
A Comparison of MapReduce and Parallel Database Management Systems

Alan McClean
School of Computing

Dublin Institute of Technology
Kevin Street, Dublin, Ireland
Email: d10123501@mydit.ie

Raquel. C. Conceição
Instituto de Biofísica e Engenharia Biomédica

Faculdade de Ciências
Universidade de Lisboa

Portugal
Email: raquelcruzconceicao@gmail.com

Martin O’Halloran
Electrical and Electronic Engineering
National University of Ireland Galway

Ireland
Email: martin.ohalloran@nuigalway.ie

Abstract—Businesses have come to rely on their data ware-
house as a key component in their Information Technol-
ogy infrastructure. The costs of the architecture to support
these environments are significant. Therefore, choosing the
wrong architecture can be a very costly decision. However,
considerable confusion exists in relation to MapReduce and
Parallel Database Management Systems (DBMS). In the past,
MapReduce has been presented as a replacement for the
Parallel Database Management Systems, as an additional tool
that works alongside the Parallel DBMS, but also as an inferior
tool by others. This paper will consider the broader themes
of the paradigms rather than the specific implementations of
MapReduce and Parallel DBMS. It will discuss MapReduce
and Parallel Database Management Systems as competing
and complimentary paradigms. The aim of this paper is to
provide a high-level comparison between MapReduce and
Parallel DBMS, providing a selection of criteria which can
be used to choose between MapReduce and Parallel DBMS for
a particular enterprise application.

Keywords-MapReduce; Parallel Database Management Sys-
tems

I. INTRODUCTION

In 2008, the world’s servers processed 9.57 zettabytes of
information. For every worker, there is approximately three
terabytes of information created every year [1]. These high
volumes of data has significant potential to improve under-
standing, leading to scientific breakthroughs and business
process improvements. Examples of these improvements
include personalized genome sequencing, extracting real-
time trends from business analytics and social network based
recommendations. However, the amount of data collected is
now outpacing improvements in data storage technology [2].
The traditional data analysis approach is to load the data into
a database and the use of a query language to perform the
analysis. MapReduce has been presented as an alternative
method, with implementations in leading IT companies such
as Google and Facebook.

MapReduce is a method for processing large volumes of
distributed data, allowing the use of shared nothing clusters.
In distributed architectures, a shared nothing cluster is one
where the nodes of the cluster share neither a common disk
space, a common CPU or common memory. The program
flow of MapReduce can be subdivided into a number of

stages. Firstly, the data is parsed and some computation is
completed. These tasks are referred to as the “Map tasks”.
Next, data is repartitioned across all nodes of the cluster.
Finally, a second set of tasks are executed in parallel by
each node on the partition of data it receives. These tasks
are called the “Reduce” tasks, taking the results of the map
tasks and combining them together [3].

Conversely, Parallel DBMS can be defined as Database
Management systems that run over multiple nodes. They
support standard relational tables, normally partitioned over
multiple nodes and the use of the Structured Query Lan-
guage (SQL) [3].

Several existing studies have compared MapReduce and
Parallel DBMS. Some presented MapReduce as more flexi-
ble and capable of producing better performance [4]. Others
have presented the opposite opinion [5]. Finally, some sug-
gestions that the two approaches can be used together [6].
These inconsistent opinions have resulted in considerable
confusion, making it difficult to determine the most appro-
priate technology for a particular application.

The aim of this paper is to provide a broad comparison
of the two technologies, suggesting the most appropriate
solution for a particular enterprise application. The structure
of the paper is as follows: Section II will introduce MapRe-
duce; Section III will describe Parallel DBMS; Sections IV
and V will examine them as competing and complemen-
tary paradigms, while the results and conclusions will be
discussed in Sections VI and VII.

II. MAPREDUCE

MapReduce stems from work first completed by Google,
which was introduced by Dean et al. in 2004 [4]. The
creation of the MapReduce library came about because
“people at Google implemented hundreds of special-purpose
computation that process large amounts of raw data” [4].
These included crawled documents and web requests logs.
The computations themselves were relatively simple, but the
input data was large and out of necessity the computation
was distributed across many machines. This caused a number
of issues, which kept repeating across different computa-
tions. These included how to:

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

• parallelize the effort;
• distribute the data;
• handle machine or node failures.

The MapReduce library was created as an abstraction. It
allowed the developer to express the simple computation
while hiding the details of parallelization, fault-tolerance,
data distribution and load-balancing in the library.

MapReduce tasks run on top of Distributed File Systems
(DFS). These systems allow files to be spread over multiple
nodes which are connected by a network. DFS can also be
extended to support fault tolerance. If one of more nodes
in the DFS fails, then all data is still available. MapReduce
allows the user to focus on implementing the logic required
to solve their particular problem.

To do this, the user must write a program which integrates
with the MapReduce library. The code must support two
interfaces, “Map” and “Reduce”. The library runs the Map
code on each node in the cluster without communication
with other nodes. The results of the map tasks are stored on
the DFS. The reduce tasks are then run over the resulting
data, to combine the outcome of the Map Results. When
performing complex MapReduce algorithms, the general
approach is to add additional MapReduce cycles, rather than
trying to solve all items in a single parse [3].

Google created their own version of a DFS, commonly
refered to as the Google File System (GFS). The exact
implementation of MapReduce is only available to Google.
However, the paradigm has been implemented in a number
of places. Amongst these are:

• Apache Hadoop, support by Yahoo;
• Elastic MapReduce, at Amazon;
• Neptune by Ask.com;
• Dryad by Microsoft.
Of these, Hadoop has attracted the most interest, both

commercially and academically. This is partly because of
the open source nature of the project and partly because of
the strong support and commitment from Yahoo. Apache
Hadoop has its own file system (Hadoop Distributed File
System (HDFS)). HDFS is highly fault tolerant and is
designed to run on low cost components. Hadoop also allows
streaming access to the data. HDFS is portable form one
platform to another .

The basic MapReduce approach has been extended in
a number of ways, particularly to improve performance.
The following are examples where the paradigm has been
extended:

• Map Join Reduce: This extends the MapReduce
paradigm to improve performance by adding join tasks.
While chaining of MapReduce jobs can be used to
produce a multiple step join, Map Join Reduce com-
pletes this in a single step. This can lead to performance
enhancements [8].

• MARS Accelerating MapReduce with Graphics Proces-

sors: In his study, Fang et al. [9] looked at extending
MapReduce in a different way. The authors propose the
use Graphics Processors rather than standard proces-
sors. These processors are faster but introduce a number
of issues specifically regarding synchronization;

• Hadoop DB: This uses MapReduce as communication
layer. Each node in the cluster has its own DBMS
instance. Hadoop DB queries are written using SQL.
The queries are translated into MapReduce code using
extensions of existing functionality. The main body
of the work is performed by the individual database
nodes [3]

MapReduce is widely used by Google. In their original
paper, Dean et al. suggested a number of problems to which
it can be deployed [4]. These included:

• Machine learning problems;
• Clustering issues for Google News;
• Extracting data to produce reports on popular queries;
• Web Page property extraction;
• Processing of satellite imagery data;
• Statistical Machine Translation;
• Large scale graph computation.
Outside of Google, the MapReduce paradigm has also

been widely used. The following are some sample commer-
cial applications:

• Hive is an open source data warehousing solution built
on top of Hadoop at Facebook. It is used for ad-hoc
queries and for reporting into dashboards. The system
is also used in machine learning algorithms. The system
is used by both novices and experts [10].

• Nokia has deployed Hadoop cluster, based on Cloud-
era’s commercial cluster into production. This is con-
sidered the companies enterprise wide information core.

• Four Square is a social network that allows its users to
check in their location. Other users can then exchange
information such as restaurant reviews and travel tips.
Four Square use Amazon’s Elastic MapReduce to per-
form a wide range on analytics on their data.

In conclusion, MapReduce is a paradigm first developed
by Google. Its purpose is to abstract the developer from
the complexities of handling large volumes of data in
the computation. It is implemented as a library, which
encapsulates the handling of parallelization, fault tolerance
and data distribution. The approach has been widely used,
particularly the open source version Hadoop. The alternative
to MapReduce, Parallel DBMS, is described in the next
section.

III. PARALLEL DBMS

Parallel DBMS were developed to improve the perfor-
mance of database systems. As processor performances
improvements outstripped disk throughput, critics predicted
that I/O bottleneck would be a major problem. Despite this

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

a number of vendors, such as Teradata and Tandem, have
brought successful products to market [11].

The main reason for the success of Parallel DBMS is
the success of relational DBMS systems, now the dominant
type of database system. Parallel DBMS have come into
existence in a number of different project simultaneously.
The DIRECT DBMS project was devised by David J.
DeWitt in 1979. He extended this to the Gamma project.
Simultaneously, Teradata was devised from research at the
California Institute of Technology (Caltech) and from the
discussions of Citibank’s advanced technology group [12].

Within Parallel DBMS, there is a number of different
types of architectures:

• Share memory: multiple processors share memory
space and access to disks;

• Share Disk: multiple processor share access the same
disk space, but each has its own memory;

• Share Nothing: each node has its own memory and disk
space.

The key point is that shared-nothing architectures move
only questions and answers between the nodes, while the
other two architectures will move data through an intercon-
nection network. The main advantage of the shared-nothing
multiple processors is that they can be scaled up to hundreds
and potentially thousands of processors that do not interfere
with one another.

Parallel DBMS are a stable environment. There are a
number of companies which rely on their parallel DBMS
as a cornerstone of their business. Due to business confi-
dentiality reasons, it is difficult to get exact figures on the
volumes of data. However, in 2008, Teradata announced
that it had five “petabyte power players”. These included
“an online auction company with 5.0 petabytes of data in
their Teradata environment; a retailer with 2.5 petabytes; two
large financial service institutions with 1.5 and 1.4 petabytes
respectively, and a manufacturer with a one petabyte data
warehouse environment” [12].

IV. COMPETING PARADIGMS

This section will consider applications where MapReduce
and Parallel DBMS technologies have competed.

A. Large Data Volumes

Both MapReduce and Parallel DBMS provide a means
to process large volumes of data. As the volume of data
captured continues to rise, questions have been asked as
to whether the parallel DBMS paradigm can scale to meet
demands. “There are no published deployments of parallel
database with nodes numbering into the thousands” [3]. As
more nodes are added into the parallel DBMS environment,
the chance of a node failure increases. Parallel DBMS do not
handle node failure. MapReduce has been designed to run
on thousands of nodes and is inherently fault tolerant. It has
been presented as a viable alternative to parallel DBMS. This

has been disputed by parallel DBMS experts. It is therefore
necessary to establish an agreed comparison mechanism.

B. Analytics

Both MapReduce and Parallel DBMS can be used to
produce analytics results from big data. Parallel DBMS
uses SQL as the retrieval method, while MapReduce uses
programming languages. In many data mining and data clus-
tering applications, the algorithm is complex and requires
multiple passes over the data. The output from one sub-
process is the input to the next. It is difficult to develop
these algorithms in SQL. The aggregation in SQL is not able
to process these multiple step data flows. Performing these
tasks in many steps reduces the performance benefits gained
from parallel DBMS. For these complex analytic algorithms,
MapReduce provides a good alternative [6].

V. COMPLEMENTARY PARADIGMS

In this section, the use of parallel DBMS and MapReduce
as complementary paradigms is considered. One problem
associated with parallel DBMS is the time taken to load
large volumes of data. If this data is repeatedly queried then
the load times impact needs to be averaged over each query.
MapReduce, having a simple data structure does not suffer
from the same load time issue. Therefore, MapReduce can
be useful for one-time queries while parallel DBMS can be
useful for repeated queries. This property of MapReduce
makes it ideal for transforming data prior to load into the
Parallel DBMS.

Another area where parallel DMBS can struggle is com-
plex analytics. It can be quite difficult to express some
queries in SQL. MapReduce allows the user to build com-
plex computations on the data, without the limitation of the
SQL language. In conclusion, parallel DBMSs are excellent
at efficient querying of large data sets. Conversely, MapRe-
duce is much slower by comparison, but is significantly
better at complex analytics and ETL tasks.

There is a number of different approaches which have
been taken to integrating parallel DBMS and MapReduce.
These efforts have focused on using Hadoop implementation
of MapReduce. Two of these approaches will be considered
here:

• Loading Hadoop data in the Parallel DBMS;
• Accessing DBMS data from Hadoop;

Each of these will be further described in the following
subsections.

A. Accessing DBMS data from Hadoop

This approach was first developed by Cloudera in the form
of the DBInputFormat class. The basic approach is for each
Map node to run the same SQL statement. The statement is
modified to include order by, limits and offsets on the data.
This ensures that each node receives a unique set of data.
The main issue with this approach is that the performance

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

is often poor, as the same SQL is essentially run for every
Map node. This approach has been extended by Teradata. In
their version, the SQL statement is run once, and the output
stored in a temporary table. This table is partitioned by the
number of MapReduce nodes. When the MapReduce node
requires the data, the query provides the data based on the
appropriate partition [13].

B. Accessing Hadoop data from within the Parallel DBMS

DBMS provide a mechanism to integrate to external data
using User Defined Function (UDF). Once complete the
workings of the UDF are transparent to the database user.
This allows the database user to write SQL query calls as
follows:

INSERT INTO Tab1 SELECT * FROM TA-
BLE(udfLoadHadoop(’mydfsfile.txt’)) AS T1;

This query will load the data from the Hadoop file,
called mydfsfile.txt, into the database table Tab1. The UDF
function is called “udfLoadHadoop”. This function will take
the Hadoop file as a parameter and integrate the data using
the Hadoop NameNode metadata. The NameNode identifies
which nodes in the Hadoop file system contain the required
data. The UDF performs calculations based on the file size
and the number of parallel nodes to determine which data
belongs to each node. It then requests that data using the
NameNode [13]

VI. RESULTS

This section will provide a comparison of MapReduce and
parallel DBMS, across a broad range of criteria:

• Data Volume:
– Parallel DBMS - Has been used for data volumes

in the order of Petabytes;
– MapReduce - Has been used for data volumes in

the order of Petabytes;
• Cost:

– Parallel DBMS - Enterprise level toolset. This is
an expensive investment;

– MapReduce - This is open source based solution.
The investment is considered inexpensive;

• Fault Tolerance:
– Parallel DBMS - Transaction Level, cannot survive

node failure;
– MapReduce - Fault tolerant, designed to survive

multiple node failures;
• Users:

– Parallel DBMS - Can be used by multiple user
types, from Business Users using reporting tools,
through SQL novices and expert users;

– MapReduce - Requires programming skills to work
with. Smaller pool of individuals capable of per-
forming these tasks;

• Data Types:
– Parallel DBMS - Supports structured data. Data

has to be transformed into rows and columns;
– MapReduce - Supports both structured and un-

structured data. Data can be operated on in native
format;

• Hardware:
– Parallel DBMS - Homogenous, all nodes in the

installation must be the same;
– MapReduce - Heterogeneous, the nodes in the

installation can be different. This allows for the
use of commodity PCs;

• Maturity:
– Parallel DBMS - Parallel DBMS have a long

history of successful installation;
– MapReduce - MapReduce is a relatively new tech-

nology. The source is continuously under develop-
ment with new features being added;

VII. CONCLUSIONS AND FUTURE WORK

Based on this data, for the following types of problems,
the authors suggest that MapReduce is used over parallel
DBMS:

• Unstructured data: If the primary data source is un-
structured then the cost of transforming it and loading
it into a parallel DBMS is prohibitive. Based on this,
MapReduce would be a good candidate;

• Cost: If cost is the main driver for the organization,
then MapReduce is the better candidate. Parallel DBMS
systems are considered enterprise level tools, but this
comes at a high cost;

• User skill level: If the organization has an available
pool of high skilled developers then MapReduce is a
good option. In addition, if the organization is one in
which control of the data is important then MapReduce
is also the better candidate.

Conversely, for the following types of problems, the
author suggests that parallel DBMS should be chosen above
MapReduce:

• Structured data: If the data is structured and will con-
tinue to be so for the foreseeable future, then parallel
DBMS would be a good fit;

• Enterprise Level Support: If enterprise level support is
important to the organization, then the parallel DBMS
vendors would be the preferred option. Although there
are companies that offer this (for example Cloudera),
companies in the parallel DBMS have been providing
this support for a longer time;

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

• User: If the user base is not technical, or the data is
not the key focus of the business, then parallel DBMS
are the better choice.

Finally, many tests have compared versions of MapRe-
duce and parallel DBMS focus on single queries. This
provides clear results for performance. However, in the
author’s experience, in production environments multiple
queries are often run concurrently. In addition to this, queries
will include different types of problems. Some will be
aggregating data; some will be joining data; others will
be performing complex analytics. While this data is being
queried, it is common for more data to be written to the
system simultaneously. To provide a thorough comparison,
the author believes it is necessary to test how the systems
perform under these circumstances. To do this it would
be necessary to establish a set of requirements. A test
bench would then be created which would allow for these
requirements to be run repeatedly.

REFERENCES

[1] R. B. J.E. Short and C. Baru, “How Much Information 2010:
Report on Enterprise Server Information,” http://hmi.ucsd.
edu/pdf/HMI_2010_EnterpriseReport_Jan_2011.pdf, Jan.
2011, [Online; accessed 27-Nov.-2012].

[2] P. Ranganathan and J. Chang, “(Re)Designing Data-Centric
Data Centers,” Micro, IEEE, vol. 32, no. 1, pp. 66 –70, Jan.-
Feb. 2012.

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-
schatz, and A. Rasin, “Hadoopdb: an architectural hybrid of
mapreduce and dbms technologies for analytical workloads,”
Proc. VLDB Endow., vol. 2, no. 1, pp. 922–933, Aug. 2009,
[Online; accessed 27-Nov.-2012].

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51,
no. 1, pp. 107–113, Jan. 2008. [Online]. Available:
http://0-doi.acm.org.ditlib.dit.ie/10.1145/1327452.1327492

[5] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker, “A comparison of
approaches to large-scale data analysis,” in Proceedings of
the 35th SIGMOD international conference on Management
of data, ser. SIGMOD ’09. New York, NY, USA:
ACM, 2009, pp. 165–178. [Online]. Available: http:
//0-doi.acm.org.ditlib.dit.ie/10.1145/1559845.1559865

[6] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin, “MapReduce and
parallel DBMSs: friends or foes?” Commun. ACM, vol. 53,
no. 1, pp. 64–71, Jan. 2010. [Online]. Available: http:
//0-doi.acm.org.ditlib.dit.ie/10.1145/1629175.1629197

[7] Apache, “Apache HDFS,” http://hadoop.apache.org/common/
docs/current/hdfs_design.html, 2012, [Online; accessed 27-
Nov.-2012].

[8] D. Jiang, A. Tung, and G. Chen, “Map-join-reduce: Toward
scalable and efficient data analysis on large clusters,” Knowl-
edge and Data Engineering, IEEE Transactions on, vol. 23,
no. 9, pp. 1299 –1311, Sept. 2011.

[9] W. Fang, B. He, Q. Luo, and N. Govindaraju, “Mars: Ac-
celerating mapreduce with graphics processors,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 22, no. 4,
pp. 608 –620, april 2011.

[10] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy, “Hive: a
warehousing solution over a map-reduce framework,” Proc.
VLDB Endow., vol. 2, no. 2, pp. 1626–1629, Aug. 2009,
[Online; accessed 27-Nov.-2012].

[11] D. DeWitt and J. Gray, “Parallel database systems: the future
of high performance database systems,” Commun. ACM,
vol. 35, no. 6, pp. 85–98, Jun. 1992, [Online; accessed 27-
Nov.-2012].

[12] M. O’Sullivan, “Teradata,” http://www.teradata.com/
newsrelease.aspx?id=7243, April 2012, [Online; accessed
27-Nov.-2012].

[13] Y. Xu, P. Kostamaa, and L. Gao, “Integrating hadoop and
parallel dbms,” in Proceedings of the 2010 international
conference on Management of data, ser. SIGMOD ’10. New
York, NY, USA: ACM, 2010, pp. 969–974, [Online; accessed
27-Nov.-2012].

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

