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Abstract—This paper presents two universal efficient 

approaches for overflow and sign detection and correction in 

the addition of two numbers in unsigned and signed residue 

number systems (RNS). Both methods are designed to be used 

in systems based on the moduli set {2n – 1, 2n, 2n + 1} that 

provides an even dynamic range. Moreover, by applying a tiny 

modification, these designs can be used in any system that has 

(2n) as one of its moduli (i.e. has an even dynamic range). The 

proposed methods depend on a simple structure that provides 

fast and accurate detection and correction of the sign and 

overflow. A comparison, which proves the efficiency of the 

proposed designs, in terms of time and area requirements is 

also presented.  

Keywords-residue number system (RNS); overflow detection; 

sign detection; even dynamic range; moduli set {2n – 1, 2n, 2n + 

1} 

I.  INTRODUCTION 

The residue number system (RNS) is a unique, non-
weighted, carry-free number system that provides parallel, 
high speed and fault tolerant arithmetic operations. This 
makes it a tough candidate for high-performance, low power, 
fault tolerant and secure digital signal processing (DSP) 
applications. This system has been intensively used in 
applications where addition, subtraction and multiplication 
are dominant, such as, digital filters, digital communications, 
discrete Fourier transform (DFT), image processing and 
video coding [1], [2].  

Nevertheless, operations as division, overflow detection, 
sign detection and magnitude comparison are problematic 
and very complex in RNS. In some cases, some of these 
operations, such as overflow and sign detection, are essential 
and cannot be avoided. Moreover, they are fundamental in 
other operations such as division. 

Sign and overflow detection are very important issues in 
RNS, since a wrong detection of sign or overflow ruins the 
whole advantage of using RNS. There is no point of using 
RNS in order to obtain parallel, high-speed and secure 
arithmetic operations if the results of these operations are 
wrong. 

In principle, the general way to detect overflow in RNS is 
via comparing the result of addition with one of the addends. 
If X ≥ 0 and Y < M then (X+Y) mod M causes overflow if and 
only if the result is less than X.  

On the other hand, the general way for sign detection in 
RNS is via comparing the converted number from residue-
to-binary with half of the dynamic range of the RNS. Thus, 
we can conclude, that both sign detection and overflow 
detection are equivalent to the magnitude comparison.  

One of the most efficient ways to detect overflow in RNS 
is via parity checking [1], [2], [3], and [4]. It indicates 
whether an integer is even or odd. Suppose two integers (X, 
Y) have the same parity: Z = X + Y. An overflow occurs if Z 
is odd. Contrary, if (X, Y) have different parity, then an 
overflow occurs if Z is even. The parity checking technique 
is one of the best and fastest suggested methods to detect the 
overflow in RNS. It depends on look-up tables (LUTs) or on 
an extra modulo (a redundant modulo). However, this 
technique can only be used with moduli sets that have just 
odd members, i.e. odd dynamic range, which is not suitable 
for many moduli sets that uses 2

n
 as one of its moduli, 

especially the most famous moduli set {2
n 

– 1, 2
n
, 2

n 
+ 1}. 

RNS systems, that have even dynamic ranges, have more 
attractive features than those with odd dynamic ranges. Due 
to the reason, that using (2

n
) modulo greatly simplifies and 

reduces the delay and complexity of the residue arithmetic 
operations and the residue-to-binary conversion.  

Thus, it is obvious that overflow detection in RNS that 
has an even dynamic range is a very important issue. As 
aforementioned before, both sign detection and overflow 
detection, based on the general ways, are equivalent to the 
magnitude comparison. Therefore, many RNS comparators 
have been presented [5], [6], and [7]. They used many 
different techniques in order to obtain faster performance 
and smaller area consumption. In [6], a residue comparator 
based on the Chinese reminder theorem (CRT) for general 
modulo sets is presented. In [7], a comparator based on 
diagonal function, that is named SUM of Quotients 
Technique (SQT), is introduced. An efficient residue 
comparator for any odd moduli set, which is based on the 
parity of integers and their period, is stated in [5]. 

In this paper, we present two efficient techniques for sign 
and overflow detection and correction in RNS based on the 
moduli set {2

n 
– 1, 2

n
, 2

n 
+ 1}. Moreover, these designs can 

be used in any system that has 2
n
 as one of its moduli. 

Furthermore, the proposed technique can also be used in 
systems with odd dynamic ranges after applying a small 
modification on it.  

The rest of this paper is organized as follows; a brief 
introduction to the RNS is provided in Section II. The 
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proposed methods for overflow detection and correction in 
unsigned and signed RNS are demonstrated in Sections III 
and IV, respectively. In Section V, the performances of the 
proposed designs are evaluated and compared with residue-
to-binary converters and residue comparators that can be 
used for overflow and sign detection in both unsigned and 
signed RNS. Finally, the conclusion is drawn in Section VI. 

II. RNS BACKGROUND 

The RNS is defined by a set of positive pairwise 
relatively prime numbers {m1, m2,…, mn} called moduli. In 
this system, each weighted number X is uniquely represented 
by an ordered set of residues (x1, x2,…, xn). Each residue xi is 
represented by: 

mod ; 0
i

i i i im
x X m X x m       (1) 

The dynamic range of this system is defined as M = m1 × 
m2 × … × mn. Both unsigned and signed integers can be 
represented in RNS. For unsigned RNS, the range of 
representable integers is,  

0 1X M     (2) 

For signed RNS, the range of representable integers is 
partitioned into two equal intervals,  

0 / 2

/ 2

X M for positive numbers

M X M for negative numbers

    

   
 (3) 

In this system, the arithmetic operations (addition, 
subtraction and multiplication) are performed totally in 
parallel on those very independent residues. 

 1 1 2 2, , , ; ~ ( , , )n nX Y x y x y x y        (4) 

A residue number can be converted back into its binary 
equivalent, by using one of the residue-to-binary conversion 
algorithms, such as, the Chinese Reminder Theorem (CRT), 
the Mixed-Radix Conversion (MRC), the new CRT-I, the 
new CRT-II, etc. [1], [2].  

According to the CRT, a residue number (x1, x2,…, xn) 
can be converted back into its binary equivalent X by, 

1
i

n

i i im
i M

X x N M


    (5) 

where, /i iM M m and 
1

i

i i
m

N M  is the 

multiplicative inverse of Mi modulo mi. 

III. PROPOSED METHOD FOR OVERFLOW DETECTION IN 

UNSIGNED RNS 

As aforementioned in the introduction, the general way 
to detect overflow is via comparing the sum with one of the 
addends, i.e. If X ≥ 0 and Y < M then (X+Y) mod M causes 
overflow if and only if the sum is less than X. 

Our method also depends on comparison; however, we 
compare each of the addends with half of the RNS range 
(M/2). 

To detect overflow during the addition of two addends X 
and Y in unsigned RNS based on the moduli set {2

n
 – 1, 2

n
, 

2
n
 + 1}, a single bit, that indicates to which half of the 

dynamic range M that addend belongs, is used. Based on this 
bit, the following three cases should be considered. The 
overflow will definitely occur if both of the addends are 
equal or greater than the half of the dynamic range M/2. No 
overflow will definitely occur if both of the addends are less 
than M/2. However, if just one of the addends is equal to or 
greater than M/2, then the overflow prediction becomes 
complex and requires further processing and evaluation of 
the sum (Z). 

The magnitude evaluation of the addends (X and Y) is 
represented by a single bit (evlt_bit). 

0 ; / 2
_

1 ; / 2
X

X M
evlt bit

X M


 


   (6) 

The processing of the evlt_bit of the two addends results 
in the three following cases, 

0 ; _ _ 0

1 ; _ _ 1

' ' ; _ _ 1

X Y

X Y

X Y

evlt bit evlt bit

overflow evlt bit evlt bit

u evlt bit evlt bit

 


 
  

 (7) 

where, ‘u’ indicates the undetermined case of overflow 

occurrence and ( , , )   refer to the logical gates (OR, AND, 

XOR), respectively. 
In order to solve the undetermined case ‘u’, the evlt_bit 

of the binary sum (Z) should be calculated by (6). Then the 
overflow can be indeed detected, 

0 ; ' ' & _ 1

1 ; ' ' & _ 0

Z

Z

u evlt bit
overflow

u evlt bit


 


 (8) 

Fig. 1 shows the structure of the proposed design that 
detects the overflow in unsigned RNS based on {2

n
 – 1, 2

n
, 

2
n
 + 1}. 

The magnitude evaluation of the addends and their sum, 
based on (6), is realized by an AND gate with (2n) inputs 
and an OR gate with two inputs. The magnitude evaluation 
unit is shown in Fig. 1 (a). 

The overflow detection unit, based on (7) and (8), is 
realized by a 2:1 multiplexer and a XOR gate. This unit is 
shown in Fig. 1 (b). 
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Figure 1.  The internal structure of the overflow detection & correction unit for unsigned numbers :  

(a) Magnitude evaluation unit. (b) Overflow detection unit. (c) Overflow correction unit. 

The last component of the proposed design is the overflow 

correction unit, which is shown in Fig. 1 (c). This unit 

adds back M to the sum (Z) in order to correct the 

overflow and obtain the final accurate result. The adder 

that performs the final addition can be of any type, 

according to the design’s goal and strategy. 

IV. PROPOSED METHOD FOR SIGN AND OVERFLOW 

DETECTION IN SIGNED RNS 

In a similar manner, to detect overflow in the addition of 
two addends X and Y in signed RNS based on the moduli set 
{2

n
 – 1, 2

n
, 2

n
 + 1}, a single bit, that indicates the sign of that 

addend, is used. As mentioned previously, in signed RNS, 
the positive numbers fall in the first half of the dynamic 
range, whereas, the negative ones fall in the second half. 
Thus, we have the following two cases that should be 
considered. No overflow will definitely occur if each of the 
addends has a different sign (fall in a different interval of M). 
Overflow may or may not occur if both addends have the 
same sign. Consequently, further processing should be done. 

The sign evaluation of the addends is also represented by 
a single bit evlt_bit that is calculated by (6). 

The processing of the evlt_bit of the two addends results 
in the two following cases, 

0 ; _ _ 1

' ' ; _ _ 0

X Y

X Y

evlt bit evlt bit
overflow

u evlt bit evlt bit

 
 

 
 (9) 

where, ‘u’ indicates the undetermined case of overflow 
occurrence and   refers to the logical gate XOR. 

In order to solve the undetermined case ‘u’, the evlt_bit, 
that determines the sign of the binary sum (Z) should be 
calculated by (6). Then the overflow can be indeed detected, 

0 ; ' ' & _ _

1 ; ' ' & _ _

Z X

Z X

u evlt bit evlt bit
overflow

u evlt bit evlt bit


 


 (10) 

where, _ Xevlt bit refers to the logical negation of 

evlt_bitX. 
Fig. 2 shows the structure of the proposed design that 

detects the sign and overflow in signed RNS based on {2
n
 – 

1, 2
n
, 2

n
 + 1}. 

The sign evaluation of the addends and their sum, based 
on (6), is realized by an identical structure to that of the 
magnitude evaluation unit of the proposed design for 
unsigned RNS. It is shown in Fig. 2 (a). 

The overflow detection unit, based on (9) and (10), is 
realized by a similar structure to that shown in Fig. 1 (b). It 
consists of a 2:1 multiplexer and two XOR gates. This unit is 
shown in Fig. 2 (b). 

The overflow correction unit has an identical structure to 
that of the unsigned RNS. It is shown in Fig. 2 (c). Similarly, 
the adder that performs the final addition can be of any type. 

V. PERFORMANCE EVALUATION AND COMPARISON 

Our proposed designs were compared with other two. 
The first one represents the general approach for overflow 
detection, which consists of a binary comparator based on 
the residue-to-binary converter presented in [8]. Whereas, 
the second one is an efficient residue comparator for general 
moduli set introduced in [6]. 

For the sake of fair comparison, unit gate model was used 
in order to estimate the time and area consumptions in the 
compared designs. According to the unit gate model, the 
delay (T) and area (A) of an inverter (NOT gate) were 
ignored.  

(     )

Magnitude 

Evaluation

MUX

sel

0

1
Overflow

evlt_bit
X

evlt_bit

+
0

n – 1
0

n

3n – 1

Operand

Z

Correct 
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Z

operand(n – 1)

MSB = (3n – 1)

Magnitude 

Evaluation

(evlt_bit)

(b) The overflow detection unit (c) The overflow correction unit

(a) The magnitude evaluation unit

(3n – 2)

evlt_bit
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evlt_bit
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3n
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Figure 2.  The internal structure of the sign and overflow detection & correction unit for signed numbers:  

(a) Sign evaluation unit. (b) Overflow detection unit. (c) Overflow correction unit. 

Each 2-input monotonic gate (AND, NAND, OR, NOR): 
T = 1, A = 1. Each 2-input XOR, XNOR: T = 2, A = 2. A 2:1 
multiplexer: T = 2, A = 3. Full adder: T = 4, A = 7. We have 
considered the 1

st
 complement adder as a carry propagate 

adder with end-around carry (CPA-EAC): T= 8n, A = 7n. An 
n-bit binary comparator: T = 2n, A = 2n [9].  

Table 1 summarizes the comparison and shows the delay 
and complexity of the proposed designs and the analogous 
ones. 

The structures of the proposed designs are very similar; 
the only difference is an additional XOR gate in the overflow 
detection unit for signed RNS. Both of them are based on the 
residue-to-binary converter proposed in [8], the operand 
evaluation units of the addends and sum and the overflow 
detection unit. However, the evaluation of the addends is 
performed in parallel with the binary-to-residue conversion. 
Thus, no extra delay of these two units is presented. The 
evlt_bit of the addends are stored in two cells of RAM, each 
of them has a size of 1-bit. The correction unit was not 
included in the comparison. Thus, the critical path is 
composed of the residue-to-binary converter, the operand 
evaluation unit of the sum and the overflow detection unit. 

The first analogous design is a binary comparator based 
on the reverse converter proposed in [8]. This method uses 
two binary comparators with a 2:1 multiplexer. The sizes of 
the binary comparators are 2n-bit and n-bit. Thus, the critical 
path in this design is composed of the residue-to-binary 
converter, the 2n-bit comparator and the 2:1 multiplexer.  

The second analogous design presented in [6] uses a 
special component for generating two numbers (Ax and Bx) 
which are further used in the comparison. Moreover, this 
method uses three binary comparators and two 2:1 
multiplexers. The sizes if these comparators are n-bit, n-bit 
and (n+1)-bit. Thus, the critical path of this circuit is 
composed of the Ax and Bx generator, the (n+1)-binary 
comparator and the two 2:1 multiplexers. 

TABLE I.  PERFORMANCE COMPARISON BETWEEN THE PROPOSED 

DESIGNS AND THE ANALOGOUS ONES 

Design Delay Complexity 

Residue comparator 
based on [8] 

20n + 10 48n + 3 

[6] 18n + 14 40n + 8 

Proposed-unsigned 16n + log n + 13 37n + 18 

Proposed-signed 16n + log n + 15 37n + 20 

 
According to Table 1, both proposed designs have less 

delay and complexity without compromising on accuracy. 
Generally, lower area consumption leads to lower power 
consumption. However, we have not computed the estimated 
power consumption. Moreover, the analogous designs have 
not presented their power consumptions. 

In case of overflow occurrence, M is added back to the 
binary sum, in order to correct the sum (Z) and get the final 
accurate result. The adder that performs this addition can be 
of any type, based on the design’s goal and strategy. 
Moreover, the size of this adder is 2n-bit instead of 3n-bit, 
since the first n-bits of M for the moduli set {2

n
 – 1, 2

n
, 2

n
 + 

1} are ‘0’.  

2

2

'0 ' "00 000 0"

'1' "11 110 0"

nn

nn

overflow final result Z

overflow final result Z

   

   
 (11) 

We have mentioned that both proposed designs can be 
used with any RNS that uses any moduli set that has (2

n
) as 

one of its moduli, i.e. has an even dynamic range. This can 
be simply performed by applying tiny modification on the 
evaluation units, represented in changing the number of the 
inputs of the AND gate, according to the dynamic range 

Sign
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evlt_bit
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(evlt_bit)

(a) The sign evaluation unit

Operand

3n
operand(n – 1)

MSB = (3n – 1)
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1
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evlt_bit
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+
0

n – 1
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n
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provided by the used moduli set. Moreover, in case of 
changing the number and the order of the AND gate’s inputs, 
these two designs can be used with any other moduli set, 
even if it provides an odd dynamic range. However, for such 
systems, the parity checking technique will be faster and 
simpler than the proposed one.  

VI. CONCLUSIONS AND FUTURE WORK 

Overflow detection is one of the main challenges in the 
RNS, especially in systems based on moduli sets that provide 
even dynamic ranges. This paper presented two designs for 
overflow and sign detection and correction in unsigned and 
signed RNS based on the moduli set {2

n
 – 1, 2

n
, 2

n
 + 1}. This 

set has an even dynamic range. Moreover, these designs can 
be considered as universal, since they can be used with any 
system that has an even dynamic range by applying a small 
modification on the evaluation unit. Both designs are faster 
and require less hardware components than those based on 
comparators. Our next step will be dedicated on designing a 
FIR filter based on RNS that uses the proposed sign and 
overflow detection and correction units in order to highlight 
their efficiency when embedded in a DSP application. 
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