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 Abstract—This paper studies the interplay between traffic 

dynamics and network structure in complex communication 

networks. Complex communication networks of distinct 

structural features are chosen as the underlying networks. We 

use node betweenness centrality, network polarization, and 

average path length to capture the structural characteristics of a 

network. Network throughput and average packet delay are the 

main performance measures. We study how internal traffic, 

throughput, and delay change with increasing incoming traffic 

through simulation. We further investigate the relationship 

between network performance and network structure. Our work 

reveals that the parameters chosen to reflect network structure, 

including node betweenness centrality, network polarization, and 

average path length, play important roles in different states of 

the underlying networks. 

Keywords-Complex networks; traffic; network structure; 

network performance. 

I.  INTRODUCTION  

Many social, biological, and communication systems are 

called complex systems. In network science, complex systems 

are described as networks consisting of vertices and 

interactions or connections among them. The study of 

structural and dynamical properties of complex systems has 

been receiving a lot of interests. One of the ultimate goals of 

the studies is to understand the influence of topological 

structures on the behaviors of various complex systems, for 

instance, how the structure of social networks affects the 

spread of diseases, information, rumors, or other things [1-3]; 

how the structure of a food web affects population dynamics 

[4-5]; how the structure of a communication network affects 

its robustness, reliability [6-7], and so on.  

   There is a wealth of literature focusing on different 

performance aspects of communication networks. By viewing 

communication networks as weighted graphs, authors in [7-9] 

have developed a concept called network criticality. They 

found that network criticality directly relates to network 

performance metrics such as average network utilization and 

average network cost.  Most network centrality indices have 

structural significance. In [10], the authors compare different 

centrality indices for the measuring of nodal contribution to 

global network robustness. Since the discovery of power-law 

degree distribution of the Internet topology [11], much effort 

has been made on the study of scale-free (SF) networks. In 

[12-17], different routing strategies have been proposed in 

order to improve the performance of SF networks. To enhance 

the traffic transport efficiency of SF networks, an optimal 

resource allocation scheme is presented in [18]. Lattice 

networks are widely used, for example, in distributed parallel 

computation [19], distributed control [20], satellite 

constellations [21], and sensor networks [22]. Authors in [22] 

study the effect of routing on the queue distribution, and 

investigate the routing algorithms in lattice networks that 

achieve the maximum rate per node under different 

communication models.  

In our previous work [23], we compared the latency of SF 

networks and random networks under different routing 

strategies. In order to better understand the structural influence 

on the performance of communication networks, in this paper, 

we devote ourselves to explore the relationship between 

network structure and network performance under dynamic 

input traffic. Four different types of networks are chosen as 

the underlying networks. They are SF networks, square lattice 

(SL) networks, random networks, and ring lattice (RL) 

networks. We use node betweenness centrality, network 

polarization, and average path length, to capture the structural 

features of different networks. Since both throughput and 

delay are especially important for communication networks, 

they are used here as main performance measures. 

In the work, based on observed traffic dynamics in the 

networks studied, three network states are classified: traffic 

free flow state, moderate congestion state, and heavy 

congestion state. Simulation results indicate that during each 

different state, the structural differences among the underlying 

networks play important roles in network performance. 

Through the work, it is possible that a better comprehension of 

the interplay between traffic dynamics and network structure 

could help in designing better network structures and better 

routing protocols. 

   The paper is organized as follows. Section II presents our 

network model. Simulation results and analysis are provided 

in Section III. Section IV concludes the work.  

II. NETWORK MODEL 

In the paper, four different types of networks are chosen as the 

underlying networks. They are the SF network, the random 

network, the SL network, and the RL network. One of their 
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structural differences lies in their distinct nodal degree 

distribution. The degree of a node is the total number of links 

connecting it. The SF network is built based on the Barabasi-

Albert (BA) model proposed in [24]. It has a power law 

degree distribution so that most nodes have very low degrees, 

but a few nodes (called hubs) could have extremely high 

degrees. The random network is formed according to the 

Erdős-Rényi (ER) model proposed in [25]. The random ER 

network follows Poisson degree distribution when network 

size is large. In the random ER network, the degrees of most 

nodes are around the mean degree. In the SL network, all the 

nodes except those located on the edge of the square have the 

same degree. The RL network is constructed by connecting 

each node on a circle to its 2m (m ≥ 1) nearest neighboring 

nodes. Apparently, all the nodes in the RL network have the 

same degree.  

    In the paper, we use node betweenness centrality, network 

polarization, and average path length to capture the structural 

characteristics of complex communication networks. The node 

betweenness Bi for a node i is defined here as the total number 

of shortest path routes passing through that node. Nodes with 

high betweenness values participate in a large number of 

shortest paths. Therefore, initial congestion usually happens at 

nodes of the highest betweenness value. Node betweenness 

reflects the role of a node in a communication network. 

Normally, high betweenness nodes also have high degrees. 

The node betweenness distribution of a communication 

network is demonstrated through a measure of the 

polarization, π, of the network [26]. It is defined as: 

                          
B

BB 


max                                          (1) 

Where Bmax is the maximum betweenness value, <B> is the 

average betweenness value. We find that π as an indication of 

node betweenness distribution suits our work better than 

others (e.g. standard deviation). The large polarization value 

of a network tells us that at least one node possesses much 

larger betweenness values than most of the other nodes in the 

network. Therefore, the larger the value π is, the more 

heterogeneous the network is. On the other hand, for very 

homogeneous networks, π is very small. For example, for the 

RL network, we have π ≈ 0. The average path length <D> of a 

network is defined as the average of the shortest path lengths 

among all the source-destination pairs. We will show in the 

next section that the average path length directly relates to the 

total amount of internal traffic in the network. It also relates to 

average packet delay. 

    The above three parameters capture the structural features 

of a network from different angles. They are also interrelated. 

Usually, the more heterogeneous (larger π, or relatively higher 

Bmax) the network is, the shorter the average path length <D> 

is. The reason is that high betweenness (or degree) nodes serve 

as shortcuts for connecting node pairs. In addition, the 

following relationship between shortest path length and node 

betweenness centrality can be easily found, 

                         
i

i
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Where Dij stands for the shortest path length from node i to 

node j, Bi stands for the betweenness value of node i. 

    The networks are treated as packet-switched networks. In 

these networks, fixed shortest path routing strategy is 

implemented. The length of the shortest path is the minimum 

hop count between a source-destination pair. Given network 

topology, each node calculates the shortest paths to all the 

other nodes using Dijkstra’s algorithm. Then a routing table is 

constructed at each node. A routing table contains three 

columns: the destination node, next node to route a packet to 

the destination, and the hop count to the destination. 

In the networks studied, traffic dynamic is governed by the 

following network model, similar to the one discussed in [27]. 

In the model, we assume that time is slotted. During each time 

slot, first, packets are generated at each node i with a rate λi, 

the destination of a packet is randomly chosen among all other 

nodes. Each node is endowed with a first-in-first-out (FIFO) 

queue in which packets are stored waiting to be processed.  

Then, if its queue is not empty, each node i transmits packets 

at a rate ri, which represents bandwidth, to one of its neighbors 

according to its routing table. When a packet reaches its 

destination, it is absorbed by the destination node. For 

simplicity, for all the nodes, we assume the packet generation 

rate is the same or let λi equals to λ. We also assume ri equals 

to 1, which means during each time slot, each node can 

process one packet. 

We use throughput and average packet delay as two main 

performance measures. Throughput is defined as the average 

number of delivered packets per time slot. The average packet 

delay is defined as the average time that a delivered packet 

spent in the network. Our task is by observing traffic dynamics 

in different networks, to find out the relationship between 

network structure and network performance.  

III. SIMULATION RESULTS AND ANALYSIS 

In the simulation, a discrete time clock k is used. Simulation 

starts with k = 0, for each passed time slot, k is incremented by 

1. The performance of a packet-switched network is measured 

by   its   throughput   o(k)   and   average   packet   delay   τ(k).  
 

TABLE I 

NETWORK PARAMETERS 

 Bmax <B> π <D> 

SF network 802 127 5.32 2.59 

Random ER 449 141 2.19 2.87 

SL network 376 224 0.68 4.67 

Ring lattice 416 325 0.28 6.63 

 
 

Both o(k) and τ(k) are calculated respectively as the average 

from the start of  simulation (k = 0) to time k. We use n(k) to 

represent the total number of packets within the network at 

time k. In the simulation, the SF network, the random ER 
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network, and the RL network are all generated with 50 nodes 

and 100 links. The SL network is generated with 49 nodes and 

84 links because of its structural restriction. Simulation 

includes two parts. The first part investigates how n(k) change 

as a function of λ and k. In this part, we observe a network 

phase transition from traffic free flow to congestion as 

reported in [27-28]. The second part investigates network 

performance as a function of λ. Three network states are 

classified accordingly. At last, we demonstrate that how, in 

different network states, the structure of a network influences 

its performance. 

    Table I lists the related parameters of the underlying 

networks. It tells us that the RL network has the longest 

average path length <D>; while the average path length of the 

SF network is the shortest. In addition, the RL network has the 

lowest polarization value π, which shows its almost 

homogeneous structure in terms of node betweenness 

distribution; while the SF network has the highest π, which 

demonstrates its most heterogeneous structure. The 

corresponding parameters of the random ER network and the 

SL network lie somewhere in between. One exception is that 

the SL network has the lowest Bmax. In our simulation, each 

data obtained is averaged over 100 runs. 

A. n(k) vs. λ, k 

This part investigates the change of n(k) as a function of λ and 

k in the networks studied. Simulation results are plotted in 

Fig.1and Fig. 2. 
 

 
                  (a) The SF network                       (b) The random ER network 

 
                 (c) The SL network                                (d) The RL network 

Fig. 1 n(k) as a function of λ (k = 1000, 1500, 2000) 

 

 
                  (a) The SF network                       (b) The random ER network 

 
                   (c) The SL network                               (d) The RL network 

Fig. 2 n(k) as a function of k for subcritical and supercritical values of λ  

Fig. 1 shows that all four networks display similar 

performance. When the incoming traffic λ increases, a critical 

point λc is observed in all these networks where a network 

phase transition takes place from traffic free flow to 

congestion. Fig. 2 presents the change of n(k) as a function of 

time k for subcritical and supercritical values of λ. In the case 

of subcritical value of λ, n(k) remains constant; while in the 

case of supercritical value of λ, we observe continuous 

accumulation of packets in the networks with the passing of 

time k.  

    When
c  , a network is in steady state or traffic free 

flow state. In this sate, n(k) remains almost unchanged with 

the increase in incoming traffic λ, and/or time k. However, for 

different networks, n(k) is proportional to the average path 

length of a network (shown in Fig. 2). According to Little’s 

law, for a network of size N, the number of packets created per 

unit time (given by N × λ) must be equal to the number of 

packets delivered per time slot. Since the number of delivered 

packets per time slot is 
)(

)(

k

kn


, hence 


N

k

kn


)(

)(
.  

When
c  , the networks enter into congestion state, 

where n(k) start increasing quickly with the increase in λ, and 

/or time k. From Fig. 1, we observe that compared with the 

other networks, the SF network has the lowest value of λc. The 

reason lies in its highest Bmax among all the networks studied.  

According to the definition of node betweenness, the node 

with maximum betweenness value Bmax has to handle the 

heaviest traffic because it participates in the largest number of 

shortest path routes. With increasing incoming traffic, initial 

congestion (or quick accumulation of packets) shall take place 

first at the node with Bmax. The results conform to the 

theoretical analysis provided in [17].  
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B. o(k), τ(k)  vs. λ 

Performance comparison among the networks is shown in Fig. 

3 in terms of throughput o(k) and average packet delay τ(k). 

Based on network performance, three network states are 

classified: traffic free flow state, moderate congestion state, 

and heavy congestion state. 

   As stated in previous section, when
c  , a network is said 

to be in traffic free flow state.  From Fig. 3 (a), we observe 

that in this sate, all the networks perform the same in terms of 

throughput (throughput increases linearly with λ.), but not so 

in terms of average packet delay. In traffic free flow state, 

from 


N
k

kn


)(

)( , we obtain



N

kn
k

)(
)(  . Since n(k) depends on 

the average path length of a network, the average packet delay 

τ(k) also depends on the average path length <D> of the 

network. Our simulation results show that the SF network has 

the lowest τ(k) because it has the shortest average path length. 

Therefore, in traffic free flow state, the average path length 

plays a major role in network performance. 

When λ exceeds the critical point λc, congestion happens 

because packets start to accumulate in the network. When

c  , Fig. 3 (a) shows that with continuous increase in λ, 

the increase in throughput becomes slower. We say that a 

network is in moderate congestion state. With further increase 

in λ, if the throughput starts to decrease, we say that the 

network has entered into heavy congestion state.  
 

 
(a) o(k) vs. λ 

 
(b) τ(k) vs. λ 

Fig. 3 Performance comparison among the networks (k = 2000) 

From Fig. 3, we find that the SF network is the first that 

enters into moderate congestion state, during which the 

increase in throughput slows down, and its average packet 

delay starts to increase very quickly. Compared to the others, 

the performance of the SF network is the worst. The reason 

lies in its most heterogeneous structure (largest π). In the SF 

network, huge amount of packets start to accumulate at one or 

several nodes of extremely high betweenness values when 

many other nodes are idle (or do not have enough packets to 

send). A similar phenomenon is observed in the random ER 

network in moderate congestion state, but the random ER 

network performs much better than the scale-free network 

because of its much smaller polarization value π. According to 

the same reasoning, we find that both the RL network and the 

SL network achieve higher throughput and lower delay than 

the other two because of their much lower polarization value 

π. However, Fig. 3 shows that with just a little increase in λ, 

they quickly enter into heavy congestion state. We find that 

even though in moderate congestion state, congestion happens 

at only a few nodes, the performance of a network depends 

heavily on the traffic load distribution. The less the value of 

network polarization is, the more homogeneous (in terms of 

node betweenness distribution) a network is, the more 

balanced the traffic load is distributed; therefore, the better the 

network performs. For the RL and SL networks, their almost 

uniform node betweenness distribution results in more 

balanced traffic load distribution among all the nodes so that 

many packets are delivered successfully. Therefore, we may 

say that in moderate congestion state when traffic is not yet 

very heavy, network performance strongly relates to network 

polarization. 

When λ increases beyond a specific value (this value is 

different for different networks), the networks enter into heavy 

congestion state. In this state, network throughput starts to 

decrease. For the SF network and the random network, 

because of their heterogeneous structure (large π), most traffic 

is jammed at more nodes of high betweenness values, only a 

small amount of traffic bypassing those congested nodes can 

still be delivered successfully. However, compared to the SF 

network, the performance of the random network is much 

better because the random network is relatively less 

heterogeneous (relatively smaller π). For the RL network and 

the SL network, their structures are more homogeneous. 

However, since the incoming traffic becomes very heavy, their 

very long average path length and high average betweenness 

value causes huge amount of internal traffic. In addition, since 

their node betweenness distribution is almost uniform, almost 

all the nodes are congested (few packets can be delivered 

successfully). Compared to the RL network, the SL network 

performs better because of its relatively shorter average path 

length and lower betweenness values. Therefore, in heavy 

congestion state, both average path length and node 

betweenness distribution play important roles in network 

performance. 

     The above analysis is verified by our observation on the 

changes in queue length (total number of packets in a queue) 

through simulation. In traffic free flow state (we choose λ = 
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0.05), most queues in all the networks are almost empty. In 

moderate congestion state (we choose λ = 0.13), most queues 

in the RL network contain several packets, a few queues 

contain several tens of packets, and the length of one queue 

exceeds one hundred packets. It is similar for the SL network. 

Most queues in the random network are almost empty, but the 

queues at a few nodes of high betweenness values contain 

hundreds of packets. Similar to the random network, most 

queues in the SF network are almost empty, but two queues at 

two nodes of extremely high betweenness values contain 

thousands of packets respectively. In heavy congestion state (a 

different λ is chosen for each network), for the RL network, 

the whole network is congested (most queues contain several 

tens of packets, a few queues contain even hundreds of 

packets). It is similar to the SL network. While for the random 

network and the SF network, more than half of the queues are 

still almost empty, more nodes of high betweenness values are 

heavily congested. Interestingly, we find that no matter what 

the structure of the underlying network is, congestion always 

takes place when a large number of packets start to 

accumulate at a few nodes. 

IV. CONCLUSIONS 

We have investigated how internal traffic, throughput, and 

average packet delay change as a function of incoming traffic 

in networks of different structures. Three network states have 

been classified: traffic free flow state, moderate congestion 

state, and heavy congestion state. Network performance has 

been measured and compared in terms of throughput and 

average packet delay. Under fixed shortest path routing, node 

betweenness, network polarization, and average path length all 

play important roles in different states of the underlying 

networks. In traffic free flow state, average path length plays 

the major role; it directly affects average packet delay. In 

moderate congestion state and heavy congestion state, both 

average path length and node betweenness distribution play 

important roles in network performance. Based on our 

investigation, an optimal network structure should have short 

average path length (which results in less total internal traffic), 

and small network polarization π (which leads to more 

balanced traffic load distribution). 
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