
Safety Critical Multiprocessor Real-Time Scheduling with Exact Preemption Cost

Falou Ndoye
INRIA Paris-Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France

falou.ndoye@inria.fr

Yves Sorel
INRIA Paris-Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France

yves.sorel@inria.fr

Abstract—In this paper, we address for safety critical ap-
plications the problem of multiprocessor real-time scheduling
while taking into account the exact preemption cost. In the
framework of multiprocessor real-time partitioned scheduling,
we propose a greedy heuristic which balances the load of the
tasks on all the processors and minimizes the response time of
the applications. That heuristic uses a schedulability condition
which is based on the ⊕ operation. That operation performs
a schedulability analysis while taking into account the exact
preemption cost. A performance analysis is achieved which
compares the proposed heuristic to the branch and bound exact
algorithm and to the worst-fit and best-fit heuristics.

Keywords-multiprocessor real-time scheduling; partitioned
scheduling; exact preemption cost; load balancing.

I. INTRODUCTION

For computation power and modularity issues, multipro-
cessor architectures are necessary to tackle complex applica-
tions found in domains such as avionics, automotives, mobile
robotics, etc. Some of these applications are safety critical,
leading to hard real-time task systems whose number of
resources are fixed and constraints must be necessarily sat-
isfied in order to avoid catastrophic consequences. Although
fixed priority preemptive real-time scheduling allows a better
success ratio than non-preemptive real-time scheduling, pre-
emption has a cost. That cost is usually approximated in the
WCET (Worst Case Execution Time) as assumed, explicitly,
by Liu and Layland in their pioneering article [1]. However,
such approximation is dangerous in a safety critical context
since an application could miss some deadlines during its
real-time execution even though schedulability conditions
have been satisfied. This is why it is necessary to be aware
of the exact preemption cost. In this paper, we address the
problem of multiprocessor real-time scheduling while taking
into account the exact preemption cost in safety critical
applications. In the framework of multiprocessor real-time
partitioned scheduling, we propose a greedy heuristic [2]
using all the processors and which balances the load of the
tasks on all the processors. That heuristic tends to minimize
the response time (makespan) of the tasks. The schedulabil-
ity condition is based on the algebraic ⊕ operation which
performs a schedulability analysis taking into account the
exact preemption cost.

The remainder of the paper is organized as follows:
Section II presents related work about preemption cost and
multiprocessor real-time scheduling. Section III describes
the model and the schedulability analysis we propose. Sec-
tion IV presents the proposed multiprocessor scheduling
heuristic as well as its complexity, and Section V presents a
performance analysis for that heuristic by comparing it with
the Branch and Bound (B&B) exact algorithm, the Worst-
Fit (WF) and Best-Fit (BF) heuristics. Finally, Section VI
concludes and gives some directions for future work.

II. RELATED WORK

A. Exact preemption cost in real-time scheduling

There have been very few studies addressing the exact
number of preemptions. Among them, the most relevant are
the following. A. Burns, K. Tindell and A. Wellings in [3]
presented an analysis that enables the global cost due to
preemptions to be factored into the standard equations for
calculating the worst case response time of any task, but
they achieved that by considering the maximum number of
preemptions rather than the exact number. Juan Echagüe,
I. Ripoll and A. Crespo also tried to solve the problem
of the exact number of preemptions in [4] by computing
the schedule using idle times and counting the number of
preemptions. However, they did not really determine the
execution overhead incurred by the system due to these
preemptions. Indeed, they did not take into account the cost
of each preemption during the analysis. Hence, this amounts
to considering only the minimum number of preemptions
because some preemptions are not considered: those due to
the increase in the execution time of the task because of the
cost of preemptions themselves.

In order to reduce the preemption cost and improve the
schedulability of tasks, a lot of work has focused on limited-
preemption policies; among these we can cite fixed priority
scheduling with deferred preemption (FPSDP) also called
cooperative scheduling [5] and fixed priority scheduling
with a preemption threshold (FPSPT) [6], [7]. According to
FPSDP, each job of a task is a sequence of sub-jobs, where
sub-jobs are not preemptive. When a job is being executed,
it can only be preempted between two consecutive sub-jobs.
For FPSPT, each task is assigned a nominal and a threshold

127Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

priority. A preemption will take place only if the preempting
task has a nominal priority greater than the preemption
threshold of the executing task. None of the previous works
considers the exact number of preemptions. Nonetheless,
that can affect the correct behavior of the system at run-time,
or in any case leads to resources being wasted in terms of
time and memory. It is typical and not difficult to determine
the constant cost of every preemption which includes the
context switch necessary to make the preemption possible
together with the choice of the task with the highest priority.
However, the exact number of preemptions is difficult to
determine since it may vary according to every instance of
a task. To our best knowledge there are only few studies
that take into account the exact preemption cost in the
schedulability conditions, except those presented in [8], [9].
The authors proposed a scheduling operation named ⊕ that
performs a schedulability analysis while computing the exact
number of preemptions. The principle of this operation is
presented in Section III-B.

B. Multiprocessor real-time scheduling

The scheduling of real-time tasks on multiprocessor ar-
chitectures can be achieved according to three main ap-
proaches: partitioned scheduling, global scheduling, and
semi-partitioned scheduling.

In the partitioned scheduling approach [10], [11] the
system of tasks is divided into a number of disjoint subsys-
tems less than or equal to the number of processors in the
multiprocessor architecture, and each of these subsystems is
allocated to one processor. All the instances, or jobs, of a
task are executed on the same processor and no migration
is permitted. In this approach, it is necessary to choose a
scheduling algorithm for every processor, possibly the same
algorithm, and also an allocation algorithm. On the other
hand, the allocation problem has been demonstrated to be
NP-Hard [12]. This complexity is the main drawback of the
partitioned scheduling approach.

Heuristics are considered to be the best suited solutions
when the execution time is crucial as in the rapid prototyping
phase of the design process. In the case of fixed priority
scheduling and independent tasks, Davari and Dhall were
the first to propose in [13] two preemptive scheduling
algorithms RM-FF (Rate Monotonic First Fit) and RM-NF
(Rate Monotonic Next Fit) to solve the multiprocessor real-
time scheduling problem. In the proposed algorithms, the
uniprocessor RM algorithm [1] is used to verify if a task is
schedulable on a processor with respectively First-Fit (FF)
and Next-Fit (NF) to solve the allocation problem. Another
heuristic, RM-BF (Rate Monotonic Best Fit) was proposed
in [14]. It makes it possible to minimize the remaining
processor load (1−Upj), called the unutilized capacity of the
processor pj [15], where Upj is the load of the tasks on pj .
In contrast to RM-BF, RM-WF [14] (Rate Monotonic Worst
Fit) maximizes the remaining processor load. All these

approaches uses the classical Liu and Layland [1] model
of tasks that assumes the preemption cost is approximated
in the WCET. In order to tackle this problem [16] presents a
first solution to take into account the exact preemption cost
in multiprocessor real-time scheduling.

In the global scheduling approach [10], [11], a unique
scheduling algorithm is applied globally for every processor
of the multiprocessor architecture. All the ready tasks are
in a unique queue shared by all the processors. In this
queue, the m tasks with the highest priorities are selected
to be executed on the m available processors. Besides
preemptions, task migrations are permitted. The advantage
of the global scheduling approach, is that it allows a better
use of the processors. The main drawback of the global
scheduling approach, is that each migration nowadays has a
prohibitive cost.

In the semi-partitioned scheduling approach [17], [18],
derived from the partitioned scheduling approach, each task
is allocated to a specific processor as long as the total
utilization of the processor does not exceed its schedulable
bound. In this approach, some tasks can be portioned for
their executions among multiple processors. During run-
time scheduling, a portioned task is permitted to migrate
among the allocated processors, while the partitioned tasks
are executed on specific processors without any migration.
The semi-partitioned scheduling approach allows a reduction
of the number in migrations. But again, it is necessary to be
aware that every migration has a cost.

C. Our choices

The cost of migrations in the global and semi-partitioned
scheduling approaches leads us to choose the partitioned
scheduling approach. In addition, since the partitioned
scheduling approach amounts to transform the multiproces-
sor scheduling problem into several uniprocessor scheduling
problems, we can take advantage of the numerous research
results obtained for the uniprocessor scheduling problem. In
order to achieve rapid prototyping, we propose an allocation
heuristic rather than a metaheuristic [19] or an exact algo-
rithm [20], and a schedulability condition to verify if a task is
schedulable on a specific processor. Next-fit (NF) and first-fit
(FF) heuristics can not optimize the load of the tasks on the
processors, their choice is only based on the first processor
which satisfies the schedulability condition. The BF heuristic
using the load as a cost function, tries to fill a processor as
much as possible before using another one. This technique
does not induce load balancing. The only heuristic among
the bin-packing heuristics which permits load balancing is
WF. But, as with all the other bin-packing heuristics, WF
tries to reduce the number of processors and that limits
the balancing while multiprocessor architectures used in
industrial applications, which we are interested in, have a
fixed number of processors. That is why we propose a greedy
heuristic similar to the WF heuristic, but which uses all the

128Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

available processors. This heuristic aims at minimizing the
load on each processor. That induces to balance the load on
all the processors. This proposed heuristic will be compared
to the WF and BF heuristics and to the B&B exact algorithm.

Although preemptive scheduling algorithms are able to
successfully schedule some task systems that cannot be
scheduled by non-preemptive scheduling algorithms, the
preemption has a cost. Indeed, Liu and Layland [1] assume
that the preemption cost is approximated in the WCET.
Thus, there are two possible cases: the approximation in time
and memory space is high enough and thus will probably
lead to wasting resources, or the approximation is low and
thus a task system declared schedulable by, let us say RM,
may miss some deadlines during its real-time execution.
Consequently, we propose using the ⊕ operation [8], [9].
This is an algebraic operation that two tasks are schedulable,
or not, while taking into account the exact preemption cost.

III. MODEL AND SCHEDULABILITY ANALYSIS

A. Model

Let Γn = {τ1, τ2, · · · , τn} be a system of n preemptive,
independent and periodic real-time tasks. Every task is
denoted by τi = (r1i , Ci, Di, Ti) where r1i , Ci, Di and Ti
are the characteristics of the task. r1i is the first activation
date, Ci is the EET (Exact Execution Time) without any
approximation of the preemption cost, Di is the relative
deadline, and Ti the period of the task τi. We assume that
Ci ≤ Di ≤ Ti. Here we use the EET rather than the
WCET because we assume that the code associated to a task
is purely sequential, i.e. there are no conditional branches.
Our hypothesis to consider the EET may seem unrealistic,
but since we are considering safety critical applications it
is mandatory to known the EET. Of course, when dealing
with uncritical applications the WCET can be used. Also, we
assume that Γn is scheduled according to the rate monotonic
(RM) fixed-priority scheduling policy [1] on m identical
processors (all the processors have the same computation
power). Eventually, we assume that the processors have
neither cache nor pipeline, or complex internal architecture.
Both preview assumptions are usually made in safety critical
applications where determinism is a key issue.

B. Schedulability analysis based on the ⊕ operation

Our schedulability analysis is based on the ⊕ scheduling
operation [9] . This operation is applied to a pair of tasks
(τi, τj), such that τi has the highest priority. It gives as a
result a task R, that is R = τi ⊕ τj . The ⊕ takes into
account the exact preemption cost incurred by the task τj .
The schedulability interval, i.e. the interval in which we
study the schedulability of the tasks, comes from the theorem
1 below which was introduced by the J. Gossens [21].

Theorem 1: For a system Γn = {τ1, τ2, · · · , τn} of n
periodic tasks arranged by decreasing priorities with respect

to a fixed-priority scheduling policy, let (s
′

i)i∈N∗ be the
sequence defined by:

s
′

1 = r11

s
′

i = r1i +

⌈
(si−1 − r1i)+

Ti

⌉
· Ti, 2 ≤ i ≤ n

(1)

If there exists a valid schedule of Γn until the time s
′

n+Hn

where Hn = lcm{Ti | i = 1, · · · , n}, and x+ = max(x, 0),
then this schedule is valid and periodic of period Hn from
s
′

n.
Proof: The proof of this theorem is similar to that

performed by J. Goossens in his Ph.D. thesis [21].

A direct consequence of the previous theorem is that in the
case of a valid schedule, the result of the schedule of the i
first tasks is periodic of period Hi = lcm{Tj | j = 1, · · · , i}
from s

′

i. Thus, the interval which precedes s
′

i necessarily
contains the transient phase, corresponding to the initial part
of the schedule and the interval starting at time s

′

i with length
Hi is isomorphic to the permanent phase of the schedule of
the i first tasks which repeats identically from the instant s

′

i.
In order to compute R = τi ⊕ τj with j = i + 1,

we set ε = min(r1i , r
1
j). Since ε always exists, the

interval [ε, s
′

j] defines the transient phase and the interval
[s
′

j , s
′

j + Hj] defines the permanent phase, sj and Hj

are given by the theorem 1. The schedulability study of
the tasks is performed in the interval [ε, s

′

j + Hj]. In this
interval, the number of instances of a task τj is given by

nj =
(s
′
j+Hj)−r1j

Tj
.

1) Principle of the ⊕ operation: The principle of ⊕
applied to a pair of tasks (τi, τj) consists in replacing the
available time units of the highest priority task τi with the
time units of the lowest priority task τj . In order to do that,
both tasks are initially referenced to the same time origin
ε. Then, task τi is rewritten according to the number of
instances of task τj in the interval [r1j , s

′

j +Hj] of both task
periods. This operation allows not only the identification of
the available time units in task τi, but also the verification
that task τj does not miss any deadlines.

When the task τj is preempted by the task τi the exact
number of preemptions must be computed for each instance
of τj by considering all its time units. When τj is preempted,
we increment its number of preemptions and we add the cost
associated with one preemption in the remaining execution
of τj , i.e. the number of time units that τj must execute
in order to complete its execution. That scheme is repeated
to take into account a preemption generated by a previous
preemption, and so on. In contrast to other works presented
in the literature, this principle makes it possible to have the
exact number of preemptions. The cost associated to that

129Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

exact number of preemptions is added to the EET of τj to
obtain its PET (Preemption Execution Time).

Figure 1 illustrates the PET. In this figure, the PET of task
τi in the instance k+ 1 is given by Ck+1

i = Ci + 2α due to
two preemptions, with α being the cost of one preemption.
If the amount of PET unit of times fits in the available time

Figure 1. PET of a task

units of task τi, the task τj is schedulable, giving as a result
task R, otherwise it is not schedulable. ⊕ is an internal
operation, i.e. the result given by ⊕ is also a task, that result
may be in turn used as the highest priority task in another ⊕
operation. Thanks to this property it is possible to consider
more than two tasks.

In order to perform the schedulability analysis of the task
system Γn = {τ1, τ2, · · · , τn}, ordered according to the
decreasing priorities of the tasks, the ⊕ operation is applied
from the task with the highest priority to the task with the
lowest priority. Consequently, if Rn is the scheduling task
result of Γn, then Rn is obtained by successive iterations:{

R1 = τ1
Ri+1 = Ri ⊕ τi+1, 1 ≤ i < n

As such we have Rn = ((τ1 ⊕ τ2)⊕ · · · ⊕ τn−1)⊕ τn. The
system Γn will be said schedulable if and only if all the
tasks are schedulable. If this is not the case, then the system
Γn is said to be not schedulable.

The complexity of ⊕ applied to a pair of tasks τi and τj
is O(l) with l is the LCM between the period of τi and the
period of τj .

We denote by Hj = lcm{Tl : τl ∈ hp(τj)} where
Tl represents the period of task τl and hp(τj) denotes the
subsystem of tasks with a priority higher than the priority
of τj . The number of instances of task τi in the permanent
phase is given by:

σpermj
=
Hj

Tj
=
lcm{Tl : τl ∈ hp(τj)}

Tj
(2)

The exact permanent load of a task τj , i.e. the load of the
task τj , while taking into account the exact preemption cost,
is given by:

U∗j =
C∗j
Tj

with C∗j =
1

σpermj

σpermj∑
l=1

Clj (3)

In equation 3, Clj corresponds to the PET of the lth instance
in the permanent phase. As such, the exact permanent load
of the system Γn composed of n periodic tasks scheduled
on a processor pi is given by:

U∗pi =

n∑
j=1

U∗j (4)

2) Example: We apply the ⊕ operation to a system of
periodic preemptive real-time tasks while taking into account
the exact preemption cost. Let us consider such a system
Γ3 = {τ1, τ2, τ3} of 3 tasks where τ1 is the task with the
highest priority, and τ3 is the task with the lowest priority.
We consider the cost of one preemption to be one time unit
for all tasks. The characteristics of the tasks are summarized
in table I.

Table I
TASKS’ CHARACTERISTICS

Tasks r1i Ci Di Ti

τ1 0 3 7 15
τ2 5 2 6 6
τ3 3 4 10 10

The ⊕ operation is applied to a pair of operands. The left
operand called the “executed task” corresponds to the result
of the tasks previously scheduled, and the right operand
called the “executable task” corresponds to the task to be
scheduled. We represent an instance of the executable task
by a unique sequence of symbols ”e”, in bold, followed by
a sequence of symbols ”a”. Each symbol ”e”, in bold, in
the executable task represents an executable time unit, i.e.
the time unit that the task to be scheduled, must execute.
Each symbol ”a” represents an available time unit. Actually,
such representation is repeated indefinitely since the task is
periodic. We represent an instance of an executed task by a
sequence of symbols ”e” followed by a sequence of symbols
”a”, possibly repeated several times. Each symbol ”e” in
the executed task represents one executed time unit, i.e. the
time unit executed by all the tasks previously scheduled.
From the end of the transient phase, given by theorem 1,
such representation is repeated according to the LCM of the
tasks already scheduled.

The ⊕ operation aims at replacing all the available time
units of the executed task (left operand) by the executable
time units of the executable task (right operand). In order
to make both tasks comparable, first the executable task is
repeated according to the number of its instances in the
schedulabity interval. Second, the executed task is rewritten
according to the number of instances of the executable task
in the schedulability interval. Therefore, the task resulting
of the ⊕ operation applied to a pair of tasks, is an executed
task represented by a sequence of symbols ”e” followed by
a sequence of symbols ”a”, possibly repeated several times.

130Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

According to these definitions, each task instance of the
system Γ3 is represented as: τ1 = {e, e, e, a, a, a, a, a, a, a, a, a, a, a, a}

τ2 = {e, e, a, a, a, a}
τ3 = {e, e, e, e, a, a, a, a, a, a}

The scheduling task result R3 which describes the sched-
ule of the task system is obtained by the following successive
iterations: {

R1 = Λ⊕ τ1
Ri = Ri−1 ⊕ τi, i = 2, 3

Λ represents a task only composed with symbols ”a” since
there are no executed time units.R1 = Λ⊕τ1 is computed as
follows: according to equation 1 we have s

′

1 = 0 and H1 =
T1 = 15. Thus, the result of ⊕ applied to the pair (Λ, τ1)
is periodic of period H1 = T1 and is repeated indefinitely
from s

′

1. We obtain R1 by replacing the 3 first available
time units of Λ by the 3 executable time units of τ1. Then,
we have:
R1 = {e, e, e, a, a, a, a, a, a, a, a, a, a, a, a}[0,15]

First iteration: Computation of R2 = R1 ⊕ τ2.
Thanks to equation 1, we have:

s
′

1 = 0

s
′

2 = 5 +

⌈
(0− 5)+

6

⌉
· 6 = 5

We have H2 = lcm(15, 6) = 30, thus the transient phase
belongs to the interval [0, 5] and the permanent phase
belongs to the interval [5, 35]. In the schedulability interval
[0, 35], R1 is rewritten as follows:

R1 = {e, e, e, a, a}[0,5]{a, a, a, a, a, a, a, a, a, a,
e, e, e, a, a, a, a, a, a, a, a, a, a, a, a, e, e, e, a, a}[5,35]

Task τ2 begins its execution at t = 5 corresponding
to the beginning of the permanent phase. Its
number of instances in the schedulability interval is

n2 =
(s
′
2+H2)−r12

T2
= (5+30)−5

6 = 30
6 = 5. According to the

number of instances of τ2 in the schedulability interval, R1

is rewritten as follows:

R1 = {e, e, e, a, a}[0,5]{a, a, a, a, a, a}
{a, a, a, a, e, e, }{e, a, a, a, a, a}
{a, a, a, a, a, a}{a, e, e, e, a, a}

(5)

R2 = R1 ⊕ τ2 is obtained by replacing in the equation 5
for each corresponding instance of τ2 in R1, the available
time units ”a” of R1 with the executable time units ”e”,
in bold, of τ2. During this replacement a preemption of
τ2 by τ1 corresponds to the transition (”a” → ”e”). The
preemption of τ2 by τ1 is denoted by the time unit ”p”
called preemption time unit. When τ2 is preempted, the

next available time unit of R1 after this preemption is
replaced by a preemption time unit ”p”. After replacing all
the available time units of τ1 with the executable time units
of τ2 and after adding the preemption time unit ”p” in R1,
we obtain:

R2 = {e, e, e, a, a}(0,5){e, e, a, a, a, a}
{e, e, a, a, e, e}{e, e, e, a, a, a}
{e, e, a, a, a, a}{e, e, e, e,p, e}

For each corresponding instance of τ2 in R2, its PET is
given by the sum of the number of its executable time units
e, in bold, and the number of its preemptions time unit ”p”.
In the 4 first corresponding instances of τ2 in R2, the PETs
are the same and equal to 2 (PET=EET) because τ2 is not
preempted in these instances, but in its 5th instance, it is
preempted once. That is the reason why its PET is equal
to 3. In any corresponding instance of τ2 in R2, the PET
fits in the available time units left by R1 in this instance.
Thus, the task τ2 is schedulable while taking into account
the exact preemption cost. Actually, we have:

R2 = {e, e, e, a, a}[0,5]{e, e, a, a, a, a, e, e, a, a, e, e,
e, e, e, a, a, a, e, e, a, a, a, a, e, e, e, e, p, e}[5,35]

The differences with the previous expression of R2 is
that the executable time units ”e”, in bold, become executed
time units ”e”, and R2 does not exhibit the corresponding
instances of τ2.

Second iteration: Computation of R3 = R2 ⊕ τ3.
Thanks to equation 1, we have:

s
′

2 = 5

s
′

3 = 3 +

⌈
(5− 3)+

10

⌉
· 10 = 13

We have H3 = lcm(lcm(15, 6), 10) = lcm(30, 10) = 30,
thus the transient phase belongs to the interval [0, 13] and
the permanent phase belongs to the interval [13, 43]. In
the schedulability interval [0, 43], R2 is rewritten as follows:

R2 = {e, e, e, a, a, e, e, a, a, a, a, e, e}[0,13]{a, a, e,
e, e, e, e, a, a, a, e, e, a, a, a, a, e, e, e, e, p, e, e, e, a,
a, a, a, e, e}[13,43]

Task τ3 begins its execution during the transient phase at
t = 3 . Its number of instances in the schedulability interval

is n3 =
(s
′
3+H3)−r13

T3
= (13+30)−3

10 = 40
10 = 4. According to

the number of instances of τ3 in the schedulability interval,
R2 is rewritten as follows:

R2 = {e, e, e}{a, a, e, e, a, a, a, a, e, e}[3,13]
{a, a, e, e, e, e, e, a, a, a} {e, e, a, a, a, a, e, e,
e, e}{p, e, e, e, a, a, a, a, e, e}

(6)

R3 = R2 ⊕ τ3 is obtained by replacing in the equation 6
for each corresponding instance of τ3 in R2, the available

131Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

time units ”a” of R2 with the executable time units ”e”, in
bold, of τ3. During this replacement, a preemption of the
task τ3 by τ1 or by τ2 corresponds to a transition (”a” →
”e”). When τ3 is preempted, the next available time unit
of R2 is replaced by a preemption time unit ”p”. After
replacing the available time units of R2 with the executable
time units of τ3 and after adding the preemption time units
”p” in R2, we obtain:

R3 = {e, e, e}{e, e, e, e,p, e, e, a, e, e}[3,13]
{e, e, e, e, e, e, e,p, e, e}{e, e, e, e, e, e, e, e, e, e}
{p, e, e, e, e, e, e, e, e, e}

For each corresponding instance of τ3 in R3, its PET
is given by the sum of the number of its executable time
units ”e”, in bold, and the number of its preemptions time
units ”p”. In the 2 first corresponding instances of τ3 in
R3, the task τ3 suffers one preemption. Its PETs in every
instance are the same and equal to 5. In its other instances
there is no preemption of τ3 and the PETs of τ3 in these
instances are the same and equal to 4 (PET=EET). In
any corresponding instance of τ3 in R3, the PET fits in
the available time units of R2 in this instance. Thus, the
task τ3 is schedulable while taking into account the exact
preemption cost. Finally, we have:

R3 = {e, e, e, e, e, e, e, p, e, e, a, e, e}[0,13]{, e, e, e,
e, e, e, e, p, e, e, e, e, e, e, e, e, e, e, e, e, p, e, e, e, e, e,
e, e, e, e}[13,43]

The differences with the previous expression of R3 is
that the executable time units ”e”, in bold, become executed
time units ”e”, and R3 does not exhibit the corresponding
instances of τ3.

Since all the tasks are schedulable then the system Γ3 =
{τ1, τ2, τ3} is schedulable.

Figure 2 presents the result of the schedule of Γ3. In this
figure, the permanent phase corresponds to the highlighted
zone of the schedule and the transient phase corresponds to
the interval preceding that zone. The disk represents only
the permanent phase in a more compact form. This double
representation of the schedule is obtained from the SAS
software [22].

IV. MULTIPROCESSOR SCHEDULING HEURISTIC

The heuristic presented in Algorithm1 is a greedy heuris-
tic. The solution is built step by step. In each step a decision
is taken and this decision is never questioned during the
following steps (no backtracking). The effectiveness of such
a greedy heuristic is based on the decision taken to build
a new element of the solution. In our case, the decision is
taken according to a cost function which aims at minimizing
the load.

A. Cost function
The cost function allows the selection of the best proces-

sor pj to schedule a task τi. In our case, this cost function

Figure 2. Result of the scheduling of Γ3, taking into account the exact
preemption cost

is the load U∗pj (equation 4) of the task τi and all the tasks
already allocated on the processor pj . The processor which
minimizes this cost function for τi among all the processors,
is considered to be the best processor to schedule the task
τi.

In the case of the previous example, according to equation
4, the exact permanent load of the system Γ3 scheduled on
a processor p is given by:

U∗p =
3

15
+

1

6
· (2 + 2 + 2 + 2 + 3)

5
+

1

10
· (5 + 4 + 4)

3
= 1

B. Principle of our allocation heuristic

We use a ”list heuristic” [23]. In our case, we initialize
this list, called the “candidate task system”, with the task
system given as input. We use for that candidate task system
the decreasing order of the task priorities (according to RM
fixed-priority scheduling policy [1]). At each step of the
heuristic, the task with the highest priority is selected among
the candidate task system, and we attempt to allocate it to
its best processor according to the cost function presented

132Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

previously. The heuristic minimizes the load U∗pj of the task
system on the different processors. It is similar to the WF
bin-packing heuristic but all the available processors are used
rather than the first processors necessary to schedule the task
system.

If Γn is the task system with n tasks and m is the number
of processors, the complexity in the worst case of our
heuristic is equal to O(n.m.l), with l = lcm{Ti : τi ∈ Γn}.

Algorithm 1 Greedy heuristic
1: Initialize the candidate task system W with the task

system given as input and in the decreasing or-
der of their priorities, initialize the boolean variable
TasksSchedulable to true

2: while W is not empty and TasksSchedulable = true
do

3: Select in W the highest priority task τi
4: % Verify on each processor pj if task τi is schedula-

ble.%
5: for j=1 to m do
6: if task τi is schedulable on pj with the exact

preemption cost (scheduling operation ⊕ [9]) then
7: Compute the cost function of task τi on the pro-

cessor pj , i.e. the load of pj using the equation
4 given in subsection III-B

8: end if
9: end for

10: % Using the cost function again, choose the best
processor for τi among all the processors on which
τi is schedulable.%

11: if τi is schedulable on one or several processors then
12: Schedule the task τi on the processor which mini-

mizes the cost function
13: Remove the task τi from W .
14: TasksSchedulable = true
15: else
16: TasksSchedulable = false
17: end if
18: end while

V. PERFORMANCE ANALYSIS

Our heuristic is compared with the B&B exact algorithm
and the WF and BF heuristics. The B&B enumerates all
the possible solutions in order to find the best solution
which minimizes the load of the tasks on the processors.
In the B&B, WF and BF heuristics, we use the ⊕ operation
presented in Section III-B as the schedulability condition.
We compare the algorithms according to their execution
time, their success ratio, the response time of the task
systems, i.e. the total execution time of the tasks, and
the unutilized capacity of the processors used during the
allocation.

A. Execution time of the heuristics

We perform two kinds of tests to compare the execution
time of the four algorithms. First, we fix the number of
processors to 10 and we vary the number of tasks between
100 to 1000 tasks. Every task system is scheduled with the
four algorithms and the corresponding execution times are
computed. We obtained the results shown in Figure 3. In
the second test, we use a single task system composed of
1000 tasks randomly generated and we vary the number of
processors. We obtained the results shown in Figure 4.

In both tests, we notice that the exact algorithm ex-
plodes very quickly whereas the heuristics keep a reasonable
execution time. Our heuristic up to 1000 tasks is close
to the WF and BF heuristics in terms of execution time.
However, for higher numbers of tasks less good results are
obtained with our heuristic. In Figure 4 we also notice that
when the number of processors varies, the execution times
of WF and BF are constant, because these heuristics use
the minimum number of processors. Another remark about
Figure 4 is that the execution time of our heuristic does
not increase monotonically with the number of processors,
in contrast to Figure 3. Indeed, in our heuristic, increasing
the number of processors leads to distributing the tasks on
all the processors. That increase in terms of processors, can
decrease locally the LCM of the tasks on some processors,
and consequently can reduce the execution time of the ⊕
operation.

Figure 3. Execution time of the algorithms according the number of tasks

B. Success ratio

In these tests, we compare the success ratio of our
heuristic with the B&B exact algorithm and the WF and
BF heuristics. The success ratio of an algorithm is defined
as follows:

133Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

Figure 4. Execution time of the algorithms according to the number of
processors

number of task systems schedulable
total number of task systems

Due to the complexity of the B&B and in order to com-
pare it with the heuristics, we executed each algorithm on 6
task systems. Each task system is composed at most of 10
randomly generated tasks and is executed on 2 processors.
At each execution we determine for each algorithm the
number of schedulable task systems.

As shown in Figure 5, we notice that WF and BF give
better results than our heuristic in terms of success ratio.
This loss in terms of success ratio is largely compensated
by the gain in terms of response time of the task systems and
by the unutilized capacity of the processors, as described in
the subsections V-C and V-D.

Figure 5. Sucess ratio

C. Response time of the task systems

In these tests, we consider 10 task systems. The number of
tasks in the task systems varies between 100 and 1000 ran-
domly generated tasks and each task system is executed on
10 processors. We limit the tests to the WF and BF heuristics
and our proposed heuristic because of the complexity of the
B&B exact algorithm and we know that the B&B already
gives better results than the heuristics. For each task system,
we determine the allocation found by each heuristic and for
this allocation the response time of the task system, i.e.,
the total execution time of all the tasks, is computed. We
compare the response time of the task systems between the
heuristics, as shown in Figure 6.

In this figure, we notice that the allocation found by our
heuristic gives a better response time than those found by
WF and BF. This is due to the fact that the execution of the
tasks is parallelized on all the available processors whereas
WF and BF attempts to reduce the number of processors
rather than parallelize the execution of the tasks.

Figure 6. Execution time of the task systems

D. Average of the unutilized capacity of the processors

In these tests, we consider 10 task systems. The number
of tasks in the task systems varies between 100 and 1000
randomly generated tasks and each task system is executed
on 10 processors. We limit the tests to the WF and BF
heuristics and our proposed heuristic because of the com-
plexity of the B&B exact algorithm. In addition, we know
that the B&B already gives better results than the heuristics.
For each task system we determine the allocation found by
each heuristic and for this allocation we compute the average
of the remaining processor load (1− Upj), called untilized
capacity, on the processors pj used in this allocation. We
compare the unutilized capacity of the processors used with
the heuristics as shown in Figure 7.

134Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

In this figure, we observe that the allocation found by our
heursitic gives for each processor more flexibility, i.e., more
unutilized capacity, than those found by WF and BF. This
is due to the fact that our heuristic balances the load on all
the available processors, which ensures an execution time
slack, whereas the BF heuristic fills the processors as much
as possible, which that increases the risk of non schedulabily
of a task system at run-time. On the other hand, the WF
heuristic, balances the load only on the processors already
used and does not consider all the available processors.

Figure 7. Average of (1-load) on the processors used

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a greedy heuristic which
allocates and schedules, on a multiprocessor architecture, a
system of real-time tasks while balancing the load on the
processors. In addition, this heuristic takes into account the
exact preemption cost that must be carefully considered in
safety critical applications, which is the focus of our work.

We have carried out a performance analysis showing that,
up to 1000 tasks, the proposed greedy heuristic, has results
close to those of the WF and BF heuristics in terms of
execution time. For higher number of tasks less good results
can be obtained with our heuristic. On the other, hand the
proposed heuristic is better than the WF and BF heuristic in
terms of load balancing and flexibility, i.e., more not-utilized
capacity, of tasks at run-time. Also the allocation found with
our heuristic has better response time than those with WF
and BF heuristics.

In future works, we plan to study the multiprocessor real-
time scheduling of dependent tasks which leads to deal with
data transfers and shared data management.

REFERENCES

[1] C. L. Liu and J W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environnment. Journal
of the ACM, vol. 20(1), January 1973.

[2] S. Martello E.G. Coffman, G. Galambos and Daniele Vigo.
Bin packing approximation algorithms: Combinatorial analy-
sis. Handbook of combinatorial optimization, 1998.

[3] A. Burns, K. Tindell, and A. Wellings. Effective analysis for
engineering real-time fixed priority schedulers. IEEE Trans.
Softw. Eng., 21:475–480, May 1995.

[4] J. Echague, I. Ripoll, and A. Crespo. Hard real-time preemp-
tively scheduling with high context switch cost. In Proceed-
ings of 7th Euromicro workshop on Real-Time Systems, Los
Alamitos, CA, USA, 1995. IEEE Computer Society.

[5] Alan Burns. Preemptive priority-based scheduling: An ap-
propriate engineering approach. In Advances in Real-Time
Systems, chapter 10, pages 225–248. Prentice Hall, 1994.

[6] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with
preemption threshold. In Proceedings of the 6 International
Conference on Real-Time Computing Systems and Applica-
tions, RTCSA’99, Washington, DC, USA, 1999.

[7] M. Saksena and Y. Wang. Scalable real-time system design
using preemption thresholds, November 2000.

[8] P. Meumeu Yomsi and Y. Sorel. Extending rate monotonic
analysis with exact cost of preemptions for hard real-time
systems. In Proceedings of 19th Euromicro Conference on
Real-Time Systems, ECRTS’07, Pisa, Italy, July 2007.

[9] P. Meumeu Yomsi and Y. Sorel. An algebraic approach for
fixed-priority scheduling of hard real-time systems with exact
preemption cost. Research Report RR-7702, INRIA, August
2011.

[10] Robert I. Davis and Alan Burns. A survey of hard real-time
scheduling algorithms and schedulability analysis techniques
for multiprocessor systems. Technical report, University of
York, Department of Computer Science, 2009.

[11] O.U.P. Zapata and P.M. Alvarez. Edf and rm multiproces-
sor scheduling algorithms: Survey and performance evalua-
tion. http://delta.cs.cinvestav.mx/ pmejiamultitechreport.pdf,
Oct 2005.

[12] Garey and Johnson. Computers and intractability: a guide to
the theory of NP-completeness. W.H. Freeman and Company,
New York, NY, USA, 1979.

[13] S.K. Dhall and C.L. Liu. On a real-time scheduling problem.
Operation Research, vol. 26(1), 1978.

[14] Y. Oh and S.H. Son. Tight performance bounds of heuristics
for a real-time scheduling problem. Technical Report CS-
93-24, Univ. of Virginia. Dep. of Computer Science, Char-
lottesville, VA 22903, May 1993.

135Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

[15] L. George I. Lupu, P. Courbin and J. Goossens. Multi-criteria
evaluation of partitioning schemes for real-time systems. In
The 15th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, ETFA’10, Bilbao, Spain,
September 2010.

[16] F. Ndoye and Y. Sorel. Preemptive multiprocessor real-time
scheduling with exact preemption cost. In Proceedings of
5th Junior Researcher Workshop on Real-Time Computing,
JRWRTC’11, in conjunction with the 18th International con-
ference on Real-Time and Network Systems, RTNS’11, Nantes,
France, September 2011.

[17] S. Katoa and N. Yammasaki. Semi-partitioning technique for
multiprocessor real-time scheduling. In Proceedings of WIP
Session of the 29th Real-Time Systems Symposium (RTSS),
IEEE Computer Society, 2008.

[18] J. H. Anderson, V. Bud, and C. U. Devi. An edf-based
scheduling algorithm for multiprocessor soft real-time sys-
tems. In Proceedings of the 17th Euromicro Conference on
Real-Time Systems, pages 199–208, Washington, DC, USA,
2005. IEEE Computer Society.

[19] E. G Talabi. Metaheuristics. Wiley, 2009.

[20] J. E. Mitchell. Branch-and-cut algorithms for combinatorial
optimization problems. pages pp 65–67, 2002.

[21] J. Goossens. Scheduling of Hard Real-Time Periodic Systems
with Various Kinds of Deadline and Offset Constraints. PhD
thesis, Universit Libre de Bruxelles, 1999.

[22] P. Meumeu Yomsi, L. George, Y. Sorel, and D. de Rauglaudre.
Improving the quality of control of periodic tasks scheduled
by fp with an asynchronous approach. International Journal
on Advances in Systems and Measurements, 2(2), 2009.

[23] K. M. Chandy L.T. Adams and J. R. Dickson. A comparison
of list schedules for parallel processing systems. Commun.
ACM, 17:685–690, December 1974.

136Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

