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Abstract— In this paper, a secure communication system 

composed of four chaotic oscillators is proposed. Two of these 

oscillators are unidirectionally coupled and employed as 

transmitter and receiver. The other two oscillators are 

indirectly coupled and are employed as keystream generators. 

The novelty lies in the generation of the same chaotic 

keystream both in the transmitter and receiver side for 

encryption and decryption purposes. We show, in particular, 

that it is possible to synchronize the two keystream generators 

even though they are not directly coupled. So doing, an 

estimation of the keystream is obtained allowing decrypting the 

message. The main feature of the proposed communication 

scheme is that the keystream cannot be generated with the sole 

knowledge of the transmitted chaotic signal, hence making it 

very secure. The performance of the proposed communication 

scheme is shown via simulation using the Chua and Lorenz 

oscillators. 

Keywords- Chaotic communication systems; chaotic 

synchronization; Lorenz System; Chua System 

I.  INTRODUCTION 

The importance of chaotic synchronization for the 

development of secure communication systems is well-

understood by now [1-6]. In recent years, various chaotic 

synchronization methods have been proposed [3-5, 7, 8] 

together with a number of modulation methods for chaotic 

communication systems such as chaotic masking [1, 5], 

parameter modulation techniques [5], chaotic shift keying 

[2, 5], just to mention a few. Each of these methods requires 

chaotic synchronization for message extraction at the 

receiver side. On the other hand, different attacks methods 

have been derived in order to test the security of the 

modulation methods; namely the non-linear dynamics 

forecasting [9, 10], return maps analysis [11], artificial 

neural network analysis [12] and so on. As a result, methods 

like chaotic masking, parameter modulation techniques and 

chaotic shift keying were found not to be secure. Other 

proposed methods based on the projective synchronization 

[13], phase synchronization [14], generalized synchronized 

[15] were broken as well [16, 17]. Methods based on the 

time delay or the hyperchaos were also looked upon for 

increasing the security but they too were found not to be 

entirely convincing [18, 19]. Therefore, there is a need of 

developing a method which will resist all the attack 

methods. 

In [6], a method based on encryption technique was 

proposed, where a different output from chaotic transmitter 

which was transmitted in the channel was used as a 

keystream to encrypt the message signal. The encrypted 

message signal masked with another output of the chaotic 

oscillator was employed as the transmitted signal. It was 

claimed that since the intruder could not get hold of the 

keystream, it was impossible for the attackers to extract the 

message.  Unfortunately a later work done by Parker and 

Short [20] showed that it was still possible to extract the 

keystream from the transmitted chaotic signal since the 

keystream carried the information of the dynamics of the 

transmitter. In fact, since, both the carrier and keystream 

were the outputs of same oscillator; the carrier held the 

dynamics of the keystream as well. Therefore, it was 

impossible to hide the dynamics of the keystream from 

intruders, as a signal has to be transmitted from the 

transmitter to the receiver for synchronization and message 

transmission purpose. However, since the principle of the 

method proposed in [6] is nevertheless interesting, there is a 

real incentive for finding ways for improving the method by 

eliminating its shortcomings. 

In effect, in this paper, based on the spirit of the work in 

[6], we propose a new chaotic communication scheme 

composed of four chaotic oscillators. Two of those 

oscillators are uni-directionally coupled and employed as 

transmitter and receiver. The other two oscillators are 

indirectly coupled and are employed as keystream 

generators. The key idea therefore is to generate a chaotic 

carrier signal from one oscillator while a chaotic keystream 

is generated from another chaotic oscillator. A suitable 

encryption rule is employed in order to encrypt the message 

using the generated keystream. The encrypted message is 

then modulated with the chaotic carrier in order to generate 

the transmitted signal.  As a result, the transmitted signal 

does not contain the dynamics of the keystream oscillator, 

hence making it difficult for intruders to generate the 

keystream with the sole knowledge of the transmitted 

chaotic signal. At the receiver, the same keystream is 

generated and a decryption rule is applied to the recovered 
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encrypted message signal that has been obtained from 

chaotic synchronization.  However, this scheme gives rise to 

an interesting question: Is it possible to synchronize two 

independent chaotic oscillators such that they generate 

same required keystream? It will be shown in the next 

section that, under some assumptions, it is still possible to 

synchronize two chaotic oscillators even though they are not 

uni-directionally coupled.  

An outline of the paper is as follow:  In Section II, the 

main methodology of the proposed technique is explained. 

In addition, indirect coupled synchronization is proven for a 

class of chaotic systems. In Section III, the proposed 

synchronization and secure chaotic communication scheme 

are implemented using the Lorenz system and Chua's 

system. In Section IV, simulation is carried out and results 

are outlined to show the performance of the proposed 

communication scheme. Finally, in Section V, concluding 

remarks are made. 

II. THE PROPOSED COMMUNICATION SYSTEM 

The proposed chaotic communication scheme, based on 

cryptography, is shown in Fig. 1. The novelty here lies in 

the generation of the keystream. The chaotic transmitter (T) 

is first used to generate two output signals, y1(t) and y2(t). 

The signal y1(t) is used for modulation purpose while output 

y2(t) is used to drive chaotic oscillator (A) whose structure is 

different from the transmitter (T). The output k(t) of key 

generator (A) is used as a keystream to encrypt the  message 

m(t) using an  encryption rule     . The resulting encrypted 

signal         is masked using y1(t) yielding the 

transmitted signal yt(t). The output yt(t) is fed back into the 

transmitter in the form of an output injection with the aim of 

cancelling the effect of non-linearity while performing 

synchronization at the receiver side. The modulated 

transmitted signal yt(t) is sent through the channel to the 

receiver.  

At the receiver end, upon receiving the signal   
    , the 

chaotic receiver (R) - which is similar in structure to the 

transmitter (T) - permits to obtain an estimate  ̂     and 

 ̂    of the signals y1(t) and y2(t) respectively by 

synchronization. This can be done by using any techniques 

existing in the literature such as observers, etc [3, 4, 7, 8]. 

The signals  ̂     and   
     are used to generate an estimate 

 ̂       of the encrypted signal        . The estimate 

 ̂     is used to drive the chaotic key generator (B) - which 

is similar in structure to generator (A) – and which yields 

the keystream estimate  ̂ (t).  Consequently, the message 

m(t) can be recovered by using the decryption rule       . 

Note that since, the chaotic key generators (A) and (B) 

are driven by y2(t) and  ̂     respectively, an indirect 

coupled synchronization is required between these two 

chaotic oscillators. Also, y2(t) and  ̂     are outputs of 

chaotic transmitter (T) and receiver (R) respectively and 

will be equal once synchronization is achieved. Intuitively, 

one would expect this synchronization to take place. 

However, in what follows this will be proven 

mathematically for a class of chaotic systems.  

The important part of this method is the generation of the 

keystream. No information regarding the keystream is 

transmitted in the channel. In [6], it was possible to estimate 

the particular state which was used as keystream (as shown 

in [20]) since the state that was transmitted in the channel 

had some information of the dynamics of the keystream as 

they were the state variables of same chaotic oscillator.  

In contrast, in this method, the keystream is generated 

from a chaotic oscillator with a totally different structure. It 

will not be possible to estimate the dynamics of the chaotic 

key generator from the signal being transmitted in the 

channel by using the method mentioned in [20]. Even if the 

intruder manages to get hold of the encrypted signal from 

the transmitted signal, without the knowledge of keystream, 

the message signal can’t be decrypted back. Therefore, a 

secure communication link can be realized by implementing 

the proposed method. 

Based on the communication scheme illustrated by Fig. 1, 

we assume that the transmitter oscillator (T) described by a 

dynamical system of the following form:  
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where the state      with initial condition        . 

The outputs of the oscillator       and     . The 

matrix F is of appropriate dimension while h1 and h2 are 

analytical vector functions. The signal      is the 

transmitted signal where      is the encryption function 

using key k(t) and the function g is a smooth bounded 

function of time. 

The keystream k(t) is generated using another chaotic 

oscillator of similar form: 
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 which is driven by the output       . Here,      (q is not 

necessarily equal to n),     is the keystream, h is an 

analytical vector function and b2 is a smooth bounded 

function of time. It is assumed that the channel is perfect 

and that no distortion of the transmitted signal has taken 

place; that is      
 . 

The receiving chaotic oscillator (R) is given by:  
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Fig. 1. Block diagram of the proposed chaotic communication based on cryptography. 

 

Finally, the key generator (B) is given by: 
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We shall make the following assumptions: 

A1) There exist symmetric positive definite (SPD) matrices 

P1, P2, Q1 and Q2 such that 

                     
             

A2) The output function       is globally Lipschitzian with 

respect to x. 

The objective is to show that the transmitter (T) and the 

receiver (R) synchronize as well as generators (A) and (B) 

are synchronized with each other even though there is no 

direct link between them. In effect, based on the above 

assumptions, we state the following: 

Theorem 1. Under the assumption A1), there exist two 

constants 0,   such that )0(ˆ)0()(ˆ)( xxetxtx t    

for all 0t . In other words, the receiver (R) synchronizes 

exponentially with the transmitter (T). 

Proof: Let ),(ˆ)()( txtxt   then the error dynamics 

between transmitter (T) and receiver (R) is given by:
 

.)(  tyF  

Owing to assumption A1), a candidate Lyapunov 

function of the above error dynamics can be chosen as: 

.)( 1 P
TV    

 

Differentiating )(V  with respect to time, yields:
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Since Q1 is SPD, there exist, 1c , 02 c such that 

.12111  PQP
TTT cc   Consequently,

 
).()( 1  VcV   

Integrating the last equation results in:  

)).0(())(( 1  VetV
tc

  (5) 

Again, since P1 is SPD, there exist 1 , 02   such that 
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That is: 

.)0(ˆ)0()(ˆ)( xxetxtx t    

This means that )(ˆ tx  converges to )(tx  exponentially. In 

other words, the receiver (R) synchronizes exponentially 

with the transmitter (T). This completes the proof of 

Theorem 1. 

Theorem 2. Assume that system (A) and (B) satisfies 

assumption A1), then 0)(ˆ)(lim  tztzt . That is, the 

keystream generator (A) synchronizes asymptotically with 

the keystream generator (B). 

Proof: Set ),(ˆ)()( tztzt   then the error dynamics 

between the keystream generator (A) and generator (B) is 

given by:
 

)ˆ,(),( 2222 ytbytb   A  

Now consider the following candidate Lyapunov function 

 2P
TW  . Differentiating W with respect to time yields 
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Now,
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Therefore, 
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From the above inequality, we can see that when t

.0)( t  

This completes the proof of Theorem 2 and therefore (A) 

converges with (B) asymptotically. Once the 

synchronization is obtained between (A) and (B), the 

message can be decrypted by applying the keystream. 

III. APPLICATION OF THE PROPOSED TECHNIQUE USING 

THE CHUA AND THE LORENZ OSCILLATOR 

In this section, the performance of the proposed 

communication system is demonstrated using the Lorenz 

system as the transmitter (T) and the receiver (R). More 

specifically, (T) and (R) are chosen as: 



























).,(

5

20

 :(T)

1

2

1

kmeyy

vy

uy

bwvyw

vrywyv

vuu

t

t

tt





 

 

.

.ˆˆ

ˆˆ

ˆˆ5ˆ

ˆˆ20ˆ

ˆˆˆ

 :(R)

2

1
























vy

uy

wbvyw

vrywyv

vuu

t

tt





 

 

(6) 

Again it can easily be seen that (6) are in the form (1) and 

(3) with )( tyF  given as: 
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For these systems Assumption A1 hold true for the 

following choice of matrices 1P  and 1Q : 

where  0,,,,, 321 rblll  , 34
1

2 ll   and 2
4

10 ll


 . 

Remark 1. Note that, at first sight one would expect the 

matrices 1P  and 1Q  to be time dependent since )( tyF  is 

time dependent. However, interestingly, due to the 

particular form of )( tyF  the matrices turn out to be 

constants. 

For the key generating oscillators A and B, the Chua’s 

system is adopted given as below:
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The non-linear function )(f  is a piecewise linear 

function given as: 

).11)((5.0)(   bab GGGf  

Note that 7 are in the form (2) and (4) respectively with 

A  and ),( 22 ytb  given as: 
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It can also be shown that Assumption A1) is satisfied for 

the following matrices 2P  and 2Q : 
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Finally, it is obvious that A2) is satisfied. For the key 

generating oscillators A and B, the Lorenz system defined 

as is adopted: 

The encryption function (.)e  used is a n-shift cipher 

algorithm given as: (as used in [6]): 
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with h being an encryption parameter which is chosen such 

that m and k lie within the interval ],[ hh . 

Once the keystream generator (A) synchronizes 

asymptotically with generator (B), the message )(tm  can be 

recovered using a decryption rule corresponding to the 

encryption rule and which is given by:

 

),)(ˆ)),...,(ˆ)),(ˆ),((ˆ(((...

))((ˆ()(

111
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r
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tmeetm
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 

where )(ˆ tk  is the 

estimated key stream and .ˆ))((ˆ 1yytme t   

In the next section, simulations are carried out using 

Matlab/Simulink and it will be shown that the proposed 

method is able to synchronize satisfactorily and extract the 

message successfully. 
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IV. SIMULATION RESULTS 

The parameters employed in equation (15,16,18 and 19) 

are as follows: 

.05.0,68.0,27.1,0

87.14,10,2.4,6.45,16
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br
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The encryption parameter h  is chosen to be 3.0  and the 

message ).2sin(1.0)( ttm  Also in encryption rule, a 30-

shift cipher is used. The initial conditions for each oscillator 

are chosen to arbitrarily different. 

Fig. 2 shows the autocorrelation function of the 

keystream signal )(tk . It is clear that the keystream is not 

similar to itself with any amount of time shift so its 

autocorrelation function has only a single spike at point of 

zero time shift. This means the keystream generated is 

chaotic in nature and therefore has limited predictability. 

Fig. 3 shows the encrypted message signal using (21) and 

signal )(tk  as keystream. Fig. 4 depicts the transmitted 

chaotic carrier and it can be seen that message signal is 

totally buried inside it. 

Fig. 5 illustrates the error in estimating the keystream and 

it can be seen that although two oscillators are starting from 

different initial conditions, the error converges rapidly to 

zero after some initial period taken for synchronization.  

Fig. 6 shows the performance of the proposed method in 

decrypting the message signal back and it is readily seen 

that the transmitted message signal has been estimated 

convincingly. Next, the performance of the proposed secure 

communication method is tested in the presence of channel 

noise. For this purpose, the simulation is performed using 

the AWGN channel having SNR of 40 dB. The output is 

shown in Fig. 7, where it can be seen that message is 

extracted successfully. Apart from the jitter in amplitude, 

which can be removed from standard filtering operation, the 

necessary information about the message (form, frequency 

and amplitude) is obtained. 

It is seen that the proposed method is used to transmit 

simple sinusoidal message signals. But the method is 

equally true for other message signals such as voice signals, 

square wave, etc. Also, the idea can be easily extended from 

analogue systems here to digital communication systems 

with proper modulation schemes. The modulation schemes 

can be PAM, FSK, PSK, etc. With digital communication 

systems, the SNR up to which the method works with noisy 

channel can easily be reduced from 40 dB. For, example, 

when PAM is used for transmitting digital bits then, after 

recovering the modulated square wave that has been 

corrupted with noise, it can easily be passed to matched 

filter and then threshold detected to recover the digital bits 

accurately.  

 

 

 
Fig. 2. Autocorrelation of key stream signal k(t). 

 

 
Fig. 3. Encrypted message signal        . 

 

 
Fig. 4. Transmitted signal yt(t) generated from oscillator T.  

 

 
Fig. 5. Synchronization error in estimation of keystream. 
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Fig. 6. Plot of the extracted message mr(t) and m(t). 

 

 
Fig. 7. Message extraction in AWGN channel of SNR 40 dB. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, a method of synchronizing two chaotic 

oscillators that are not directly coupled together in a master-

slave configuration is proposed and applied to generate the 

keystream at transmitter and receiver. Synchronization is 

proven mathematically and simulation results are presented. 

The main advantage of the proposed method is that, unlike 

previous work on the topic, the keystream is generated from 

a different oscillator to that of the transmitter and hence 

improving the security of the system; since the transmitted 

signal does not include the information of the dynamics of 

the key generator. Consequently, even if the encrypted 

signal is known to the intruders, without the knowledge of 

the keystream extraction of the message signal will not be 

possible providing secure communication link. As future 

works, the communication scheme can be extended by 

employing more general chaotic systems and incorporating 

observers for the receiver and the key generator. Also, the 

scheme need to be implemented and tested practically. 
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