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Abstract—The aim of this paper is to achieve ad-hoc
grouping systems enhanced by ambient sounds or sound-
fields. As an elemental technology of ad-hoc grouping, systems
have to be equipped with a search engine with sufficient
accuracy to find out users who are in similar contexts. Systems
require another similarity criterion for sound-fields. Because
search results from well-known similarities, such as cosine-
similarity, cannot exclude false negative and cannot restrict
false positives. Moreover, in order to cover a wide-variety of
mobile devices including smartphones, we have the problem
of the deterioration of search accuracy due to differences
in microphone performances. We may also have to decrease
the system-wide load. This suggests that original sound-field
data should be resized as small as possible without losing
valuable features to flexibly recognize different contexts. We
thus propose a new similarity criterion on sound-fields for ad-
hoc grouping. We also show experimental results to ensure all
requirements are fulfilled.

Keywords-sensor based system; ubiquitous system; ad-hoc
communication; ambient-sound.

I. INTRODUCTION

To increase the chance of grouping anytime anywhere
with the growing popularity of social networking services
(SNSs), constituent members for sharing pictures or com-
municating with each other choose to use various kinds of
SNSs. Indeed, ad-hoc group communication services [1] are
just beginning to be provided for smartphone users who want
to temporarily set up a group consisting of ones immediate
circle over a period of time.

Users who want to find constituents to add to their group
automatically have usability and operability requirements.
To infer constituents appropriately, it is important to guaran-
tee high accuracy for searching for ones who have the same
situation or context. We thus concentrate search accuracies
on the false negative exclusion, and the restriction of a
false positive. Here we consider a situation in which group
constituents have been identified and the members do not
want others to join in their group. A false negative is
when the search could not find suitable members. A false
positive is when the search finds unsuitable members. As
another requirements supposed in various situations, a wide
area must be covered. This cause that systems should have

sensors equipped by mobile devices as their components.
There is a fundamental approach to measure proximity of

user’s context, such Wellman et al.’s approach [2] for acquir-
ing and using absolute positioning of GPS that gives latitude
and longitude. However, approaches based on GPS cannot be
applied indoors or underground. Thus, other approaches that
apply several sensors have been investigated; for example,
Cricket [3] and ActiveBat [4] based on ultrasonic waves,
Ekahau [5] based on wireless LAN, and LuxTrace [6] based
on building illumination. However, even if these approaches
were combined with GPS, it still might be difficult to apply
to ad-hoc grouping systems, since we have to arrange many
sensors broadly. Thus, equipment costs (deployment cost
and maintenance cost) are comparatively high. Moreover,
an approach may be also desired that is applicable even in
places or situations in which sensors are difficult to deploy.

On the other hand, there exist approaches on positioning
inferred by comparing each pair of sensor data. We refer
such approaches to certification matching for descriptive
purpose. Some certification might be created simply by an
action occurring that can be sensed by devices: vibrating de-
vices that enable an accelerometer [7], or clicking the same
button simultaneously. The certification based on occurrence
has a weakness in terms of search accuracy. The main factor
for its deterioration comes from increasing probabilities of
collisions occurring; users who are in different contexts
doing the same action at the same time. When an ad-
hoc grouping system has about 10,000 users exist, we can
confirm theoretically that probabilities approach infinitely to
1, by analogies of the birthday’s paradox.

In this paper, we resolve subjects mentioned above by
introducing a new similarity. Specifically, the proposed sim-
ilarity measures information theoretical features in ambient
sound or sound-fields. The sound-fields can be sensed by
a microphone equipped on many mobile devices, includ-
ing smartphones. Therefore, by considering microphones
equipped on many mobile devices, the requirements for
covering a wide area and various scenes and equipment costs
are simultaneously solvable. Moreover, utilizing sound-fields
may be tractable for search-accuracy requirements related to
the restriction of false positives because sound-fields have
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many features and variations, rather than simple certifica-
tions based on occurrence of actions.

The rest of this paper is organized as follows. In Sec-
tion II, we deal with related works for context proximity
inference methods based on ambient sound and describe
requirements for similarity between sound-fields. In Sec-
tion III, we overview the architecture of ad-hoc grouping
system enhanced by ambient sound and describe in detail
procedures of each mobile device and the cloud server. In
Section IV, we report experimental results on the accuracy of
information retrieval for the proposed similarity and discuss
advances fulfilling each requirement described in Section II.
Finally, in Section V, we summarize the results that have
been achieved and detail future works.

II. CONTEXT PROXIMITY INFERENCES BASED ON
SOUND-FIELDS

A. Related works and their problems

To infer proximity of contexts on the basis of a sound-
field, Sturm et al. [8] proposed an approach for recogniz-
ing trajectories of several moving sound-sources by using
microphone-arrays. However, this also requires that many
microphones be deployed to cover a wide area.

As methods for no equipment costs, Tarzia et al. [9]
proposed that a positioning system for single user, based
on finger-prints of a sound-field. This system can allow to
recognize rooms where user visited. However, it is not so
easy to get a high accuracy on location retrieval. We discuss
on accuracies in section IV.

Lu et al. [10] proposed a method inferring user’s context,
using ambient sounds. This method leverages machine learn-
ing on several features of sound-field, to classify ambient
sounds into attributive categories with high accuracies. How-
ever, Lu et al. did not indicate whether their method have a
capability to distinguish sound-fields in a same category.

Nakamura et al. [11] provide thorough knowledge of
specific sound-fields, especially conversation-fields. They
designed architectures that recognize appropriately different
conversation-fields, using cosine-similarity.

However, to cover various sound-fields, cosine-similarity
has a weakness in terms of search accuracies: higher pre-
cision or lower false-positive. The precision and the false-
positive are defined as follows. Let R be the number of
users who are constituent members by just grouping and N
the number of users found out by searching. Thus, precision
p := R

N ; false-positive f := N−R
N . We also have a relation

p = 1− f. Thus we consider only the false-positive in this
paper.

Here, we describe a number of disadvantages derived
from measuring with cosine-similarity for sound-fields. First,
search results by using cosine-similarity may contain a
certain amount of false-positives. Sound-fields have mainly
two discriminable sounds; event-sounds, which occur in an
unexpected fashion, and ambient-noise, which are stationary

background sounds. Note that a definition of ambient-noise
includes sounds in which one can be observed anywhere
else, such as cafeterias, offices, and also calm places though
contradicting this term with noise. Comparing duration be-
tween an event-sound with a ambient-noise, ambient-noise
occupy a considerable amount of sensing time, but an event-
sound is rare. This implies that temporal coincidences of
ambient-noise severely affect context proximity, but coin-
cidences of event-sounds do not. This is because cosine-
similarity treats ambient-noise and event-sounds evenly.
Therefore, results of searching with the cosine-similarity
tend to have higher false-positives rate, since results contain
many false users who only are in similar ambient-noise.
Therefore, similarities measuring sound-fields should give
higher grades for temporal coincidence with event-sounds,
but not for ambient-noise.

Second, there is a vulnerability in differences of micro-
phone performance. Usually, according to the type of mo-
bile devices, microphones’ performances differ dramatically
from each other. Differences are especially observable in
sound-pressure levels. That is, cosine-similarity will mis-
judge users who have distinct contexts, even if both micro-
phones sense just the same sounds. Since such unfortunate
cases will be caused by cosine-similarity, inferring proximity
of context will err frequently or be unable to except the
false-negativeness.

Next, we consider a practical system for ad-hoc grouping
enhanced by a sound-field. Then problems on system-width
load emerge. Since the data size of any sound-pressure
series sensed by mobile devices is not very small, data sent
from each mobile device should be as small as possible.
In particular, a sound-pressure series contains much more
information or many more various features than required.
Thus, it is inefficient from the viewpoint of both of system-
wide loads and network communication costs. Specifically,
receiving rather large size of data will cause high network
I/O loads, as a consequence, restrict availabilities of systems.
Thus, the communication cost become a bottleneck. This
is a problem that users could not join a group within
applicable timings. Therefore, for the sound-pressure series,
a contraction method is required that has valuable features
to recognize different contexts.

B. Requirements and technical idea

We describe requirements derived from problems in the
previous section, and its technical idea.

i) Higher accuracies on information retrieval
Proposed similarity estimates temporal coincidences
between singular value (derived from event-sounds)
included in each sound-fields from aspects of infor-
mation theoretical features. In particular, we introduce
concepts of mutual information. That is, if event-
sounds, which have practically lower probabilities of
occurring in sound-fields, coincide, then we add higher
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estimation to their similarity. Furthermore, we can
confine contributions of ambient-noise to similarities,
and then the false-positive ratio tends to decrease.
Therefore, we could guarantee higher accuracy in
information retrieval, and thus, could appropriately
associate users with others in similar environments.

ii) Flexible treatments for different microphones
Performance differences are observed between
equipped microphones, especially in small and large
of sound-pressure values. To resolve the differences
in sound-pressure values, we generate a collection
of multiple feature vectors extracted from frequency
spectrum, considering redundancy for sound-pressure
values. Then, we compute information entropy,
estimating coincidences between one collection and
the others. This implies that proposed similarity
is relatively tolerant of differences in microphones
performance. Therefore, we could accept a wide
variety of mobile devices, since proposed similarity
may resolve flexibly.

iii) Low communication costs
Now we consider “large scale and real-time” ad-hoc
grouping (cloud) systems enhanced by ambient sound.
In such cloud systems, network communication costs
may be problem for system availability, since the data
size of any sound-pressure series is not very small.
This also implies higher system loads. Considering an
availability of a system, we also have to avoid that
network I/O loads will become a bottleneck. Thus, to
reduce communication costs, we apply a contraction
procedure to sound-pressure series sensed originally
by microphones. Note that applied contraction proce-
dures also have to be guaranteed to meet the above two
requirements simultaneously. To tackle this issue, we
apply a low-pass filter like a finite impulse response
(FIR). Applying a FIR filter, a sound-pressure series is
shortened and consists of components only with low
frequency bands. We refer any sound-pressure series
applied FIR as series of beats, and show that any series
of beats still holds enough features by experimental
results in section IV.

III. O-MUSUBI: AD-HOC GROUPING SYSTEM
ENHANCED BY AMBIENT SOUND

We show overview of proposed ad-hoc grouping system
enhanced by ambient sound in Figure 1. We entitle this sys-
tem O-MUSUBI, which is acronym stands for Organization
scheme Measured by Universal Sensor data like ambient
sound for UBIquitous machines. Another meaning is derived
from combination of two Japanese words, “Oto” (sound in
English) and “Musubi” (connection or nexus in English). cf.
O-MUSUBI is Japanese traditional riceball.

Each mobile device sends sensing data consisting of a
sound-pressure series to the cloud server. Then the cloud

server computes similarity of each pair of given sound-
pressure series.

Cloud serverMobile device

Grouping method

Contraction method

Microphone

Sound-field proximity

inference method

Figure 1. Overview of O-MUSUBI system.

The overview of procedures in each mobile device can
be described as follows. The contraction method contracts
original sound-pressure series by removing unnecessary in-
formation. Then each mobile device sends contracted data to
the cloud server. We assume that sensing time is separated
by a unit time (e.g. three seconds) that is determined and
shared in the whole system. We also assume that the unit
time is continuously resumed until a group is found or a
termination message is received.

The main procedure in the cloud server is to infer each
pair of users’ context proximity. More specifically, sound-
field proximity inference method computes similarities, or
information entropies, between two of each sound-pressure
series. Then, grouping method update information for
groups and may notify users of new groups they should
join.

A. The mobile devices side

The procedure of mobile devices mainly consists of
three phases: sensing sound-pressure series, contracting the
original series, and sending the contracted series to the cloud
server. Here, we have known that there exist temporal gaps
between any pair of sound-pressure series. Although feature
vectors are created in the basis on frequency spectrum,
we cannot correct the gaps by using any pair of spectrum
component series. This is because spectrum component
series does not have temporal information. Thus, we have
to correct or synchronize at the cloud server side. This
temporal synchronization procedure have been described at
sub-section III-B. This is also desirable to cover various
kinds of devices whose computational resources are poor.

In this section, we describe the procedure of the contrac-
tion method. To contract the original data, we borrow an
idea from applying low-pass filers such as FIR. Although
applying filters might loss much information contained in
the originals, valuable features are still retained, such as
beats. This series of beats implicitly provides occurrences
of tempos of event-sounds, and coincidences of tempos
with spectrum powers, or joint probability, have higher
information entropies. Thus, we could ensure the accuracy
of information retrieval, in spite of considerably shrinking
the original sound-pressure series.
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Algorithm 1 shows a pseudo-code of contraction
method. For input, Algorithm 1 is given an array buf stored
sound-pressure series that is sensed with a sampling fre-
quency specified by parameter samplingFrequency for
a given length of time specified by parameter duration.
For output, Algorithm 1 ensures an array contractData
stored contracted sound-pressure series whose elements are
maximal ones in buf for each sliding time-window. Ad-
ditionally, we would assume that two consecutive time-
windows share overwrap each other. We specify a frac-
tion of overwrap with overwrapRate, where 0 ≤
overwrapRate < 1.

We note that information that should be shared by both
mobile devices and the cloud server is represented by two
parameters: the sensing time duration in mobile devices
and the size of the sound-pressure series sendDataSize.

Algorithm 1: Contraction Procedure in Mobile Device
input : An array buf stored the time series-data of

sound pressure values.
output: A contracted array contractedData

1 w =
⌊

buf.length
(1−overwrapRate)×sendDataSize+overwrapRate

⌋
;

2 w′ = w × overwrapRate;
3 for i = 1, k = 0; i < buf.length; i++, k++ do
4 if buf[0] < buf[i] then
5 buf[0] = buf[i];

6 if k==w then
7 contractedData.push buck(buf[0]);
8 k = 0; i -= w′;
9 buf[0] = buf[i];

10 return contractedData;

In the case of a smartphone, the sampling frequency
is configured by its specification and is sensed with at
least 8 kHz. For example, when any smartphone sensing
for 3 seconds, and the system configures sendDataSize
= 300 and overwrapRate = 0.5, the time-window size
windowSize becomes 162, and each element stored in
output array contractData is a maximal among 162
values in each sliding time-window.

B. The cloud server side

In this section, we describe the procedure in the cloud
server on the basis of requests from the first two require-
ments described in Section II-B.

In the cloud server, the sound-field proximity inference
method computes a degree of similarity between any pair of
sound-fields, and then, in accordance with similarities, the
grouping method updates grouping information to create
a new group or find a group when one user can find other
users having higher similarities.

Algorithm 2 shows a pseudo-code of sound-field infer-
ence method. The procedures in the cloud server consist of
two main steps: executing synchronizations in chronological
order between sound-pressure series, and for each sliding
time-windows, generating feature vectors and computing
information entropies.

Algorithm 2: Computation of Information Entropy on
Sound-Fields
input : A pair of two sound-pressure series {s0, s1}.
output: The similarity measured between s0 and s1.

1 TimeSynchronous(s0, s1);
2 w = (1− FFToverwrap)× FFTwinSize;
3 for t = 0; t < s1.length− FFTwinSize; t+ =w do
4 for i = 0; i ≤ 1; i++ do
5 Si = FFT(si, t, FFTwinSize);
6 Vi = SpectrumQuantization(Si);

7 CommonVectorAggregation(H,V0, V1);

8 foreach v ∈ H do
9 pv = H[v]

H.count ;
10 entropy+= pv log(pv);

11 return |entropy| ×H.count;

Executing synchronization in chronological order:
The procedure TimeSynchronous, Algorithm 2 (line 1),
corrects small gaps for a given two sound-pressure series.
Here, we describe an algorithm that corrects gaps in time-
series as follows. First, we generate two arrays M0 and M1

consisting of maximal values for each given sound-pressure
series s0 and s1. We define maximal as being the maximum
among three for just previous and next ones, and itself,
and their differences are larger than a threshold. Note that
any sound-pressure series may have a number of maximal.
Second, we obtain moving factors (gap size and direction.)
For example, part of the procedure is as follows: for each
maximal xi in M0, finds yi ∈ M1 which is the nearest
to xi; then, memorizes the minimum of |xi − yi| and its
sign of xi − yi as the moving factor. Finally, temporal
synchronization is executed on the basis of the moving
factor.

Generating feature vectors and computing entropies:
Here we describe the procedure of the first for-loop shown in
Algorithm 2 (lines 3–7). Given two sound-pressure series s0
and s1 (which may be applied a synchronization), the proce-
dure computes average information entropy and its summa-
tion for each sliding time-window whose size is specified by
parameter FFTwinSize. We assume that FFTwinSize
is the power of 2, since FFTwinSize corresponds to
data size input towards fast Fourier transform (FFT). Two
consecutive time-windows should share an overwrap, to
prevent missing features such as event-sounds occurring at
a boundary of non-overwrap consecutive time-windows. Let
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FFToverwrap be the parameter specifying the fraction
of overwrap, or overwrap ratio, for two consecutive time-
windows, where 0 ≤ FFToverwrap < 1. As described
in line 2 of Algorithm 2, for example, when we configure
the size of a time-window FFTwinSize with 64 and the
overwrap ratio FFToverwrap with 1

8 , the actual size w of
overwrap is equal to 56 = (1− 0.125)× 64.

We generate feature vectors for each inputs s0 and s1
respectively, as shown in lines 3–7. The process of gen-
erating feature vectors consists of two steps as follows.
First, for each s0 and s1, we obtain frequency spectrum
S0 and S1, respectively, by FFT. Second, we generate
a collection of multiplied feature vectors considering a
redundancy by SpectrumQuantization. The domain of any
feature vectors is defined by two parameters: the cut-off
frequency cutOffFreq, which defines the upper bound
on frequency we use, and the number of quantization levels
quantLevel. For example, when cutOffFreq = 11 and
quantLevel = 4, an arbitrary feature vector is defined on a
finite space [1, 10]×[1, 4]. Figure 2 shows a simple example.

Here, we refer to the relationship between
sendDataSize of mobile devices with cutOffFreq
of the cloud server. That is, cutOffFreq gives a lower
bound of sendDataSize. When we generate a frequency
spectrum with lower frequency than cutOffFreq by
FFT, we have to hold a condition on value of parameters
at least sendDataSize ≥ 2 cutOffFreq. We also note
the tradeoff between the size of data sent and the strength
of information entropies computed from given data. This is
because the number of time-windows defined in given data
increases if the size of data sent is larger.

P
o
w
er

Frequency Cut-off freq.

−α

1 2 3 4 5 6 7 8 9 10 [Hz]

1

2

3

4
p

p/2

p/4

−α

Figure 2. The characteristic-vector generation based on quantization
frequency spectrum.

We describe the procedure of quantization of each fre-
quency component in a frequency spectrum. In this de-
scription, we assume that if quantLevel = k, then k − 1
horizontal lines (quantization levels) are drawn as shown in
Figure 2, and then each spectrum components are quantized
into either one of {1..k}. We draw each k − 1 quantization

level such that we settle the first or highest level with
power p which has the maximum power among frequency
components in frequency domain (1, 2, ..., cutOffFreq−1);
then afterwards, the second or later levels with recursively
are defined as p

2i−1 . This k − 1 quantization level sepa-
rates the range of power in a frequency spectrum into k
intervals [0, p

2k−2 ), [
p

2k−2 ,
p

2k−3 ), . . . , [
p
2 , p), [p,∞). Then we

relate each interval with quantization values in increasing
order from the start-point. We quantize each frequency
components on the basis of power and intervals by find-
ing an interval containing the power and then quantize
with the value related. Figure 2 shows a situation with
quantLevel = 4, and each 4 quantization levels are
represented by dashed lines. As an example, a feature vector
v := (2, 3, 4, 3, 3, 3, 2, 2, 1, 1) is generated.

We describe how multiplied feature vectors are made
redundant. To tackle frequency spectrum errors derived from
the differences in microphone performances, we change
each quantization level to slightly below those defined
previously and then generate each multiplied feature vectors.
More precisely, we introduce two parameters:numCand
and jitter. The parameter numCand specifies the num-
ber of multiplied feature vectors or candidates for match-
ing. The parameter jitter specifies tolerance from each
quantization levels referenced. We could define recursively
numCand−1 sets of quantization levels by shifting to below
with jitter from each level referenced. Figure 2 shows two
different sets of quantization levels represented by dash-
dotted lines and dotted lines, respectively, where numCand =
3 and jitter = α. Then in accordance with each set of
quantization levels, we newly generate feature vectors v′ =
(3, 3, 4, 4, 3, 3, 2, 2, 2, 1) and v′′ = (3, 3, 4, 4, 3, 3, 3, 2, 2, 1).

CommonVectorAggregation manages a table H storing
joint probabilities, which are temporal coincidences of two
of each feature vectors occurring. Specifically, the table
H stores information on which feature vectors that occur
simultaneously and how many times as a whole given sound-
pressure series. The temporal coincidences of each of two
collections of feature vectors are evaluated as shown in
Figure 3, If after comparing or matching, there exists a
feature vector contained by both sets of feature vectors,
then it is the representative in the time-window. On the
other hand, if several vectors coincide, then we select one
unaffected from the parameter jitter as far as possible.
In the case of Figure 3, the coincidence between v′A and vB
is preferentially selected as the representative feature vector
(3, 3, 4, 4, 3, 3, 2, 2, 2, 1), but v′′A and v′′B .

Finally, we compute the information entropy between
given two sound-fields by using the number H.count of all
temporal coincidences and the number H[v] of occurrences
of each feature vector v. The procedure described in lines
8–10 of Algorithm 2 computes the average information
entropy. Thus, we return the information entropy.
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vA = (2, 3, 4, 3, 3, 3, 2, 2, 1, 1)

v
′

A
= (3, 3, 4, 4, 3, 3, 2, 2, 2, 1)

v
′′

A
= (3, 3, 4, 4, 3, 3, 3, 2, 2, 1)

v
′

B
= (3, 4, 4, 3, 3, 3, 2, 2, 1, 1)

vB = (3, 3, 4, 4, 3, 3, 2, 2, 2, 1)

v
′′

B
= (3, 3, 4, 4, 3, 3, 3, 2, 2, 1)

User A User B

Figure 3. The matching process between characteristic vectors

IV. EMPIRICAL STUDY FOR INFORMATION RETRIEVAL
ACCURACIES

In this section, we present experimental results and
discuss requirements described in Section II. Specifically,
we observe transitions of the information entropies under
each situation: sharing event-sound or not. We use two
smartphones as test mobile devices, in which microphone
performances differ.

Figure 4 shows an environment in which evaluation
experiment we performed. We assume that there are users
(A and B) who sit around a table in a cafeteria and wish
to communicate in a new ad-hoc group. In this situation,
we wish to observe whether proposed similarity has capa-
bilities to distinguish conversation-fields in ambient-noise,
and using microphones with different performances. For
ambient-noise, we deploy a loudspeaker at the position
ambient-noise source and produce crowd-noises recorded
preliminarily at a cafeteria. For event-sounds, we had two
people converse at positions A and B. We placed mobile
device A, B, and C five meters away from ambient-noise
source. Then, to make sure mobile devices A and B shared
the same context, we placed them about one meter apart.
On the other hand, to make sure A and C did not share the
same context, we placed them about 10 meters apart.

10 m 1 m

A

BC

UtteranceMeeting room

Utterance

Ambient-noise source
5 m

Figure 4. The overview of experimental environment

We show parameters on mobile devices and on the cloud
server in Table I and Table II. Under this configuration, we
performed the FFT procedures and computed information
entropy 37 times for each 3-second cycle. Additionally,
feature vectors are defined in the domain [0..9]15. We

generate six candidate feature vectors for each sliding time-
window.

Table I
THE PARAMETER VALUES ON MOBILE DEVICES IN THE EXPERIMENT.

The sensing time duration 3 sec

The frequency of sampling samplingFrequency 8192 Hz

The data size after contraction sendDataSize 300

Table II
THE PARAMETER VALUES IN THE SOUND-FIELD PROXIMITY INFERENCE

METHOD IN THE EXPERIMENT.

The size of (FFT’s) time widow FFTwinSize 32

The overwrap ratio for continuous windows FFToverwrap 50 %

The cut-off frequency cutOffFreq 16

The number of quantization levels quantLevel 10

The jitter value of each quantization level jitter 0.5

The number of candidate feature vectors numCand 6

Figure 5 shows increasing process for information entropy
between A with B (solid line) and between A with C (dashed
line). We set axis of the graph in Figure 5 such that the
time progress corresponds to the horizontal axis and the
entropy progress corresponds to the vertical axis. We plot
each average of information entropy in a number of trials.

Figure 5. The increasing series on information entropy when all mobile
devices are in separate positions

Discussions on accuracies of information retrievals:
Here, we discuss the accuracies of information retrievals
on the basis of the results shown in Figure 5. We observe
from the progress of information entropies between AB(s)
that the proposed similarity estimates appropriately event-
sounds contained in conversation. Additionally, from results
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of AC(s), the contributions of ambient-noise to the similarity
can be more suppressed than AB(s). We note that by examin-
ing in full detail both increasing processes of entropies for
each AB(s) and AC(s), we can decide suitable parameter
values for the threshold used at grouping and an expired
time (or terminated communications with the cloud server).
In fact, breaking down with a linear regression analysis for
each increasing process, the entropy of AB(s) increases at
least four trials to ones of AC(s) for each cycle. Now we
discuss about average values of entropies on 10 sec which
are close to each other. Indeed, for AB, we have the average
µAB = 19.75 and the standard deviation σAB = 9.42.
Similarly, for AC, we have µAC = 3 and σAC = 6.0. Then,
since we obtain µAB − σAB > µAC + σAC , proposed sys-
tem might recognize appropriately difference contexts with
high probabilities. With this knowledge from experimental
results, for example, if we want searching to stop for up
to 10 seconds, ad-hoc grouping systems output users who
have the entropy exceeding 10 (> µAC+σAC) as the search
results. Under these conditions, we could restrict the false
positive so that results AC(s) shows that we can distinguish
the relative positions of A and C. Additionally, the accuracy
is better than experimental results in [9]. Tarzia et al. showed
localization accuracy, which measures correctness for rec-
ognizing different room where user visited, achieved 69 %,
when sample time is 30 seconds. On the other hand, since
there exist higher gaps between AB (93.0) and AC (19.75),
proposed similarity may have higher noise-robustness than
[9] at least in this case.

Finally, we discuss an essential insight for which we
set the parameter information entropy thresholds with 10.
We consider the probabilities of grouping with a user who
attacks a system sending artificial sound-fields generated
randomly. In this situation, we assume that the probabilities
can be smaller than 1

210 .
Discussions on the differences in microphone perfor-

mances: we could find out that proposed similarity evaluates
appropriately on sound-fields without being dependent on
the differences in microphone performance, since we can
check clearly that transition of the information entropies
of AB(s) increases appropriately, despite each A and B
have mobile devices in different microphone performance.
Therefore, it can be used as similarity between any mobile
devices equipped with different microphone performances
without lowering search accuracies.

Discussions on communication cost with accuracies: In
the estimation experiments, under the configuration shown in
Table II, each original sound-pressure series is contracted,
its data size reduced to 1

8 , by Algorithm 1. Despite this
fact, the results in Figure 5 show that search accuracies
can be guaranteed sufficiently. Therefore, by deleting un-
necessary features from the original sound-pressure series,
we can reduce the network communication costs, or system-
wide loads and network I/O loads by presented contraction

algorithm.

V. SUMMARY AND FUTURE WORKS

We proposed new similarity criteria for ambient sound
based on information theoretical features of sound-fields.
Experimental results verified that the similarity has suf-
ficient search accuracy to be applied to ad-hoc grouping
systems. Therefore, the proposed similarity has higher search
accuracy and is more robust to differences in microphone
performances. Furthermore, we proposed a contraction based
on a FIR-like strategy in mobile devices. This contraction
not only enables us to reduce network communication costs,
but also ensures high search accuracy.

For future works for inferring context proximity in “real-
time”, architectures are required from the point of view of
scale-out and scale-up. Supposing practical services, an ad-
hoc grouping system will receive many sound-fields repeat-
edly for every unit time. Thus, the system has to compute
in the unit time for all pairs of sound-fields received. This
causes higher computation costs. Therefore, we need a
technique for lightweight filtering that identifies pairs that
do not need to be computed while restricting false positives.
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