
Secure Trust Management for the Android Platform

Raimund K. Ege

Dept. of Computer Science

Northern Illinois University

DeKalb, IL, USA

ege@niu.edu

Abstract—Smartphones change the way we use the Internet.

No longer are we limited to media consumption, but

participation in Social Media etc. allows us all to become media

producers. Moreover, with its computing power and network

connectivity, the smartphone can become a peer in a peer-to-

peer based content delivery network. Securing property rights

to the media must be part of such sharing and propagation.

This paper explores the capabilities available to the Android

platform to secure such participation, and it describes an

architecture for adding trust management to the exchange of
media to and from a smartphone user.

Keywords-Android; security; trust; management; peer-to-

peer systems; multi-media content delivery

I. INTRODUCTION

Personal digital assistants (PDA) have grown up into

Smartphones: with computing power, display and recording
capabilities, and – foremost – with broadband internet
connectivity. No longer is a phone user limited to making
phone calls and reading email, but the user can participate in
a host of social applications that are rich in multimedia
exchange. The social media scene is full of sites such as
Facebook, YouTube, Instagram, Vimeo, etc. Participating in
such venues requires that user reveal, typically via a user
registration, their identity. In addition some proof might be
required to authenticate the identity. Most sites, however, are
satisfied once an email address is verified. The registration
serves the purpose of adding a layer of trust to the
consumption but also to the submission of media to these
sites.

The next step in the evolution of the smartphone is to not
just consider it a client to such social media sites, but to let it
become an active player in the delivery of the media. The
computing power and network connectivity enable the
provision of peer-to-peer (P2P) content delivery networks:
rather than just down- or up-loading media to one site, media
can be shared in such P2P network at a much higher
throughput, i.e. no single source bottleneck, and without
central control, i.e. big brother registration. The aim of our
research is to allow the forming of very large P2P content
sharing networks, without central control, but with
provisions that instill a degree of trust into the participants.

This paper describes an architecture for adding trust
management to the exchange of media to and from a
smartphone user. Section 2 gives some background on access
control, identity and trust management and relates out work
to current research. Section 3 surveys which elements of
security to ensure confidentiality, integrity and availability
are available to mobile platforms, with a specific focus on
what is available to Android smartphones. Section 4
elaborates on how our approach defines and gauges trust,
and how such trust is maintained, secured and shared in a
central-server-less P2P environment. Section 5 outlines our
prototype implementation with Java peers, including peers
running on Android smartphones. The paper concludes with
some lessons we learned and our future perspective.

II. BACKGROUND

Much research has been conducted on access control and

digital rights management. Access control is common place
in many applications. A server maintains a database of user
and account information. A user gains access to the system
by providing a user id with additional security information,
typically a password. Once authenticated, the user is
“trusted”, i.e. is allowed to participate in the system’s
mission. The information stored by the server can include the
users past history of participation, which in turn can be used
to augment the level of trust in the user. Other users might
contribute to the trust evaluation by submitting feedback on
others. The level of trust might determine the level of
participation a user is allowed, e.g. users with a low level of
trust might be able to consume content, while users with a
high level of trust might be able to contribute media.

While central access control makes sense for central
systems, systems that don’t have a central point of service,
typically out-source their authentication aspect to other
players: OpenID [1] is an example: OpenID providers
maintain identity information and allow users to choose to
associate information with their OpenID that can be shared
with the media sites they visit. With OpenID, a password is
only given to the identity provider, and that provider then
confirms the identity.

In a peer-to-peer system peers need to collaborate and
obtain services within an environment that is unfamiliar or
even hostile. Therefore, peers have to manage the risks

98Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

involved in the collaboration when prior experience and
knowledge about each other are incomplete. One way to
address this uncertainty is to develop and establish trust
among peers. Trust can be built either via a trusted third
party [2] or by community-based feedback from past
experiences [3] in a self-regulating system. Other approaches
reported in the literature use different access control models
[4] [5] that qualify and determine authorization based on
permissions defined for peers.

In such a complex and collaborative world, a peer can
benefit and protect itself only if it can respond to new peers
and enforce access control by assigning proper privileges to
new peers. Trust management can help minimize risk and
ensure the network activity of benign entities in distributed
systems [6].

Digital rights management has been the focus of many
secure content delivery systems. Peer-to-peer and mobile
schemes have been introduced. One such effort, OMA DRM
[7] – undertaken by the Open Mobile Alliance, an industry
consortium – provides a standard framework to secure media
for mobile devices. It uses public key infrastructure (PKI [8])
style certificates and public/private key pairs to protect
media. Our approach goes further in that it does not require
certainty of access right, but rather allows building of
graduated trust which enables graduated access control to
digital media.

In our prior work [9] we started to develop an
understanding on how trust can be quantified, especially
when related to the potential reward garnered by a peer who
participates in a peer-to-peer content delivery network. In
this paper we focus on how to create and maintain trust in a
distributed fashion, and how to secure it in a mobile
environment.

III. ELEMENTS OF MOBILE SECURITY

Security concepts include confidentiality, integrity and

availability. All three of these basic tenants of computer
security are essential to our goal of securing trust
information in a mobile environment. Via confidentiality we
ensure that the communication among peers is only
observable to authorized peers. Via integrity we ensure that
communication as well as the history of communication is
maintained without improper alteration. Via availability we
insure that peers can readily join the content delivery
network and that their trust values and histories are available
in making decisions on their degree of participation.

We ensure confidentiality via encryption. Today’s
smartphones have enough computing power to handle
encryption: asymmetric encryption, e.g. the Diffie-Hellman
key exchange protocol, can be used to establish session keys
that ensure the confidentiality as data, such as identity and
trust information, and media streams are exchanged.
Standard block cyphers, e.g. DES or AES, are used to
encrypt sensitive data, and standard stream cyphers, e.g.
RC4, secure media streams. We ensure integrity via digital
signatures. Again, modern smartphones can handle standard

algorithms such as DSA, etc. Key management is also
standardized and it is quite common for a smartphone to
maintain a local key store on the device itself.

Our prototype implementation is done entirely using the
Java programming language. The Java platform strongly
emphasizes security, including language safety,
cryptography, public key infrastructure, authentication,
secure communication, and access control. The Java
Cryptographic Architecture [10] defines a "provider"
architecture. Multiple providers are available in a typical
Java development environment. We choose the “Bouncy
Castle” [11] Java implementation, which is widely available,
including for the Android platform. On Android we are
actually using the “Spongy Castle” [12] variant that replaces
the standard (but older) Bouncy Castle version for Android
which is provided by Google.

In summary, all elements of a public key infrastructure
(PKI) are readily accessible to any peer in a peer-to-peer
content delivery network, even to a mobile ad-hoc peer via a
smartphone.

IV. TRUST MODEL

Peer-to-peer is a communications model in which each

party has the same capabilities and either party can initiate a
communication session. Each party can become a peer. Once
a peer is identified, it is a matter of trust whether and to what
degree the peer is allowed to partake in the shared media
content. We start by assigning each peer a numeric trust
value in the range of -1 to 1, where 0 represent a neutral
value, i.e. the network as a whole does not have a judgment
on the trustworthiness of the peer. A positive value reflects
more trust, a negative value reflects mistrust. As a peer
participates in the network, i.e. is part of the “swarm”, each
of the peer’s transactions is judged and results in an update
to the trust value. At +1, a peer is considered trustworthy
enough to partake in the shared trust management of the
swarm. At -1, the peer is disqualified from any further
participation in the swarm.

The trust value and the peer’s history of relevant
transactions are maintained in a container we call “trust
nugget”. This nugget contains detailed information on a
peer’s participation, such as length and quality of stream
transmission, ratio of seed vs. leech behavior, judgments of
other stream participants, etc. The nugget content is signed
with a special master private key. It can be verified only via
the special master public key. This ensures that the trust
information maintains its integrity, even as it is shared with
peers in the swarm that have lower trust values.

Trust information per peer is maintained by trusted peers,
i.e. peers with trust values greater than 1. The sole
requirement for starting a new swarm is the existence of an
initial trusted peer that we call the “boot strap peer”. This
peer initially creates the master public/private key pair that is
only shared with other trusted peers. A trusted peer maintains
a database of trust nuggets for all peers in the swarm. Again,
initially, only one peer, i.e. the boot strap peer, has such a

99Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

database, but as new peer attains trusted peer status, it
receives the database, and also participates in synchronizing
the database among all trusted peers.

The trust value for a peer is computed from the peer’s
history of transactions. The computation is done by a trusted
peer whenever a peer reports on another peer. A common
scenario is that a peer serves as a source of media content: it
makes the content available to the peers in the swarm. Once
a peer has consumed the content, the “source” peer notifies a
trusted peer of the peer’s behavior: good or bad. The trusted
peer enters a new transaction into the peer’s nugget and signs
it with the master private key.

When a peer acts as a source peer, i.e. it makes new
content available to the swarm; it can set a trust threshold,
i.e. a minimum trust value, required for any peer to access
the content. Only peers whose trust value meets the threshold
can participate. The source peer also determines the weight
of a peer’s participation when computing a peer’s new trust
value.

Trusted peers are the backbone of our trust model. New
peers need to register with one trusted peer which creates a
trust nugget for the new peer. The new peer also creates a
public/private key pair and submits its public key to the
trusted peer. Other components of the model are the provider
of the original source data, i.e. a “source peer”, and peers
that consume the multimedia content. Peers can also serve as
further sources in a peer-to-peer download model.

Figure 1 shows an example snapshot of a content de-

livery network with one source peer, one trusted peer, and 3
regular peers: 2 relay peers and one edge peer. The source
peer is where the content data is produced, en-coded,
encrypted and made available. The source submits the stream
info to a trusted peer. Peers connect to a trusted peer for
authentication and to receive the download credentials. A
peer that only downloads is called an “edge peer”. Once the
peer starts serving the stream to other peers, it becomes a
“relay peer”.

All peers together maintain a peer group, i.e. information
on which peers are actively part of the content delivery
network. The trusted peer initially informs the peers in the

peer group which source peer to download from: peer 1 is
fed directly from the source peer; peer 2 joined somewhat
later and is now being served from the source peer and peer
1; the edge peer joined last and is being served from peer 1
and peer 2. In this example, peer 1 and 2 started out as edge
peer, but became relay peers once they had enough data to
start serving as intermediaries on the delivery path from
original source to ultimate consumer.

V. JAVA IMPLEMENTATION

Our implementation has 4 major components:
(1) A set of trusted peers, initially just one: the boot strap

peer;
(2) An application that allows a source peer to submit

information about a content stream;
(3) A relay peer that consumes data, e.g. shows the video,

and makes it available to other peers; and
(4) An edge peer to run on an Android mobile device.

Android is implemented in Java and therefore offers a
flexible and standard set of communication and security
features.

A. Trusted Peer

The central component of our architecture is the trusted
peer. It maintains a database of all peers and a tracks the
collection of data streams that are made available by sources.
Our trusted peer prototype presents a display of all peers and
streams (see Figure 2).

When a new peer connects to a trusted peer,
authentication is achieved via the peer’s openID, which is
validated the openID provider. If the peer is new, i.e. the
trusted peer has no trust nugget for the peer, the new peer
must provide its public key and a new trust nugget is created.
The peer’s public key is later provided to source peers who
will use it to encrypt content destined for that peer.
“ellie@aol.com” could have been the result of the peer
leaking parts of the stream to non-authorized parties.

Figure 1: peer-to-peer network

100Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

B. Relay Peer

The relay peer application is used to allow a peer to au-
thenticate with a trusted peer, get a listing of available
streams, make a selection, display the stream and finally
also make the stream available to other peers downstream.
Figure 4 shows a screen capture of the Java Peer Client
prototype:

 Once the peer is authenticated with a trusted peer, it can

request a list of available streams. Figure 4 shows all streams
that are currently available with their name, required trust
value, and potential bonus. The peer can make any selection.
The reason why all stream are displayed, even the ones
which require a higher trust value than what the peer
currently has, is to give the peer an incentive to first
participate in another stream to add the bonus to its trust
value. However, only streams can actually be selected for
which the peer is currently qualified.

 Once the peer has selected a stream for viewing, the
trusted peer will transmit the necessary information to enable
the peer to start download. It will get the set of all locations
at which the media stream is available. The peer then
contacts the source locations at their streams’ URLs and
starts downloading content data, i.e. the sequential frames of
the video stream.

 In general, peers can do 3 things:
(1) they continuously request frames from other peers

(the original source is viewed as just another peer) and store
them;

(2) they may display the frames as video to the user of
the peer device;

(3) and they make the stored frames available to other
peers. Figure 5 shows our prototype Java implementation of
our Peer Client while it displays the requested video:

Figure 2: Trusted Peer Prototype

Figure 3: Media Source Prototype

Figure 4: Relay Peer Prototype

101Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

Peers don’t need to provide all 3 services. A peer that

provides only service (1) and (2) is an “edge” peer, i.e., an
end user consumer. A peer that provides service (1) and (3)
is a “relay” peer. Relay peers are specifically important for
peers that have limited access to the public Internet, i.e.,
peers behind network boundaries, such as a NAT firewall. In
addition, peers stay in contact with each other to
continuously update the peer group and source data
availability.

C. Edge Peer

The final component of our prototype framework is our
proof-of-concept edge peer implementation for the Android
platform. Figure 6 shows three screens: “login”, “stream
selection”, and “stream play” of our Android prototype edge
peer application.

First, each peer is authenticated with its OpenID

credentials. The user enters userid and password, plus the
URL of a boot strap trusted peer. If the peer is new to the
content delivery network, it will also generate a
public/private pair of Diffie-Hellman keys, keep one private
and submit the public one to the trusted peer. Once
authentication is achieved, i.e. the OpenID provider has sent

the authorization token, the user is shown which streams are
currently available on the next screen. Once the “play
selected video stream” button is pressed, and a sufficient
read-ahead buffer has been accumulated, the video stream
starts playing on the Android device.

CONCLUSION

In this article, we described an architecture for peer-to-

peer based content delivery networks that empowers
participating peers. Peers joining peer groups and establish
trust among each other. Benevolent participation, i.e.,
consuming, producing, sharing and propagating media
content, increases the understanding of shared trust. The
trust information, i.e., the history of p2p transactions, is
maintained in secure manner, signed with the private key of
a trusted peer. Trust can also be lost; each unsuccessful
transaction lowers the peer’s trust value, ultimately to the
point where the peer is ejected from the peer group.

We also described a prototype implementation written in
Java to boot strap a P2P network, and includes a Java-based
client for the Android platform for smartphones. Our
intention was to demonstrate that the security capabilities of
the Java Cryptographic Architecture are sufficient, and that
its provider implementations run well on Android
smartphones.

Our next steps will be to orchestrate and simulate a large
actual swarm, i.e. an actual network with a large number of
participating peers. Our goal is to measure how robust our
trust management is and how well it withstands the
introduction of malevolent peers.

Figure 5: Relay Peer Prototype

Figure 6: Android Prototype App

102Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

REFERENCES

[1] OpenID, http://www.openid.net. [accessed September 13,

2012]

[2] J Y. Atif. Building trust in E-commerce. IEEE Internet
Computing, 6(1):18–24, 2002.

[3] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman.
Reputation systems. Communications of the ACM,
43(12):45–48, 2000.

[4] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical
framework for reasoning about access control models. In
SACMAT ’01: Proceedings of the sixth ACM symposium on
Access control models and technologies, pages 41–52, New
York, NY, USA, 2001.

[5] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access control
policies. ACM Transaction Database System, 26(2):214–260,
2001.

[6] H. Li and M. Singhal. Trust Management in Distributed
Systems. Computer, vol. 40, no. 2, pp. 45-53, Feb. 2007.

[7] OMA Digital Rights Management V2.0,
http://www.openmobilealliance.org/technical/release_progra
m/drm_v2_0.aspx. [accessed September 20, 2012]

[8] [10] C. Adams and S. Lloyd. Understanding PKI: concepts,
standards, and deployment considerations. Addison-Wesley
Professional. ISBN 978-0-672-32391-1. 2003.

[9] Raimund K. Ege. OghmaSip: Peer-to-Peer Multimedia for
Mobile Devices. The First International Conference on
Mobile Services, Resources, and Users (MOBILITY 2011),
pages 1-6, Barcelona, Spain, October 2011.

[10] Java Cryptography Architecture (JCA) Reference Guide.
http://docs.oracle.com/javase/6/docs/technotes/guides/security
/crypto/CryptoSpec.html. [accessed September 20, 2012]

[11] The Legion of the Bouncy Castle.
http://www.bouncycastle.org/java.html. [accessed September
20, 2012]

[12] Spongy Castle. http://rtyley.github.com/spongycastle.
[accessed September 20, 2012]

103Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

