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Abstract—This paper addresses the problem of evaluating the 

communication behavior of embedded systems. An important 

problem is missing, wrong or incomplete specification for the 

interaction in the distributed system. In this paper, a new 

approach for evaluating the communication behavior based on 

reference traces is introduced. The benefit of the approach is that 

it works automatically, with low additional effort and without 

using any specification. The introduced methodology uses 

algorithms from the field of machine learning to extract behavior 

models out of a reference trace. With the presented algorithm, 

the complexity of the learning problem can be reduced 

significantly by identifying parallel execution paths. The 

efficiency of the proposed algorithm is evaluated with real vehicle 

network data. At this data the self-learning algorithm covers up 

to 69% of the behavior from the presented trace.  

Keywords—embedded system validation, testing 

procedures,network trace analysis, self-learning test methods  

I.  INTRODUCTION  

This paper focuses on test and validation of the 
communication behavior from embedded systems. In systems 
with highly distributed functionality like it can be found in 
modern car’s electronics, the communication behavior is an 
important aspect on system validation. At a cars development 
cycle, it is important to analyze the network traffic in a fully 
assembled car. Even if all single electronic control units are 
tested exhaustively, a significant portion of remaining bugs 
resulting in errors or malfunction is lately found at real driving 
tests. Because network traffic represents the internal behavior 
of a distributed system, its analysis can help to detect possible 
bugs earlier and faster. But especially on system level test it is 
not easy to rate about the correctness of communication at the 
network.  

The most important problem of ensuring the correct 
interaction at system level is missing, wrong or incomplete 
specification of the interaction of functions in the distributed 
system (compare [1] and [2]). There are many works of 
research in progress that tries to improve the process of 
creating system specification, with the goal of building better 
test cases for validating the communication on system level. 
Nevertheless it is still an extensive process to get sufficient test 
models.  

In this paper, a new approach for evaluating the 
communication behavior automatically, with low additional 
effort and without using any specification will be presented. 
The goal is to detect problems early, best before detectable 
errors or malfunctioning occurs. The proposed approach shall 
help to detect these remaining bugs faster without a significant 
increasing of testing effort.  

This paper is structured as follows. Section II gives a short 
overview of the state of the art and the gaps that the proposed 
approach addresses. Section III describes the expected usage, 
benefit and outcome of the approach. Section IV provides the 
technical background of the learning problem. In Section V, 
the methodology for identifying parallel execution paths in 
traces is discussed an evaluated and Section VI offers an 
optimization. The paper closes with section VII that presents 
the conclusion and future work. 

II. OVERVIEW AND RELATED WORK 

The car’s network can be seen as a closed but distributed 
system. The network behavior mostly depends on sensors and 
actors and its input or output, which results from different 
environment or user interaction. Therefore, in the most cases it 
is only possible to observe the communication behavior. 
Because of the nature of a closed system, it is not possible to 
stimulate a behavior on network level and evaluate the 
response. To rate about the correctness of network 
communication it is necessary to build more or less passive 
observer models. To build such models it is important to have a 
detailed description or specification of the communication 
protocols between the applications. In difference to well-
known protocols like TCP/IP, this is a kind of meta 
communication protocols because they are mostly not noticed 
as a protocol. In [3], meta states that a communicating systems 
can internally take place, are described and it is pointed out that 
this meta states are often the cause of malfunction because they 
are mostly not known.  

Basically, it did not surprise that one of the main causes of 
malfunctions detected at system level test is wrong, incomplete 
or missing specification (compare [1] and [2]). Therefore, the 
focus of most research projects working on testing network 
behavior is to enhance the specification. The key aspects in 
research are requirement engineering and its interaction with 
test methods. For this reason a popular approach is to use 
additional description languages to describe the systems 
behavior more accurate and build better test cases([4, 5]). 
Another approach for getting better specification is the 
automatic update of specification from already developed 
systems ([6, 7]). This shall help to get the specification up-to-
date and provides the tester an overview about yet not specified 
behavior. Obviously, this approach stands in contradiction to 
top down software engineering methods like the 
V-Model ([8]), which is very popular in embedded systems 
development. Nevertheless incomplete specification is an 
unavoidable problem in software engineering and because of 
this reason nearly all methods that help to close this gap, will 
enhance software quality.  
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In this background, the focus of the proposed method 
within this paper, is the analysis of network communication 
without the need of specification as it is described in [9]. The 
communication is recorded within a trace which can be 
analyzed offline. Therefore, a trace represents all data observed 
in the network within a given time. The proposed method 
basically uses reference traces as replacement for missing 
specification. A reference trace represents the allowed behavior 
or the possible states a system can take place at the surrounding 
influences provided to the system at recording time. If the 
reference trace represents most of the possible behavior of the 
system, it could be interpreted as the normal or norm behavior. 
This comes close to the idea to use examples as specification 
like it is described in [10], but differs in the kind the 
specification is represented. 

III. EXPECTED OUTCOME 

The goal of this work is to construct a method that allows a 
qualitative comparison between the reference trace and newly 
recorded traces with respect to the represented system 
behavior. The essential outcome of the proposed procedure is 
the awareness, that the newly recorded network trace 
represents a new system behavior, which is not represented 
within the reference trace. If such a behavior is recognized, the 
method outputs a trigger or some equivalent information to the 
tester. At this point two potential expectations about the tested 
network behavior can be made: 1) A newly implemented or 
just jet not observed behavior was found, or 2) A bug in in 
communication behavior is detected. Just at this point a system 
expert has to decide if the proposed method detects case 1) or 
2). Surely it is not possible to detect bugs, which are already 
within the reference trace included, but if no other tests detect 
these bugs und these bugs did not lead to malfunction, it is not 
sure if it is a bug or just unspecified behavior.  

The described scenario has some analogy to regression 
tests. But at system test level, regression tests are usually not 
interpreted or executed on network level. On network level it is 
only possible to observe some kind of internal system reaction 
as consequence to external test stimuli. The internal behavior 
represented within a network trace is hard to interpret. As 
mentioned before, this is mostly done by using passive 
reference models ([11, 12]). Because these models are hard to 
build, in many cases only search of negative examples is done 
on the network trace. This is mostly a search of error codes or 
bad sequences, which are known from previous bugs.  

With the proposed method a kind of reference model shall 
be extracted from the reference trace. In comparison to 
manually build reference models this method comes for free 
and can be applied without any specification. Therefore, the 
proposed method shall help to improve the evaluation of 
network communication at system tests.  

IV. THE LEARNING PROBLEM 

This section describes the algorithmic foundations and the 
basic functioning of the proposed self-learning trace analyzing 
approach. The goal of the approach is the qualitative evaluation 
of network traces, with the focus on interpreting the sequence 
of observed events. It was pointed out above that such 
sequences can be potentially described by protocol automata 

which are finite state machines. This leads to the basic 
assumption that a network trace can be described by one or 
more finite state machines. According to the intention of 
learning reference models, it is only needed to accept the trace 
and not to generate it. So, one can use the definition of a 5-
tupel acceptor automaton for describing the network trace: 

                 

Where:   is the input alphabet consisting from events    , 
  a finite set of non-empty-states,    is the initial state with 
       ,   as state transition function with :             and 
  the set of final states     . 

It can be pointed out, that a state in   is represented by a 
sequence of events     with            and    . 
This means that the a learned reference model must predict for 
any given sequence            the next event     . This 
can be repeated in an unlimited manner that     , which 
means that a sequence is potentially endless. 

Another important expectation about the network behavior 
results from the paradigm of parallelism in distributed systems 
([13]). This results in the expectation that there exist several 
independent automata    with disjoint input alphabets. A trace 
would then be observable by an automata   , which is a 
product of all automata     

                 

with        (non overlapping alphabets) 

These assumptions describe a basically system hypothesis 
for the network trace. With this hypothesis it should be possible 
to describe the learning problem, which is the first step to find 
applicable learning algorithms. If this hypothesis is correct the 
network trace would consist of several sub traces describing the 
execution path of a single automaton     

For learning sequences even if they are infinite long, a lot 
of algorithms can be used. For example neural networks 
([14,15]), Markov chains ([16, 17]) and Angluin Style 
automata learning ([18]) algorithms are usable. It was shown 
that the fundamental problem by applying these learning 
algorithms, is the parallelism resulting from (2). This leads to 
an exponential growing of complexity with the number of 
parallel executed automata. In ([18] this effect was shown by 
using a CAN trace from a cars powertrain.  

With these results it can be pointed out that the major 
problem for learning behavior or reference models, is the 
identification of parallel execution paths within the reference 
trace. If it is possible to extract group off events, where each 
group belongs to an independent executed automata, the 
complexity of the learning problem can be reduced 
exponential.  

V. IDENTIFYING PARALLISM 

The grouping of events can be seen as a clustering problem. 
Clustering means to identifying groups of elements with most 
similar properties. But what are the properties of events 
belonging to the same execution path? It is most likely the 
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property that these events are generated by the same 
automaton. But this property is not directly measurable. 
Because of that, the properties of an event need to be checked 
if they give an advice to that not measurable property.  

There are only two properties of an event that are somehow 
usable for this problem. The first one is the recording time of 
the event and the second one is the information theoretic 
probability of an event. For clustering the usage of these two 
properties is not straight forward. In the following, the usage of 
the recording time within clustering algorithms will be 
introduced. The proposed method basically interprets the 
timestamp by applying them to a behavior model and extract 
new features that are more suitable for clustering methods. This 
kind of process is called feature extraction or feature 
construction [19]. 

A. Feature construction based on timestamps 

The absolute value of the timestamp of an event is not 
usable for clustering because a dedicated event can occur 
several times in a trace. But for clustering it is important to 
calculate a distance between two different events. Additionally 
the calculated distance must be related to the problem of 
identifying groups of events that belonging to the same 
execution graphs. To interpret the timestamps in that way, a 
hypothesis of the system is needed, that explains the values of 
the timestamps. For this reason the definition of acceptor 
automata (1) needs to be extended to deal with time. Such 
automata are called timed automata and are invented by [20]. 
Timed automata extend the classical automata with a finite set 
of clocks and the transition function with are enriched with 
guards that control the time when a transition is allowed to be 
executed. A timed automaton    can be defined as follows: 

                    

         are equivalent to (),   is a finite set of clocks, and 
  replaces the transition function  .                     were 
     describes the timing guard.  

This definition is a very general description of timed 
behavior. To use a model of timed automata for feature 
construction it is necessary to made some simplification or 
assumption of a typical use. For this reason it is argued that 
every transition will take place in in a fixed time. Even if there 
is more flexible timing behavior allowed or thinkable, it could 
be expected that in an implementation in most cases a fixed 
timing values will be used.  

With this simplification it is possible to argue about the 
expected timing behavior of a dedicated event. For a 
continuously executed automaton where the transitions add a 
fixed delay between emitted events, it can be expected that the 
delay in a fixed loop is constant. If the automata have different 
ways for an execution loop, different but countable delays 
between the emitting of the same event can be expected. For 
example consider the automaton in Fig. 1, there the time period 
   between two occurrences of event   can be          or 
                        and for event   it can be 
         or                        . For this 
example one can see that there would be a good chance that 
there are time periods of event   and   that are in the range of 

                    . That means that the automaton 
takes sometimes the lower path through event       
before it enters the upper path    .  

Fig. 1. An example of a looped automaton 

If this assumptions are correct, it is supposable that events 
that belonging to the same automaton having same or similar 
frequency components. These frequency components should be 
better usable to calculate a distance between two different 
events. This distance is later usable for clustering reasons.  

B. Calculating the frequency components 

A dedicated event can occur several times within a trace. 
Because of this, an event is located in time. It describes more 
or less a signal function with different frequencies (see Fig. 2). 
To get the main frequency components out of the signal curve 
the most common algorithm to use is the Fourier 
transformation.  

Fig. 2. Signal characteristic of a dedicated event 

After applying the Fourier transformation to the signal 
curve, the result looks like the chart in Fig. 3. Basically after 
applying the Matlab function “findpeaks” several times, until 
less than 10 frequency components are left, the results looks 
like in Fig. 4. In the next steps these frequency components are 
used for calculating a distance between different events. 

C. Distance metrics 

For clustering a simple density based hierarchical clustering 
method is used. To get good clustering results the usage of the 
right distance metric is essential. For this reason four different 
metrics are tested within the evaluation.  

The well-known distance metrics Euclidian, Manhattan and 
the Hamming distances are used for a first analysis. The 
definitions of this metrics are as follows:  

 Euclidian distance 

          √∑                   
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 Manhattan distance 

         ∑                  
       

   
 

 Hamming distance 

    ∑                                   

Fig. 3. Unfiltered frequency spectrum 

Fig. 4. Filtered frequency spectrum with only 7 main frequencies 

It was mentioned before, that if two different events has 
one equal frequency component the probability that this two 
events belonging to the same automaton is very high. Because 
of this, a new distance metric is introduced and will be called in 
the next frequency distance.  

This new metric is derived from the hamming distance. The 
difference to the hamming distance is that it does not care 
about the ordering of the points that are to be compared. 
Because for the proposed problem mainly the equality of 
frequency components is important, not it’s ordering. 

 Definition of frequency distance 

                                     

With                  ∑  |               |    and     

            

D. Evaluation Criteria 

To interpret the clustering results in the manner of 
identifying parallel execution graphs within a trace, it is 

important have an evaluation procedure. This helps to rate if 
the events in one group are belonging to the same execution 
graph.  

As mentioned before the assumption of clustering is, that if 
events belonging to the same execution graph, they should be 
generated by the same protocol automaton. It was also shown, 
that if an automaton is constructed from events that belonging 
to different independent automata, the resulting automaton has 
a significant greater complexity. This is because of the 
exponential growing of possible states, if two or more 
independent automata are merged to one automaton. This 
behavior is called the product of automata (2). 

If it would be possible to build an automaton, which 
describes the behavior of a group of events, the complexity of 
the build automaton should correlate to the quality of the 
clustering results. The fewer the complexity of the automata, 
the better the clustering results are.  

A good starting point for such a rating mechanism would 
be the L* algorithm introduced by [21]. This algorithm 
constructs the smallest automaton describing a given set of 
sequences. It was shown in [18] that this algorithm can be 
applied to the given problem were the sequences are located 
within a trace. On the first glance one would calculate the 
complexity from the structure of the inferred automaton. But 
[18] has furthermore shown, that if L* can learn an automaton 
with a tested sequence length larger than five events within a 
short time, the resulting automaton will be less complex.  

With this background, the evaluation of the clustered event 
groups is done by applying the L* algorithm. If the algorithm 
learns an automaton, which can be tested successfully with a 
test length greater than five events, within a time frame of three 
minutes, a good event group is argued. A good event group 
means its events are not generated by independent automata 
and therefore, the describing automaton of the event group is 
minimal. 

E. Example Application 

For proofing the described method of learning behavior 
models from network traces by identifying parallel execution 
paths an example with real network data is provided. The 
network data are recorded at a cars powertrain CAN network 
within real road tests. The example application takes a 
reference trace of approximately 13 min driving time.  

From this reference trace all discrete events are extracted. A 
discrete event is represented by discrete signals. That means no 
measurement values like speed, temperature or similar 
continues information are used. Discrete events are most likely 
internal states like the engine status, discrete input values like 
the position of light or blinker levers and internal protocol 
values of interfaces. Because on CAN usually most 
information are sent periodically, duplicated send events are 
explicitly filtered.  

After the preprocessing the CAN-trace, approximately 7500 
different events are detected. Afterwards events are deleted that 
occur less than two times. From the resulting 7170 different 
events the frequency components were calculated. The overall 
quantity of events in the reference trace is about 2.4 10

6
 events. 
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The count of events containing to one cluster was limited to 
127 events, because the implementation of the L* can only 
handle that amount of events per automaton. This is not 
necessary a limitation because in [18] it was shown that the 
performance of L* drops rapidly with more than 100 events.  

F. Discussion of results from sample application 

In TABLE I, the count of resulting clusters by applying the 
different distance metrics are shown. It can be seen that for the 
given example, a range of 400 to 700 clusters per metric are 
identified.  

The results from the evaluation of the identified clusters 
with the L* algorithm are shown in TABLE II. As result the 
highest percentage of the identified clusters that can be inferred 
to valid automata with L*, offers the frequency distance with 
73%. The most dedicated events describe by inferred automata 
was reached with the Manhattan distance with 46%. Even the 
coverage of the trace is best with Manhattan distance.  

These results could be rated as success. In [18] a hand 
sorted list of events that describe less than 30% of the trace 
were used to learn an automaton. The learning process for this 
set of events was even not successful. With the usage of the 
Manhattan distance it is possible to describe about 49% of the 
behavior of the trace without any prior knowledge about 
dependencies of events.  

TABLE I.  CLUSTERING RESULTS BEFORE EVALUATION 

Distance 

metric 

Results from different distance metrics 

Count of clusters Events per cluster 

Frequency 694 9,7 

Euclidian 422 16,4 

Manhattan  469 14,7 

Hamming  570 12,6 

Sum 2155 12,9 

Within an additionally executed test, with randomly created 
clusters, the learning rate of successfully inferred automata was 
less than 4%. This leads to the expectation that the proposed 
clustering methodology gets a significant improvement for 
learnability of network traces with L* algorithm.  

VI. IMPROVING TRACE COVERAGE 

The presented clustering method extracts non overlapping 
events groups from a given set of events. From this event 
groups only these are usable, that lead to a learnable automaton 
by L*. For describing the system behavior represented within a 
trace, the description would be that better the more parts of the 
trace are considered to be used.  

TABLE II.  CLUSTERING RESULTS AFTER EVALUATION WITH L* 

 
Results from different distance metrics 

Frequency Euclidian Manhattan Hamming 

Cluster successfully 

learned automaton  

(percentage of found 
clusters) 

506 

(73 %) 

254 

(60 %) 

295 

(61 %) 

316 

(55 %) 

Ratio of successful 

clustered single events  
(abseolute count) 

37 % 

(2,689) 

40 % 

(2,883) 

46 % 

(3,298) 

37 % 

(2,676) 

Ratio of event quantity 

(trace covery) 
(abseolute count of 

events) 

27 % 
(678,820) 

36 % 
(917,442) 

49 % 
(1,259,452) 

32 % 
(805,294) 

Additionally, there is no strict requirement that the groups 
of events need not to overlap with each other. It would be quite 
the contrary if there are overlapping groups usable. Because it 
could be suggested, that clustering did not lead to a perfect 
separation in the sense of (2), the clusters will most likely 
describe only parts of independent automata. If there are 
overlapping event groups the merging of this group will lead to 
an automaton with describes a more complex but no parallel 
execution graphs.  

This consideration leads to the conclusion that all identified 
clusters shall be used for describing the systems behavior. For 
that reason the results from the former clustering results are 
merged. The merge in that case is basically done by 
interpreting the learning results of L* from all clustering 
approaches. Like it is shown in Fig. 5, the different event 
groups resulting from clustering are overlapping. For the merge 
it should not be necessary to build new event groups and infer 
new automata. Instead the different sets are analyzed and the 
union set of all identified groups is calculated.  

Fig. 5. Combining different clustering results 
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TABLE III.  COVERAGE WITH MERGED CLUSTERS 

 
Results from combining the clustering 

results from Frequency, Euclidian, 

Manhattan and Hamming distance 

Union set of dedicated events 

coverd 

(abseloute count) 

69 % 
(4,981) 

Union set of trace covered 

(abseloute count) 

65 % 

(1,664,373) 

A. Discussion of results 

One can see in TABLE III. that the union set of all covered 
events in relation to the total amount of events increases from 
46% at Hamming distance to 69% for the union set of all 
clustering results. Also the coverage of the trace increases from 
49% to 65%. As a result of combination of different clustering 
approaches the behavior of one single event will be described 
with more than one automaton. The mapping of events to 
automata is over-determined. One dedicated event is now 
mapped to 2.3 automata at average. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, a method for learning behavior models from 
network traces is proposed. These behavior models are the 
foundation for using reference traces to validate network 
communication in distributed embedded systems.  

To enable learning algorithm the problem of high 
complexity within a network trace must be solved. Based on 
the assumption that a trace contains several parallel and 
independent activities, a system hypothesis was formulated. 
With the help of this hypothesis a technique for clustering and 
an evaluation method is derived and evaluated.  

This technique basically uses the timestamps of the events 
and generates frequency components of each dedicated event. 
It was shown that clustering, based on these frequency 
components, produces sufficient results. The inferred automata 
from the L* algorithm helps to evaluate the clustering results 
and provide at the same time the behavior models to compare 
other network traces with the reference trace.  

The next steps in feature work will be an estimation of the 
false positive and false negative rate, when the learned models 
from L* are used to compare the reference trace with other 
network traces. Additionally the concept of merging several 
clustering approaches promises good results and needs to be 
improved. For that reasons it would be a good idea to try some 
completely different clustering technics, that the union set and 
so and the coverage of events will be increased more efficient. 

Based on a real world example it was shown that it is 
possible to separate a CAN trace in different sub-traces in the 
manner that these sub-traces contain independent execution 
graphs. The proposed methodology covers 69% of the events 
from the example trace. That is in comparison to previous work 
a significant improvement. With respect to the huge amount of 
7,500 dedicated events and a trace length of 2.4 million events 
of the example trace, this is high amount of successfully 
interpreted data. With this results a step ahead to establish an 
unsupervised self-learning approach for validating network 
communication in scenarios were no specification is available. 
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