mutually exclusive,
we believe that the differences between them illustrate our
rationale for a completely defined interface clearly.

While the work of Van Nuffel [5] has resulted in a signif-
icant contribution regarding the identification and separation
of distinct business processes, the mentioned interfaces still
have the tendency to remain underspecified in the sense that
they only define the functional ‘business-meaning’ content
of the module but not the other dimensions of the interface,
required to fully use a module in blackbox fashion. Such
typical other (additional) dimensions — each illustrated by
means of an imaginary organizational payment module —
might include:

1) Supporting technologies: Modules performing certain
functionality might need or use particular external technolo-
gies or frameworks. For example, electronical payments in
businesses are frequently performed by employing external
technologies such as SWIFT or Isabel. In such a case, a
payment module should not only be able to interact with
these technologies, but the organization should equally have
a valid subscription to these services (if necessary) and
might even need access to other external technologies to
support the services (e.g., the Internet). An organization
wanting to implement a module in a blackbox way should
thus be aware of any needed technologies for that module,
preferably by means of its interface and without whitebox
inspection. Suppose that one day, the technology a module
is relying on, undergoes some (significant) changes resulting
in a different API (application programming interface). Most
likely, this would imply that the module itself has to adapt in
order to remain working properly. In case the organization
has maintained clear and precise interfaces for each of its
modules, it is rather easy to track down each of the modules
affected by this technological change, as every module
mentioning the particular technology in its interface will
be impacted. In case the organization has no exhaustively
formulated interfaces, the impact of technological changes
is simply not known: in order to perform a confident impact
analysis, the organization will have to inspect each of the
implemented modules with regard to the affected technol-
ogy in a whitebox way. Hence, technological dependencies
should be mentioned explicitly in a module’s interface to
allow true blackbox (re)use.

2) Knowledge, skills and competences: Focusing on or-
ganizations, human actors clearly have to be taken into
account, as people can bring important knowledge into an
organization and use it to perform certain tasks (i.e., skills
and competences). As such, when trying to describe the
interface of an organizational module in an exhaustive way,
the required knowledge and skills needed for instantiating

the module should be made explicit. Imagine a payment
module incorporating the decision of what to do when the
account of the payer turns out to be insolvent. Besides
the specific authority to take the decision, the responsible
person should be able (i.e., have the required knowledge
and skills) to perform the necessary tasks in order to make
a qualitative judgment. Hence, when an organization wishes
to implement a certain module in a blackbox way, it should
be knowledgeable (by its interface) about the knowledge
and skills required for the module to be operational. Al-
ternatively, when a person with certain knowledge or skills
leaves the company, the organization would be able to note
immediately the impact of this knowledge-gap on the well-
functioning of certain modules and could take appropriate
actions if needed.

3) Money and financial resources: Certain modules might
impose certain financial requirements. For example, in case
an organization wants to perform payments by means of a
particular payment service (e.g., SWIFT or Isabel), a fixed
fee for each payment transaction might be charged by the
service company. If the goal is to really map an exhaustive
interface of a module, it might be useful to mention any
specific costs involved in the execution of a module. That
way, if an organization wants to deploy a certain module
in a blackbox way, it may be informed about the costs
involved with the module ex-ante. Also, when the financial
situation of an organization becomes for instance too tight,
it might conclude that it is not able any longer to perform
the functions of this module as is and some modifications
are required.

4) Human resources, personnel and time: Certain pro-
cesses require the time and dedication of a certain amount
of people, possibly concurrently. For example, in case of an
organizational payment module, a full time person might be
required to enter all payment transactions in the information
system and to do regular manual follow-ups and checking
of the transactions. As such, an exhaustive interface should
incorporate the personnel requirements of a module. That
way, before implementing a certain module, the organization
is aware of the amount of human resources needed (e.g.,
in terms of full time equivalents) to employ the module.
Equivalently, when the organization experiences a significant
decline or turnover in personnel, it might come to the
conclusion that it is no longer able to maintain (a) certain
module(s) in the current way. Obviously, this dimension is
tightly intertwined with the previously dicussed knowledge
and skills dimension.

5) Infrastructure: Certain modules might require some
sort of infrastructure (e.g., offices, materials, machines) in
order to function properly. Again, this should be taken
into account in an exhaustive interface. While doing so,
an organization adopting a particular module knows upfront
which infrastructure is needed and when a certain infras-
tructural facility is changed or removed, the organization

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

might immediately evaluate whether this event impacts the
concerning module and vice versa.

6) Other modules or information: Certain modules might
use other modules in order to perform their function. For
example, when an organization decides to perform the
procurement of a certain good, it will probably receive an
invoice later on with a request for payment. While the
follow-up of a procurement order might be designed into
one module, it is reasonable to assume that the payment is
designed in a distinct module, as this functionality might also
return in other business functions (e.g., the regular payment
of a loan). As such, when an organization is planning to
implement the procurement module, it should be aware that
also a payment module has to be present in the organization
to finalize procurements properly. Hence, all linkages and
interactions with other modules should be made explicit in
the module’s interface. When a module (including its inter-
face), used by other modules, is changed at a certain point
in time, the adopting organization then immediately knows
the location of impact in terms of implemented modules and
hence where remedial actions might be required.

Obviously, it is clear that exhaustively defining the tech-
nology, knowledge, financial resources, . . . on which a
module depends, will not suffice to solve any of the existing
coupling or dependencies among modules. Also, one should
always take into consideration that a certain amount of
‘coupling’ will always be needed in order to realistically
perform business functions. However, when the interface of
each module is clearly defined, the user or designer is at
least aware of the existing dependencies and instances of
coupling, knows that ripple-effects will occur if changes
affect some of the module’s interfaces (i.e., impact anal-
ysis) and can perform his or her design decisions in a
more informed way, i.e., by taking the interface with its
formulated dependencies into account. Consequently, once
all forms of hidden coupling are revealed, finetuning and
genuine engineering of the concerned modules (e.g., towards
low intermodular coupling) seems both more realistic and
feasible in a following phase. Indeed, one might deduct
that Baldwin and Clark, while defining a module as con-
sisting of powerfully connected structural elements, actually
implicitly assumed the existence of an exhaustive set of
formulated dependencies before modularization can occur.
Our conceptualization is then not to be interpreted as being
in contradiction with that of Baldwin and Clark, rather we
emphasize more explicitly that the mapping of intermodular
dependencies is not to be deemed negligible or self-evident.

VI. CONCLUSION AND FUTURE WORK

This paper focused on the further exploration and gen-
eralization of NS systems engineering concepts to modu-
larity and the systems engineering process in general, and
organizational systems in particular. The current state-of-the-
art regarding modularity was reviewed, primarily focusing

on the seminal work of Baldwin and Clark. Subsequently,
we argued that, first, a distinction should be made between
blackbox and whitebox perspectives of systems. A system
can then be considered as the transformation of (functional)
requirements into (constructional) primitives. A preliminary
discussion of some properties of this transformation was
proposed. Next, in order to be able to fully (re)use those
constructional primitives as ‘blackbox building blocks’, we
proposed to define a module as a subsystem which can be
completely described solely by its interface, thus indicating
exhaustively all interactions and dependencies and hence
avoiding hidden coupling. Finally, six additional organiza-
tional interface dimensions when considering organizational
modules were suggested, implied by our approach. We
concluded that our conceptualization is not in contradiction
with that of Baldwin and Clark, but rather emphasizes an
additional intermediate design stage when devising (organi-
zational) modules.

A limitation of this paper is that no garantuee is offered
that the identified additional interface dimensions will reveal
all kinds of hidden coupling in every organization. There-
fore, additional research (e.g., case studies) with regard to
possible missing dimensions is required. In addition, our
application of modularity and NS concepts to the organiza-
tional level was limited to the definition of completely de-
fined organizational modules. The functional/constructional
transformation on the organizational level was still out of
scope in this paper. Furthermore, future research at our
research group will be aimed at identifying and validat-
ing organizational black-box reusable modules, exhibiting
exhaustively defined interfaces and enabling the bottom-up
functional/constructional transformation.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] H. Mannaert and J. Verelst, Normalized systems: re-creating
information technology based on laws for software evolvabil-
ity. Koppa, 2009.

[2] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, vol. Article in press, 2011.

[3] ——, “Towards evolvable software architectures based on
systems theoretic stability,” Software Practice and Experi-
ence, vol. Early View, 2011.

[4] D. Van Nuffel, H. Mannaert, C. De Backer, and J. Verelst,
“Towards a deterministic business process modeling method
based on normalized systems theory,” International Journal
on Advances in Software, vol. 3, no. 1-2, pp. 54–69, 2010.

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

[5] D. Van Nuffel, “Towards designing modular and evolv-
able business processes,” Ph.D. dissertation, University of
Antwerp, 2011.

[6] P. Huysmans, “On the feasibility of normalized enterprises:
Applying normalized systems theory on the high-level design
of enterprises,” Ph.D. dissertation, University of Antwerp,
2011.

[7] J. L. G. Dietz, Enterprise Ontology: Theory and Methodology.
Springer, 2006.

[8] J. Hoogervorst, Enterprise Governance and Enterprise Engi-
neering. Springer, 2009.

[9] M. Indulska, J. Recker, M. Rosemann, and P. F. Green, “Busi-
ness process modeling: Current issues and future challenges,”
in CAiSE, ser. Lecture Notes in Computer Science, P. van Eck,
J. Gordijn, and R. Wieringa, Eds., vol. 5565. Springer, 2009,
pp. 501–514.

[10] C. Y. Baldwin and K. B. Clark, “Managing in an age of
modularity,” Harvard Business Review, vol. 75, no. 5, pp.
84–93, 1997.

[11] H. Simon, The Sciences of the Artificial, 3rd ed. Cambridge,
Massachusetts: MIT Press, 1996.

[12] D. Campagnolo and A. Camuffo, “The concept of modularity
within the management studies: a literature review,” Interna-
tional Journal of Management Reviews, vol. 12, no. 3, pp.
259 – 283, 2009.

[13] H. Simon, “The architecture of complexity,” in Proceedings
of the American Philosophical Society, vol. 106, no. 6,
December 1962.

[14] R. Sanchez and J. Mahoney, “Modularity, flexibility, and
knowledge management in product and organization design,”
Strategic Management Journal, vol. 17, pp. 63–76, 1996.

[15] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of
Modularity. Cambridge, MA, USA: MIT Press, 2000.

[16] M. Op’t Land, “Applying architecture and ontology to the
splitting and allying of enterprises,” Ph.D. dissertation, Tech-
nical University of Delft (NL), 2008.

[17] G. M. Weinberg, An Introduction to General Systems Think-
ing. Wiley-Interscience, 1975.

[18] L. Bertalanffy, General Systems Theory: Foundations, Devel-
opment, Applications. New York: George Braziller, 1968.

[19] M. Bunge, Treatise on Basic Philosophy: Vol. 4: Ontology II:
A World of Systems. Boston: Reidel, 1979.

[20] L. Boltzmann, Lectures on gas theory. Dover Publications,
1995.

[21] Wikipedia. (2011) Entropy. [Online]. Available:
http://en.wikipedia.org/wiki/Entropy

[22] P. De Bruyn, D. Van Nuffel, P. Huysmans, and H. Man-
naert, “Towards functional and constructional perspectives
on business process patterns,” in Proceedings of the Sixth
International Conference on Software Engineering Advances
(ICSEA), Barcelona, Spain, 2011, pp. 459–464.

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

