
Adaptivity of Business Process

Charif Mahmoudi

Laboratory of Algorithms, Complexity and Logics,

Paris 12th University

Créteil, France

charif.mahmoudi@u-pec.fr

Fabrice Mourlin

Laboratory of Algorithms, Complexity and Logics,

Paris 12th University

Creteil, France

fabrice.mourlin@u-pec.fr

Abstract— Enterprise service bus is a software architecture

middleware used for implementing the interaction between

software applications in a Service Oriented Architecture. We

have developed a strategy to dynamically manage business

processes. Administrators of service bus need to reconfigure

sites where the business processes are placed. This evolution

has to be done during execution of service through the bus. We

ensure the availability of process definition. Moreover,

business process can also be autonomous. This means a process

which is able to move from one site to another one, where the

business process engine is installed. This provides another

approach to design business process. With our "mobile process

migration" template, we separate two concerns, on one side

architectural features and on the other side business features.

The business process can become mobile between two service

busses and we improve the availability of business processes.

Keywords-business process; BPEL; orchestration;

middleware; message exchange pattern; code migration.

I. INTRODUCTION

Today, companies have tools to model and automate
business processes. This type of tools allows formalizing the
company's business rules to automate decision-making, that
is to say, the branch of the workflow to choose from,
depending on the context. The objective of this initiative is to
achieve a better overall view of all enterprise business
processes and their interactions in order to be able to
optimize and, wherever possible, to automate up with
business applications.

The lifecycle of a business process can be roughly broken
down as follows: design, modeling, implementation,
execution, control, and optimization. An approach of
Business Process Management (BPM) is based on tools such
as a tool for process modeling, tools support the
implementation, a runtime loaded to instantiate processes,
management tools and reporting. These reports show
accurate and relevant indicators on the current deployment of
business process definitions. Our first remark is on the lack
of scalability of this deployment. Thus, the load of messages
that flow through the middleware clearly shows an
unbalance that affects the entire information system. So the
first point is: how to adapt the workflow running.

A second remark is about the number of messages
exchanged increases as a function of the initial placement of
business process definition. Thus, a business process using

local services is less costly in a number of messages than a
business process using remote services. Blockings are also
less numerous, and, therefore, the execution of a business
process is more efficient.

This remark highlights the dependencies between two
concepts, the location of business processes and its own
definition. The designer should not consider his work in the
placement constraints. In addition, the administrator cannot
take into account all the dependencies of a process definition
to find a better placement. Also, our second point is: how
separate the two. These conclusions led us to consider an
initial configuration of business processes is not satisfactory.
This placement must be scalable over time to adapt to client
needs. The implementation of this idea is described in this
paper through a technical framework described subsequently.
It allows the validation of the concepts presented here and
provides a sample application.

The content of the paper is structured as follows. First,
the following section discusses work related to our topic. In
Section 3, we provide the definitions on which our work is
based. Next, we describe the technical framework of our
work. Finally, we provide a simple case study to validate our
approach. We end with a point on the goals achieved and
those that remain to be addressed.

II. RELATED WORK

The construction of information systems is usually
performed by the department, each business building a
subsystem adapted to its own needs and supported by
heterogeneous technologies, rarely interoperable. To quickly
meet the growing computerization of procedures, systems
integration issues has emerged, and with them two questions:

 How to trigger in response to an event in a given
subsystem, a treatment in another subsystem that is
foreign?

 How to ensure consistency and spread data across
multiple subsystems?

A number of technical solutions have been found to
answer these questions. The implementation of these
integration solutions is most often done on an opportunistic
basis, to meet the immediate goals of a particular application.
As these ad hoc solutions have been implemented, the
problems of localization or global management have
emerged:

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

 Flows have increased, sometimes redundant, and the
chains binding techniques;

 Increasing the coupling systems brought its share of
problems, synthesized by the concept of spaghetti
effect;

 Organizations have to solve new organizational
challenges. If chains of responsibility were clear for
each business subsystem, what about the relations
between these business systems?

Two broad categories of solutions have emerged: the
ETL (Extract Transform Load) tools, to synchronize data
from multiple systems, and middleware solutions, to ensure
communication "real time" between heterogeneous systems.

A. ETL middleware

ETL tools provide synchronization, consolidation and
spread of data between disparate subsystems. Schematically,
they extract data from the master system to update
subsystem, after a suitable transformation. Although they can
operate continuously, ETL tools are rather intended to treat
plarge data set in deferred time, they appeared initially to
ensure the loading of data warehouses [1].

Their relative simplicity of implementation is their
greatest strength. They also allow a first level of structure of
system information, pointing to the owners for master data.
Coupled to pivot formats, ETL tools allow avoiding the
pitfalls of point-to-point and functional coupling between
systems too narrow.

Unfortunately, the ETL approach is focused exclusively
on the data, and provides only elementary business
semantics. It therefore fails to solve the integration process,
and more to meet the challenges of service-oriented
architectures. Service orchestration is useless with that kind
of tool. R. Kimball explains [1] that the notion of business
process does not appear with this family of tools.

B. Network centric middleware

Middleware solutions provide a technical infrastructure
mediating between two or more systems. Their historical role
is to transport a message from one subsystem to another,
with a level of coupling more or less important. Appeared in
the early 80s, MOM (Message Oriented Middleware) has an
asynchronous semantics: the client constructs a message and
sends it to the middleware, which handles the routing to one
or more target systems. Communication is split into two,
avoiding the coupling technique of participants. The
guarantee of message delivery is entrusted to the MOM.

For many years, MOM remained largely proprietary
solutions, forcing each part to find out how to interface with
the broker, and limiting the ability of integration
environments and languages supported by the publisher of
the solution. JMS, the standard messaging of Java, has
partially lifted this constraint, and CosNotification, the
CORBA notification Service has remained confidential [2].

The MOM also offers routing capabilities often limited,
requiring efforts to important configuration, each route must
be explicitly defined, making their implementation difficult
on a large scale. E. Curry investigates the use of POSA
(Pattern-Oriented Software Architecture) interceptor pattern

[2]. This facilitates dynamic changes to the behavior of the
deployed platform but its scope is limited to a local domain.

Despite their respective qualities, MOMs and ORBs
(Object Request Broker) [3] remain highly technical
solutions. They allow both the spread and integration of data
processing, but the semantics of trade remains basically
point-to-point. The client must know the format of the
message he sent to third party systems, this functional
coupling systems is rapidly becoming a nightmare for
maintenance and operation, especially if extended to all of
the information system.

C. Enterprise Application Integration (EAI)

A new class of middleware has emerged: the EAI, a hub
and spoke architecture, as opposed to network-centric
architecture of MOMs and ORBs, in which a central
component mediates between the client and physical target.
This central component takes over all low-level technical
issues (location, availability, cache, communication, and
transformation, interoperability through specialized
connectors, audit, track, security or transactions) [4]. Like
ETL, they are further able to provide data transformation in
order to limit the functional coupling between systems, and
apply sophisticated routing policies.

In this role of super-connector and mediator, the EAIs
have more than a conductor: the EAI can host high-level
business processes, aggregating treatments performed in
several subsystems. R. Abate explains that Service–Based
Architectures (SBA) transform traditional EAI efforts to the
new level.

Despite their obvious qualities, EAI solutions suffer from
their own nature:

 The protocol used for exchange and transport of
messages in an EAI, is specific.

 The technology inside the EAI is specific also. Thus,
application access is done through connectors still
largely peculiar to each vendor despite attempts at
standardization as JCA in the Java world (these
connectors still often are very expensive).

 The data formats and data used in EAI is specific.
The EAIs became a too complex brick covering too

many responsibilities in information systems.

D. Enterprise Service Bus (ESB)

ESBs come directly from EAI. Just check the list of
major publishers of ESB to be convinced: Bea [5], Tibco [5],
Oracle [6], IBM [7], Apache [8] are precisely those involved
in the EAI. Embodying the architectural features of EAI
solutions, ESBs focus on the functions of interconnect and
mediation, and base this on a set of standards including [9]:

 The Web Services to manage synchronous
communications.

 XML to define message formats

 JMS to send an asynchronous communication with
MOM.

 JCA to connect to software packages and exotic
systems (ERP, CRM, Main-frames, etc.).

Today, the ESBs are technology integration and
intermediate application for implementing a service-oriented

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

architecture. But, they remain an elegant and sophisticated
technical solution attached to the questions of inter-
application integration. Their use does not guarantee success
or even the reality of the implementation of an SOA. Their
administration is also quite complex. When an administrator
moves the definition of a service, the consequences can be
unexpected. Thus, a high-level change cannot be directly
applied because the runtime context can be considered with
attention. M.T. Schmidt highlights that service orchestration
is a key concept for the management of business unit into a
whole distributed system.

E. Mobile Agent Platform

Mobile agent platforms have been proposed as a useful
support for building distributed applications. They present
interesting advantages, such as autonomy, flexibility, and
effective usage of network bandwidth. Due to these features,
they have also been considered as an enabling technology for
mobile, wireless and adaptable computing. Nowadays,
mobile agents are still an important focus of interest.

Mobility can be used as a way to move the code instead
of moving data. This is essential when the data is very large
or when safety prohibits any transportation. In our work
environment, mobility is seen as a means of administration
between sites. Code management in distributed systems
needs this ability to be responsive to change. Using mobile
agents, tasks requiring a lot of processing must be custom
built to distribute the load between computers [10].

Ilarri, et al. [10] explain how code mobility can be used
to manage computing resources across a network of
computers. When a resource is not available, an adaptation is
to move to another site where the computation can continue.
Because the problem occurs at a precise location, its
management is locally taken into account and a migration of
context is done. We consider that this concept is translatable
into another domain like software bus.

III. WORKING CONTEXT

The context of our work focuses on the management of
SOA. These architectures are currently the subject of interest
for many software engineering teams. These architectures are
particularly interesting because they use open standards.
They offer more possibility of applying new software
standards and rules and to have new assembly. As part of our
work, we use business services that we assemble to build
orchestrations of services. As part of a distributed system,
these orchestrations use services on remote sites. This brings
new problems of availability of services [11].

A. Orchestration of business services

Web services are defined in two contracts: the data
contract (XML schema for the operation signature [12]), and
the service contract (WSDL description [13]). Our approach
to building services is a classic one; it is based on the
construction of a contract as the first step of the software
Lifecycle (Contract First). This is a pragmatic and business
driven approach, because it stresses what is expected of the
service and not how it will be implemented [14]. We follow
three steps for building a contract first Web service:

 The definition of service contract

 The writing of service endpoint

 The configuration of the endpoint
We adopt a similar approach to construct the definition of

service composition. In other words, the coarse grain
services are based on those of finer grains. We chose WS-
BPEL [15] as orchestration language because it is well
famous for defining business processes describing Web
services interactions. Thus, we build a service oriented
solution utilizing Web services with WS-BPEL, and we
apply two phases:

 Build Web services as previously and then publish
them to be utilized within a business process

 Compose the Web services into orchestration flows
with WS-BPEL.

A first important difference between these levels is on the
service status. If a service is said to be stateless, it is not the
same for a composition of services regardless of the state.
Thus the interpretation of a service composition requires
consideration of a specific execution context. We use an
orchestration engine to manage WS-BPEL scripts.

When we define an assembly of services, we depict the
coordination by the logical algorithm into a WS-BPEL
business process. Into a context of academic library, an
orchestration is defined for the registration of a new member.
The business algorithm schedules a sequence of steps: record
the civility, record the profile, print member card, notifies by
email the validation of registration. Each step is considered
as its WSDL description.

So, we can create an orchestration to be used as a service
within another, larger orchestration.

B. Use of business process with a bus

The orchestration of composite services in existing
techniques is usually centralized. This is due to the features
of participating services which are distributed and
autonomous. A centralized orchestration model has several
drawbacks with respect to scalability and availability [16].
Because of Web service characteristics are highly dynamic,
autonomous and distributed, we believe that orchestration of
services can be interpreted in a more dynamic way.

To make a more dynamic interpretation, it is essential to
have several BPEL engines. These engines are distributed
over network, for instance at least one per service bus. Thus,
we define a start and arrival point. In addition, we need a
way to communicate between these two points. In our
context, the notion of message is known. Each operation on a
BPEL description can be seen as a particular message
transmitted between one or more engines. As an example,
interpretation is a consequence of an input message,
migration also. We consider that an intelligent routing of
these messages is able to provide the dynamic interpretation.
This is done by a software bus.

We decided to use an ESB because it is the technical
frame where all parts of our work can be gathered: several
BPEL engines, binding components and service engines
(Figure 1). But monitoring tools can be added and other
ESBs which can be connected into a larger distributed
system. First, we started by designing a move operation of

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

business processes from one site (called Group1) to another
one.

Figure 1. Relation between two ESBs

This technical operation can be considered as a kind of
management operation into a large distributed system. Our
nominal scenario is triggered by an event which highlights
(1) that a business process called BP needs to be moved from
Group 1 ESB to Group 2 ESB. Because both ends of the
exchange are known, a route can be built (dashed line) and
BPEL script can be downloaded (2) from a local repository
to Group2 ESB. Then, this script is activated through the
local BPEL engine (3). Finally an interpretation can be done
by another engine.

This approach has drawbacks. In terms of safety, it is
necessary that the issuer of travel demand (on a BSE Group)
has a role as it has the permission to publish a definition of
business processes on BSE Group 2. These non-functional
constraints are taken into account in a real context.

To manage dependencies, it is important to check that the
definition of business processes that is moved contains no
dependence on the BPEL engine that used it originally. If
this were the case would cause a shift in an execution failure
in the Group 2 sites.

C. Administration of services into an ESB

The description of this management operation highlights
the steps of routing. We thought a good way to automate this
process is the definition of a dedicated BPEL script. Thus,
we define a set of operations on the business process
definitions. They focused on adding, moving, copying,
deleting BPEL definition (Figure 2). The design of these
operations requires an understanding of the functioning of an
ESB to make the most of the modules already active. If the
administrator is considered the trigger of management
actions, it is the purpose of simplification, because other
actors may be able to: an event configuration of ESB, a
demand from the business process itself, etc.

Compared to the various modules that make up an ESB,
the steps for interpreting a functionality such as "moving a
business process', requires the use of the routing module, the
XML transformation module, the message queue manager
and the BPEL interpreter. In the scope of this document, we
only interact with BPEL script, which are not under
execution. If it is, such operations like “move” are postponed
until the end of the execution.

Figure 2. Use case diagram of BP management

Figure 3 describes the activity diagram of the move
operation. After selecting a business process definition into
the repository of a BPEL engine, its definition is parsed to
detect conflicts. This operation is realized by applying
technical rules onto the BPEL script. Then, the route builder
is invoked to define a new route between source engine and
target engine. This route is engaged and can be used for the
migration of business process. Because controls have been
done successfully, the BPEL can be downloaded from the
intern repository into the working directory of the new BPEL
engine. By the end of this action, the process has to be
activated.

Then, the route is used to transfer input messages from
source site to the target site. This step can be optional if we
consider the operation as a clone operation to divide the
traffic by two. Finally, the business process definition can be
instantiated by the target engine. This instance can accept
input messages previously sent to another site. The state of
this instance is managed by a new BPEL engine. It may be
suspended, in which case it is counted as suspended and not
active. If an error occurs that does not cause the process to
complete, but requires attention, the process is counted in
error instead of active. If a process is terminated with the exit
activity, it counts as terminated. As shown in Figure 3, only
the migration of the definition is described and not the
treatment of the input messages which is the normal process
of a BPEL engine.

The activity diagrams of other management operations
follow the same schedule even if the core actions are totally
distinct. Preconditions of all operations are quite similar and
there is no invariant about their applications. This set of
operations is the basis of our approach of adaptability of
business process. Our analysis is completed by requirements
about no functional properties which are essential in a large
distributed system. They specify global constraints on how
the software operates: no blocking, authentication with role
names, asynchronous message exchange, etc. These
constraints are guidelines for our realization. No functional
properties have a global nature, in opposite to local effects of
functional requirements. In that case, the modification of a
single bundle of the distributed system may affect the
integrity of the entire application with respect to a particular

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

no functional feature, such as asynchronous communication.
In next section, we focus our choices with technical aspects.

Figure 3. Activity diagram of “move business process”

IV. TECHNICAL APPROACH

Our past experience in distributed systems is based on
pragmatic approach. Also, we build a prototype, because it is
a true validation of our ideas. In the context of this document
we use an ESB called Apache ServiceMix because it is a
reference in the world of open source solution [17] and also
because we participate to the evolution of this Apache
project.

A. Description of technical context

Our chosen ESB allows building ESBs clustering and
also linking several ESB through message queues. Several
software architectures are possible and we used a cluster for
the case study. The container can provide failover strategy
and a configuration can be set at load time. The deployment
of service units and binding components is dynamic and the
Lifecycle of business objects can be managed through a
programmatic API.

ServiceMix is often coupled with Apache ActiveMQ for
message queues management, Apache Camel for the route
management, Apache CXF, as a web service engine and
Apache Ode as BPEL engine. Because all these modules are
written in Java, a JMX console is used to display attributes
and operations of managed Beans. These are the main
modules of this bus but they rely on OSGi server called
Apache Karaf which is the kernel of the ESB (Figure 4).

Thus, our project is composed of five elements which
will be exploited by ServiceMix bundles.

1. The context description is an XML file which used
to create all objects of the scenario. It also injects code to
setup and to configure them.

2. Because, all communications are asynchronous,
each part of our solution is equipped with an input message
and an output message queue. These message containers are
defined by a URI (Unique Resource Identifier). A URI can
be an end of a route.

3. A set of routes which contains at least one route
from a source business process to a target which is the
business process after its migration. Both are identified by a
URI.

4. A BPEL script which defines the migration
procedure. It can be duplicated onto all BPEL engines of the
distributed system. Another solution is to define a migration
procedure per BPEL engine. This can be useful whether
business processes have preconditions before moving.

5. A set of externalized rules which checks whether a
business process can be moved from one engine to another
one. Because a BPEL definition is first of all an XML
stream, a rule is written with XSL-T language. This allows
changing dynamically the rules even if the bus is running.
The goal of these rules is to express if a BPEL definition
depends on local resources, such as low level API or specific
codes.

All the modules are assembled into an artifact which is
deployed into the input folder of the ESB (ServiceMix). A
first observation of the log console allows the administrator
to understand if the XML descriptors of the artifact are valid.
Next, we explain the deployment step and the role of
message exchange.

Figure 4. Layer description of our project

B. Role of normalized message

The normalized message router (NMR) is responsible for
mediating messages between all the modules which are
deployed into the ESB. The deployed modules do not
exchange messages directly between each other. Instead,
they pass messages to the normalized message router. The
role of the router is to deliver the messages to the right
endpoints. All functionalities are declared through its
endpoint. Endpoints provides clients with access to business
process. It is possible to define one or more endpoints for a
service by using a combination of relative and absolute
endpoint addresses.

Also, when a client sends a request to a business process,
it is first received by a binding component. In our context, a
client could be a traditional application, a tool like SOAP-UI
or another module deployed into the ESB. The binding
components are used to provide transport level bindings for
the deployed processes. The normalized message model

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

decouples the service client from the service providers. The
message format is defined using WSDL, which describe the
called operations.

A normalized message is a generalized format used to
represent all of message data passed through the NMR. It
consists of three parts: meta-data and properties, payload,
attachments. The binding components are responsible for
normalizing all of the messages placed into the NMR.
Binding components normalize messages received from
external clients before passing them to the NMR. Messages
sent across the NMR are not persisted anywhere but we can
modify the process to write these to a database using the
Data Base binding component or otherwise.

Then the message is delivered to a service unit like a
BPEL engine or another module deployed into ServiceMix.
Service units can be grouped into an aggregate deployment
file called a service assembly. This file includes a
deployment descriptor that indicates the target component
for each service unit.

C. Functional requirements

The BPEL engine treats requests and instantiates process
as needed except if there is rules which need management
operations. In our scenario, the called process is used to
register conference inscription. We added a rule that limits
the number of instances. The value of this limit is one,
because this triggers easily a move operation of business
processes. So, this triggers our BPEL process called MAH
process, this is the main line of the management operation.
As mentioned in Figure 3, first a web service applies a
sequence of rules to build a diagnostic. In this example, the
answer is affirmative.

The first part of the MAH business script as shown in
(figure 5) the dependencies of the definition with two partner
links which are mentioned previously. Because all these
partner links are valid, the evaluation can be done by the
BPEL engine.

Figure 5. Design of the migration business process

V. CASE STUDY AND RESULTS

Our case study focuses on the migration of a process
making two calls to web services by "localhost" because it is
assumed that for security constraints, the server only accepts
local connections. The process will make an initial local call
to retrieve the result of the invocation of the first web
service. The process will then migrate to the host which
exposes the second web services in order to invoke this web
service locally. The core of the definition of BPEL processes
MAH is the red line of the script: each sub-process manages
a step towards translating the script from one node to
another. Thus the interpretation of the orchestration is not
monopolized by the BPEL engine since the MAH manages
the mobility aspect.

A. Evaluation of our test case

The evaluation of the sequence of actions starts with a
message about a business message to move.

Figure 6. Test BPEL request

This request identifies the process to move and also to
check the technical rules such as the initiation of remote
communication with the MAH as a prerequisite. Multiple
Web services are used to prepare the management operation;
they are exposed by the MAH: they can transport the process
to enable message routing normalized and manage ongoing
exchanges with the process.

Since the first invocation does not require migration, the
role of the MAH will be transparent. The second invocation
will require the execution of various technical tasks
mentioned in the previous paragraph since the target web
services is identified as external to the host.

B. Observation of the migration process

Tracking the evolution of the migration is essential to
decide whether controls are applied at the right time.
Moreover, it allows also summing up when administrator
wishes it to know the path of a business process during a
period of time:

<bpel:invoke name="Invoke_monitoring"

operation="GETINFO"

 inputVariable="MonitoringRequest"

outputVariable="MonitoringResponse"

 partnerLink="MonitoringPartnerLink"

portType="mo:MonitoringPortType" />

Figure 7. Service invocation

<receive name="mahReceive"

 createInstance="yes"

 operation="MAH"

 partnerLink="MAHPartnerLink"

 portType="mah:MAHPortType"

 variable="mahRequest"/>

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

Each step of the migration process is monitored by
observation services which write into log files what happens
during the migration process.

C. Impact on the other management operations

When the migration business process is evaluated by
BPEL engine, a set of tools is deployed as mentioned
previously. The ESB’s console (Figure 8) show all the
elements which are built to achieve the move of a business
process.

The following figure displays a route module, several
web services (these elements are outlined in red color),
binding component also.

Of course, this figure shows a snapshot about what it is
currently deployed by the end of the migration process.
Some elements could be reused for another migration but it
is not the case in this case study.

Figure 8. Console of ServiceMix ESB

VI. CONCLUSION AND FUTURE WORK

To sum up, we have described the life cycle of our
approach of business process management. First, we have
shown how it is possible to move a description from one
server to another one into a cluster of servers. Then we have
detailed how we have prototyped it as a specific BPEL
process which is a conductor of a reconfiguration of the
client business.

Next, we gave results about our experiments. Because
this work uses dynamicity, it is not easy to highlight mobile
feature, but we wanted to stress that all steps of our approach
are taken into account. This validate that our approach is
useful and also that ESB are servers which can exploit
mobility as an ability to do an adaptation during execution.

We have realized other management operations but all
these operations operate on business process definition and
not on process instantiations. Also, we are working now on
the mobility of instances of business processes and how to
move an execution context without perturbation. We will
focus on extending our approach to other orchestration
languages like CAMEL DSL [18]. Our first goal is to enrich

Java DSL's routing for managing dynamic mobile processes.
Camel is based on the separation between aspects
"definition" and "execution" of business processes. Camel
business processes are based on a sequence of EAI, it allows
us to add a new pattern "Migrate" which may be declared in
Camel DSL and will be provided at runtime by a mechanism
of self-transfer of business processes to the target host. Our
second goal is to construct a formal specification in "pi-
calculus" [19] of Camel‘s engine using the approach based
on business specification [20] to highlight the mobility
aspect added. Thus, the result demonstrated that the
reduction leads to a transparent migration from an external
point of view.

REFERENCES

[1] J. Caserta and R. Kimball, "Data Warehouse ETL Toolkit: Practical

Techniques for Extracting, Cleaning, Conforming, and Delivering
Data", 2004 , ISBN-10: 0764567578

[2] E. Curry, D. Chambers, and G. Lyons, “Extending Message-Oriented
Middleware using Interception”, presented at Third International
Workshop on Distributed Event-Based Systems (DEBS '04), ICSE
'04, Edinburgh, Scotland, UK, 2004.

[3] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,” Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[4] R. Abate, J. P. Burke and P. Aiken "Eai with Service-Based
Architectures", 480 pages, John Wiley & Sons (Oct 2002), ISBN:
0471415154

[5] I. Charlesworth and T. Jones, "The EAI and Web Services Report",
EAI Journal, 2003, pp. 11-18.

[6] J. LEE, K. SIAU and S. HONG (2003) Enterprise Integration with
ERP and EAI. Communications of the ACM 46(2), pp 54–60.

[7] L. Gavin, G. Diederichs, P. Golec, H. Greyvenstein, K. Palmer, S.
Rajagopalan, and A. Viswanathan, An EAI Solution using
WebSphere Business Integration (V4.1), ISBN: 0738426547, 2003

[8] P. Kolb. Realization of EAI patterns in Apache Camel. Student
research project, University of Stuttgart, 2008.

[9] M.T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen. "The
enterprise service bus: Making service-oriented architecture real".
IBM Systems Journal, 44 (4): pp 781–797, 2005.

[10] S. Ilarri, R. Trillo, and E. Mena, “SPRINGS: A scalable platform for
highly mobile agents in distributed computing environments,” in
Fourth International WoWMoM 2006 Workshop on Mobile
Distributed Computing (MDC’06), Niagara Falls/Buffalo, New York,
USA. IEEE Computer Society, June 2006.

[11] J. Waldo, A. Wollrath, and S. Kendall. "A Note on Distributed
Computing". Springer Verlag. 1994.

[12] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana: Web
Services Description Language (WSDL) 1.1,15 March 2001.
http://www.w3.org/TR/wsdl, retrieved: December, 2012.

[13] J. Farrell, H. Lausen “Semantic Annotations for WSDL and XML
Schema”, W3C Rec., Aug. 2007.

[14] S. Loughran and E. Smith. "Rethinking the Java SOAP Stack". May
17, 2005. Copyright © 2005 IEEE Telephone Laboratories, Inc..

[15] Web Service Business Process Execution Language Version 2.0,
Working Draf, July 2005, OASIS Technical Committee, available via
http://www.oasis-open.org/committees/wsbpel, retrieved: December,
2012.

[16] Q. Chen and M. Hsu. "Inter-Enterprise Collaborative Business
Process Management". In Proc. of 17th International Conference on
Data Engineering (ICDE'01), IEEE Computer Society, April 2001, pp
253-260.

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/wsbpel

[17] B. A, Christudas, "Service Oriented Java Business Integration" (1st
ed.), Packet publishers, (August 13, 2008), pp. 436, ISBN
1847194400.

[18] C. Ibsen and J. Anstey. “Camel in Action”. Manning, 2010, pp. 113–
122.

[19] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes,
Parts I and II. Volume 100 of Journal of Information and
Computation, 1992, pp 1-77.

[20] C. Mahmoudi and F. Mourlin. International Conference on Software
Engineering Advances, thinkmind , Lisboa 2012, pp 197-204.

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

