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Abstract—This paper presents a novel Self-Organising Map
for breast cancer classification and monitoring, based on
Microwave/Ultra Wideband radar imaging. This approach has
the potential to help clinicians to differentiate and track the
development of a tumour from a benign state to different
levels of malignancy based on their Radar Target Signature
(RTS). Many existing studies have investigated the use of the
RTS of a tumour to classify breast cancer as either benign
or malignant, based on the fact that the RTS of a tumour
is dependent on tumour shape, size and surface texture. In
this paper, a self-organising (Kohonen) map is applied to
the salient features of the tumour RTSs, developing a two-
dimensional “MammoMap”, where the various regions of the
map correspond to the characteristics (benign or malignant)
of the tumour, potentially allowing for the allowing for the
classification and monitoring of tumour growth.

Keywords-Microwave Imaging; Breast Cancer; Classifica-
tion; radar

I. INTRODUCTION

In the US, between 4%-34% of all breast cancers are
missed by conventional X-Ray mammography [1], while
70% of all malignancies identified are found to be benign
after biopsy [2]. These false positive conclusions result in
unnecessary biopsies, causing considerable distress to the
patient and an unnecessary financial burden on the health
service [2], [3]. In the US, more than 184,000 new cases of
breast cancer are diagnosed each year resulting in approxi-
mately 41,000 deaths. Early detection and intervention is one
of the most significant factors in improving the survival rates
and quality of life experienced by breast cancer patients [4],
since this is the time when treatment is most effective.

Ultra Wideband (UWB) radar imaging is one of the
most promising emerging breast imaging modalities. The

physical basis of UWB radar imaging is the dielectric
contrast between normal and malignant breast tissue that
exists at microwave frequencies [5], [6], [7], [8], [9], [10].
This dielectric contrast is due to the increased water content
present in the cancerous tissue, and this contrast suggests
that when the breast is illuminated by a UWB pulse, can-
cerous tissue in the breast tissue will provide backscattered
energy, which may be used to detect, localise, classify and
track tumour development. UWB radar imaging is non-
ionising, non-invasive, does not require uncomfortable breast
compression, and is potentially low cost.

Several studies have also examined the use of UWB
radar to classify breast cancer. This classification approach is
based on the Radar Target Signature (RTS), which reflects
the size, shape and surface texture of the tumour. Benign
tumours typically have smooth surfaces and have spherical,
oval or at least well-circumscribed contours. Conversely,
malignant tumours usually present rough and complex sur-
faces with spicules or microlobules, and their shapes are
typically irregular, ill-defined and asymmetric [11]. These
tumour characteristics are generally reflected in the details
of the RTS and can be used to differentiate between benign
and malignant tumours, potentially negating the need for
tumour biopsy.

In this paper, a Self-Organising Map (SOM) tumour clas-
sification and monitoring algorithm is considered. The map
is described as “self-organising” since the learning process is
completely unsupervised. In the implementation considered
in this paper, the SOM produces a two-dimensional map,
where the map is divided into a number of distinct regions.
These regions can correspond to either tumour size (large
or small) or tumour type (benign or malignant), depending
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Figure 1. Kohonen SOM topology, adapted from [13]. Each output layer
node is represented by an N-dimensional weights vector.

on the specific application. These “MammoMaps” could
provide a very intuitive visual aid to clinicians for the
diagnosis, monitoring and treatment of early stage breast
cancer.

Self-organising maps are briefly described in the next sec-
tion. This is followed by a discussion of tumour shape and
electromagnetic modelling. In Section 4 details of the feature
extraction method used are given. Results and discussion
follow in Section 5, and finally a conclusion is drawn and
future work proposed in Section 6.

II. SELF-ORGANISING MAPS

Self-Organising Maps (SOMs) are a type of neural net-
work that are trained using unsupervised learning, where the
input pattern is applied and the network produces the output
without being told what output should be produced [12].
Self-organising maps consist of an input and an output layer.
The topology of a SOM network is shown in Figure 1. The
dimension of the input layer is defined as being equal to the
number of features or attributes, while the output layer is
typically a two-dimensional grid (shown as red, white and
yellow regions in Figure 1). In SOMs, the two layers are
fully interconnected i.e., each input (ipi) is connected to
every unit or node in the output layer.

To illustrate the operation of the SOM, two-dimensional
data is employed here, showing the topological mapping of
the data. Although, 2-D data is used here for illustration
purposes, the SOM performs very well in organising much-
higher dimensional data such as that generated by the UWB
feature-extraction methods used in this paper. The 2-D input
data is randomly initialised and evenly distributed over the
range zero to one. Weightings, wtj1 and wtj2, initially also
randomly selected from the same range, are associated with
the inputs to each node j. These weights are adapted so that
the network of weights, as an entirety, organises to form
topological mappings of the input space. This means that
the distribution of weight values in the network will reflect

Figure 2. Plot of network weights directly after random initialization.

the distribution of input data. Details of how these network
weights are adapted are given in the following section.

To more easily visualise the topological distribution of
network weights, a graph is plotted with a point for each
node in the output layer, the co-ordinates of each point being
given by the weight values of the node (e.g. ordinate value
wtj1 and abscissa value wtj2). If nodes in the output layer
are assigned indices (i, j) denoting their row and column,
then joining the point for node (i, j) to the points for
nodes (i+ 1, j) and (i, j + 1) for every node in the output
layer yields a plot similar to Figure 2. Figure 2 illustrates
randomly selected weights chosen from the range zero to one
before the Kohonen training process was applied (i.e., the
plot was made directly after initializing the weight values).

A. Network Training

Having randomly initialized the weight values, the train-
ing process described by Kohonen [12] now begins. For
training, the following steps are repeated for N iterations,
where N is the number of training steps:

1) Randomly choose inputs to present to the SOM;
2) On the basis of a Euclidean distance metric, find the

output-layer node whose weights are most similar to
the input;

3) Update the weight of that node and those of its
neighbours according to the following equation:

wji(t) = wji(t−1)+α(t−1)[ipi(t−1)−wji(t−1)]
(1)

where wji(t) is the weighting between node j and in-
put i, ipi is the ith input, and α is the gain or learning
rate (an empirically chosen adjustable parameter that
can be adjusted to regulate the training speed);

4) Reduce neighbourhood size and learning rate as per
the following two equations:

D = dd0(1− t/N)e (2)
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Figure 3. Network weights after training has been completed.

where d0 is the initial neighbourhood size, t is the
current updating/training iteration and N is the total
number of iterations.

α = α0(1− t/N) (3)

Typically the neighbourhood size begins large (e.g. one-half
to one-third of the grid size). Several different forms of
neighbourhood type can be used. In this paper, a simple
square neighbourhood is used and neighbourhood size is
restricted to integer values. After training has been com-
pleted, the weight values are once again plotted and shown
in Figure 3.

B. Network Testing

Randomly chosen input patterns are applied and Euclidean
distance competitions held to see which set of weights are
most similar to the input patterns. Similar inputs pattern
have been found to cause nodes that are adjacent in the
output layer to win. This being the case, from Kohonen’s
definition [14], the neural network can be said to be organ-
ised: “The mapping is said to be ordered if the topological
relations of the images and the patterns are similar”. Using
a skewed input distribution, where the second training input
is chosen to be in the range [0,0.2] when the first training
input is greater than 0.5, leads to the map shown in Figure 4.

This approach to testing and training, applied to the breast
tumour RTS dataset, is discussed in Section V.

III. TUMOUR SHAPE AND ELECTROMAGNETIC
MODELING

A. Tumour Shape Modelling

Shape and texture of the surface of a tumour are two of the
most important characteristics used to differentiate between
a benign and a malignant tumour. The tumour models used in
this paper are based on the Gaussian Random Spheres (GRS)

Figure 4. Plot of network weights for a skewed input distribution.

method [15], [16]. GRS can be modified mathematically to
model both malignant and benign tumours of different sizes
by varying the logarithmic radius and the mean radius α,
respectively. The shape is determined by the radius vector,
r = r(θ, ψ), described in spherical coordinates (r, θ, ψ), by
the logradius s = s(θ, ψ):

s(θ, ψ) =

∞∑
l=0

l∑
m=−l

slmYlm(θ, ψ) (4)

r(θ, ψ) = α exp

[
s(θ, ψ)− 1

2
β2

]
(5)

In the equations above, β is the standard deviation of the
logradius, slm are the spherical harmonic coefficients and
Ylm are the orthonormal spherical harmonics [15], [16].
Three different tumour models of one size are considered
in this paper (macrolobulated benign, and 3 and 10-spiculed
malignant tumours). Malignant tumours are represented by
spiculed GRS, whereas benign tumours are modelled by
macrolobulated GRS. Macrolobulated GRS are obtained by
varying the correlation angle between 25 and 45 degrees
and smooth GRS have a correlation angle between 50 and
90 degrees. Spiculed GRS are obtained by adding 3 or 10
spicules to smooth GRS. The average radius of all types of
spheres are 2.5 mm. Ninety tumour models were developed
(30 benign and 60 malignant of which 30 had three spicules
and 30 had ten spicules), each having 4 recorded signals
corresponding to 4 antennas.

In order to examine the effects of dielectric heterogeneity,
a second set of models was created where fibroglandular
tissue was introduced into the FDTD models. Fibroglandular
tissue, extracted from the UWCEM Breast Phantom Repos-
itory [17], is introduced into the FDTD model (phantom ID
071904). A single piece of fibroglandular tissue is added to
the FDTD models, as shown in Figure 5.
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Figure 5. Example of the heterogeneous breast model. The tumour is
shown in blue, while the fibroglandular tissue is shown in black.

B. Electromagnetic Modelling

The 90 tumours of size 2.5 mm are placed in a 3D Finite-
Difference Time-Domain (FDTD) model. The FDTD model
has a 0.5 mm cubic grid resolution and the backscattered
signals were generated through a Total-Field/Scattered-Field
(TF/SF) structure, in which the tumours and fibroglandular
tissue are completely embedded in the Total Field (TF) [18],
[19]. The TF/SF region has the following dimensions: the
Scattered Field (SF) is a square prism with square bases
measuring 153.5 mm on the side and height measuring
137.5 mm. The TF is located at the centre of the SF and is
represented by a 50 mm-sided cube (the origin of the SF and
the TF are at the point (0,0,0) mm). The dielectric properties
of adipose, fibroglandular, and cancerous breast tissue are
incorporated in the FDTD using a Debye formulation, based
on the dielectric properties established by Lazebnik et al. [9],
[10]. The TF/SF region is terminated with a 6 mm-layer Uni-
axial Perfectly Matched Layer (UPML) which suppresses
any boundary reflections [20].

A pulsed plane wave is transmitted towards the target
from four different equidistant angles (0◦, 90◦, 180◦, 270◦)
and the resulting cross-polarised backscatter is recorded
and analysed from antennas located at: (0,0,-74), (-74,0,0),
(0,0,74) and (74,0,0) mm in (x,y,z) axes. The incident pulse
is a modulated Gaussian pulse with center frequency at 6
GHz where the 1/e full temporal width of the Gaussian
envelope is 160 picoseconds. For two transmitters, the pulse
is linearly polarised in the x-y plane and transmitted in the
z direction, and for the remaining transmitters, the pulse is
polarised in the y-z plane and transmitted in the x direction.
Each antenna is located in the SF at a distance of 74 mm
from the center of the tumour, which is located at the centre
of the TF. The acquired backscattered recorded signals are
downsampled from 1200 GHz to 75GHz. Figure 6 shows
a representation of the TF/SF grid, with the location of

Figure 6. Cross-section of the 3D FDTD space lattice partitioned into Total
Field (TF), Scattered Field (SF) and UPML regions, for a homogeneous
breast model. The target, a spiculed tumour located at the centre of the
TF in this example, is illuminated by a pulsed plane wave propagating in
the +z direction (represented by a dark line) and backscatter is recorded at
the first observer location: (0,0,-74) mm (represented by a blue circle). The
remaining three antennas are represented by small red circles in the image.

the origin of the first incident plane wave and respective
observer point as well as the position of the tumour.

IV. FEATURE EXTRACTION

The Discrete Wavelet Transform (DWT) is applied to the
RTS and the resultant wavelet coefficients are obtained using
low-pass decomposition filters. Subsequently, the low-pass
band may be split again through further low-pass filters. In
this paper, the chosen wavelet is Coiflet 5 (established as the
optimum wavelet by empirical analysis). The frequency band
that is used for classification corresponds to the wavelet co-
efficients obtained from the low-pass band after a two-level
decomposition, as these wavelet coefficients were found to
give the best classification performance compared to other
subbands, evaluated up to four levels of decomposition.

To identify the most relevant DWT coefficients for input to
the SOM, a statistical analysis was performed on the dataset
to identify the DWT components that exhibit the most
statistically significant differences between malignant and
benign tumours. A T-Test identifies the largest significant
differences between the means of two independent sample
groups, while taking the variances of both groups into
account. The independent variable is whether the tumour
is malignant or benign, while the dependent variable is
the level of the DWT output. The 15 DWT components
that exhibit the greatest differences between malignant and
benign were identified, normalised, scaled to [-1,1] and
employed for classification purposes

V. RESULTS

Two distinct datasets were considered: data from simu-
lations where the tumour is located in homogeneous breast
tissue and a second set where fibroglandular tissue is present
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(i.e., data from a more heterogeneous breast). Each of these
datasets consisted of 360 tumour signals from models of size
2.5 mm each comprising of 15 normalised and scaled DWT
values. In order to evaluate the classifier, each data-set is
randomly shuffled and divided into ten combinations of 276
training and 84 testing tumours. The classification process
is repeated 10 times for each of the ten files and the average
performance of the classifier is calculated (note: all results
presented is this paper are based on the performance of the
test set).

For this particular study, weights were randomly ini-
tialized to be in the range [-1, 1] and training consisted
of repeatedly applying scaled patterns of the 15 DWTs
randomly chosen from the 276 tumour models in the train-
ing sample, until the network organised. The output layer
consisted of a square 10x10 grid. The gain/learning rate
(0.5), neighbourhood size (4) and number of training steps
(5100) were empirically chosen. During training, the neural
network had no input indicating whether the input pattern
being presented to it belonged to a malignant or to a benign
tumour model.

At the end of training, the network weights were frozen.
At this point a Euclidean distance competition was held
for each node in the output layer, for each of the 276
training tumour models in the training set. The tumour model
pattern most similar to the weights of a node was then
assigned to that node. Only at this point was the training
data set examined to discover which inputs corresponded to
malignant/benign tumour models.

Three-way classification is shown in the MammoMaps
illustrated in Figure 7. Here, benign, 3-spiculed malignant
and 10-spiculed malignant tumours are represented as green,
orange and red regions, respectively.

In order to evaluate the performance of the three-way
SOM classifier, the SOM is tested using a test sample of 84
tumours. Importantly, the DWT coefficients corresponding
to these tumours have not previously been presented to the
network. For testing, the 15 DWT values for each of the
test tumour models are input to the trained network (whose
weights are now frozen), a distance competition is held for
each tumour model and a winning node found. The tumour
is then classified based on which region it falls into on the
SOM.

An average classification accuracy across 10 maps for
each of the ten shuffled files was as follows:

• 99.5% for macrolobulated tumours
• 90.54% for 3 spiculed malignant tumours
• 88.28% for 10 spiculed malignant tumours

yielding an overall average accuracy of 92.77%.
The tumours fall into clear and distinct regions within

the resultant SOM MammoMaps. Significantly, the region
of benign tumours (shown in green) is separated in all cases
from the highly malignant 10-spicule tumour region (shown

Figure 7. Four examples of three-way classification between benign
macrolobulated (green), 3 spiculed malignant (orange) and 10 spiculed
malignant (red) tumours using an SOM.

Figure 8. Tumour development tracking with an SOM. As the tumour
(shown in blue) becomes increasingly malignant, it moves across the map
from the green region to the red region.

in red) by the intermediate 3-spicule tumour region (shown
in orange).

Figure 8 shows a SOM being used to monitor a tumour
(shown in blue) as it develops from benign macrolobulated
to 3 spiculed malignant to 10 spiculed malignant. This
highlights the significant potential of SOMs for tumour
tracking, since SOMs preserve the input data topology.

VI. CONCLUSION AND FUTURE WORK

In this study, “MammoMaps” have been shown to have
the ability to differentiate between macrolobulated benign
and two different levels of malignant tumours. Therefore,
these “MammoMaps” have significant potential as a cancer
classification or diagnosis tool.
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However, more importantly they could also be used to
monitor the development of a tumour due to the fact
that “MammoMaps” preserve the topology of the input
information. Therefore, a clinician could use these maps to
determine whether a tumour is developing from benign to
malignant (moving across the “MammoMap”) or not (stay-
ing static on the “MammoMap”). Movement even within the
benign region could indicate that the tumour is developing
even before it is classified as malignant and so treatment
could be offered to patients at a very early stage of their
disease, when it is most effective. This potential will be
further examined in future studies.
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