
Using Reference Traces for Validation of Communication in Embedded Systems

Falk Langer, Erik Oswald

Fraunhofer Institute for Embedded Systems and Communication Technologies ESK

Munich, Germany

Email:{falk.langer,erik.oswald}@esk.fraunhofer.de

Abstract—This paper addresses the problem of evaluating the

communication behavior of embedded systems. An important

problem is missing, wrong or incomplete specification for the

interaction in the distributed system. In this paper, a new

approach for evaluating the communication behavior based on

reference traces is introduced. The benefit of the approach is that

it works automatically, with low additional effort and without

using any specification. The introduced methodology uses

algorithms from the field of machine learning to extract behavior

models out of a reference trace. With the presented algorithm,

the complexity of the learning problem can be reduced

significantly by identifying parallel execution paths. The

efficiency of the proposed algorithm is evaluated with real vehicle

network data. At this data the self-learning algorithm covers up

to 69% of the behavior from the presented trace.

Keywords—embedded system validation, testing

procedures,network trace analysis, self-learning test methods

I. INTRODUCTION

This paper focuses on test and validation of the
communication behavior from embedded systems. In systems
with highly distributed functionality like it can be found in
modern car’s electronics, the communication behavior is an
important aspect on system validation. At a cars development
cycle, it is important to analyze the network traffic in a fully
assembled car. Even if all single electronic control units are
tested exhaustively, a significant portion of remaining bugs
resulting in errors or malfunction is lately found at real driving
tests. Because network traffic represents the internal behavior
of a distributed system, its analysis can help to detect possible
bugs earlier and faster. But especially on system level test it is
not easy to rate about the correctness of communication at the
network.

The most important problem of ensuring the correct
interaction at system level is missing, wrong or incomplete
specification of the interaction of functions in the distributed
system (compare [1] and [2]). There are many works of
research in progress that tries to improve the process of
creating system specification, with the goal of building better
test cases for validating the communication on system level.
Nevertheless it is still an extensive process to get sufficient test
models.

In this paper, a new approach for evaluating the
communication behavior automatically, with low additional
effort and without using any specification will be presented.
The goal is to detect problems early, best before detectable
errors or malfunctioning occurs. The proposed approach shall
help to detect these remaining bugs faster without a significant
increasing of testing effort.

This paper is structured as follows. Section II gives a short
overview of the state of the art and the gaps that the proposed
approach addresses. Section III describes the expected usage,
benefit and outcome of the approach. Section IV provides the
technical background of the learning problem. In Section V,
the methodology for identifying parallel execution paths in
traces is discussed an evaluated and Section VI offers an
optimization. The paper closes with section VII that presents
the conclusion and future work.

II. OVERVIEW AND RELATED WORK

The car’s network can be seen as a closed but distributed
system. The network behavior mostly depends on sensors and
actors and its input or output, which results from different
environment or user interaction. Therefore, in the most cases it
is only possible to observe the communication behavior.
Because of the nature of a closed system, it is not possible to
stimulate a behavior on network level and evaluate the
response. To rate about the correctness of network
communication it is necessary to build more or less passive
observer models. To build such models it is important to have a
detailed description or specification of the communication
protocols between the applications. In difference to well-
known protocols like TCP/IP, this is a kind of meta
communication protocols because they are mostly not noticed
as a protocol. In [3], meta states that a communicating systems
can internally take place, are described and it is pointed out that
this meta states are often the cause of malfunction because they
are mostly not known.

Basically, it did not surprise that one of the main causes of
malfunctions detected at system level test is wrong, incomplete
or missing specification (compare [1] and [2]). Therefore, the
focus of most research projects working on testing network
behavior is to enhance the specification. The key aspects in
research are requirement engineering and its interaction with
test methods. For this reason a popular approach is to use
additional description languages to describe the systems
behavior more accurate and build better test cases([4, 5]).
Another approach for getting better specification is the
automatic update of specification from already developed
systems ([6, 7]). This shall help to get the specification up-to-
date and provides the tester an overview about yet not specified
behavior. Obviously, this approach stands in contradiction to
top down software engineering methods like the
V-Model ([8]), which is very popular in embedded systems
development. Nevertheless incomplete specification is an
unavoidable problem in software engineering and because of
this reason nearly all methods that help to close this gap, will
enhance software quality.

203Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

In this background, the focus of the proposed method
within this paper, is the analysis of network communication
without the need of specification as it is described in [9]. The
communication is recorded within a trace which can be
analyzed offline. Therefore, a trace represents all data observed
in the network within a given time. The proposed method
basically uses reference traces as replacement for missing
specification. A reference trace represents the allowed behavior
or the possible states a system can take place at the surrounding
influences provided to the system at recording time. If the
reference trace represents most of the possible behavior of the
system, it could be interpreted as the normal or norm behavior.
This comes close to the idea to use examples as specification
like it is described in [10], but differs in the kind the
specification is represented.

III. EXPECTED OUTCOME

The goal of this work is to construct a method that allows a
qualitative comparison between the reference trace and newly
recorded traces with respect to the represented system
behavior. The essential outcome of the proposed procedure is
the awareness, that the newly recorded network trace
represents a new system behavior, which is not represented
within the reference trace. If such a behavior is recognized, the
method outputs a trigger or some equivalent information to the
tester. At this point two potential expectations about the tested
network behavior can be made: 1) A newly implemented or
just jet not observed behavior was found, or 2) A bug in in
communication behavior is detected. Just at this point a system
expert has to decide if the proposed method detects case 1) or
2). Surely it is not possible to detect bugs, which are already
within the reference trace included, but if no other tests detect
these bugs und these bugs did not lead to malfunction, it is not
sure if it is a bug or just unspecified behavior.

The described scenario has some analogy to regression
tests. But at system test level, regression tests are usually not
interpreted or executed on network level. On network level it is
only possible to observe some kind of internal system reaction
as consequence to external test stimuli. The internal behavior
represented within a network trace is hard to interpret. As
mentioned before, this is mostly done by using passive
reference models ([11, 12]). Because these models are hard to
build, in many cases only search of negative examples is done
on the network trace. This is mostly a search of error codes or
bad sequences, which are known from previous bugs.

With the proposed method a kind of reference model shall
be extracted from the reference trace. In comparison to
manually build reference models this method comes for free
and can be applied without any specification. Therefore, the
proposed method shall help to improve the evaluation of
network communication at system tests.

IV. THE LEARNING PROBLEM

This section describes the algorithmic foundations and the
basic functioning of the proposed self-learning trace analyzing
approach. The goal of the approach is the qualitative evaluation
of network traces, with the focus on interpreting the sequence
of observed events. It was pointed out above that such
sequences can be potentially described by protocol automata

which are finite state machines. This leads to the basic
assumption that a network trace can be described by one or
more finite state machines. According to the intention of
learning reference models, it is only needed to accept the trace
and not to generate it. So, one can use the definition of a 5-
tupel acceptor automaton for describing the network trace:

Where: is the input alphabet consisting from events ,
 a finite set of non-empty-states, is the initial state with
 , as state transition function with : and
 the set of final states .

It can be pointed out, that a state in is represented by a
sequence of events with and .
This means that the a learned reference model must predict for
any given sequence the next event . This
can be repeated in an unlimited manner that , which
means that a sequence is potentially endless.

Another important expectation about the network behavior
results from the paradigm of parallelism in distributed systems
([13]). This results in the expectation that there exist several
independent automata with disjoint input alphabets. A trace
would then be observable by an automata , which is a
product of all automata

with (non overlapping alphabets)

These assumptions describe a basically system hypothesis
for the network trace. With this hypothesis it should be possible
to describe the learning problem, which is the first step to find
applicable learning algorithms. If this hypothesis is correct the
network trace would consist of several sub traces describing the
execution path of a single automaton

For learning sequences even if they are infinite long, a lot
of algorithms can be used. For example neural networks
([14,15]), Markov chains ([16, 17]) and Angluin Style
automata learning ([18]) algorithms are usable. It was shown
that the fundamental problem by applying these learning
algorithms, is the parallelism resulting from (2). This leads to
an exponential growing of complexity with the number of
parallel executed automata. In ([18] this effect was shown by
using a CAN trace from a cars powertrain.

With these results it can be pointed out that the major
problem for learning behavior or reference models, is the
identification of parallel execution paths within the reference
trace. If it is possible to extract group off events, where each
group belongs to an independent executed automata, the
complexity of the learning problem can be reduced
exponential.

V. IDENTIFYING PARALLISM

The grouping of events can be seen as a clustering problem.
Clustering means to identifying groups of elements with most
similar properties. But what are the properties of events
belonging to the same execution path? It is most likely the

204Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

property that these events are generated by the same
automaton. But this property is not directly measurable.
Because of that, the properties of an event need to be checked
if they give an advice to that not measurable property.

There are only two properties of an event that are somehow
usable for this problem. The first one is the recording time of
the event and the second one is the information theoretic
probability of an event. For clustering the usage of these two
properties is not straight forward. In the following, the usage of
the recording time within clustering algorithms will be
introduced. The proposed method basically interprets the
timestamp by applying them to a behavior model and extract
new features that are more suitable for clustering methods. This
kind of process is called feature extraction or feature
construction [19].

A. Feature construction based on timestamps

The absolute value of the timestamp of an event is not
usable for clustering because a dedicated event can occur
several times in a trace. But for clustering it is important to
calculate a distance between two different events. Additionally
the calculated distance must be related to the problem of
identifying groups of events that belonging to the same
execution graphs. To interpret the timestamps in that way, a
hypothesis of the system is needed, that explains the values of
the timestamps. For this reason the definition of acceptor
automata (1) needs to be extended to deal with time. Such
automata are called timed automata and are invented by [20].
Timed automata extend the classical automata with a finite set
of clocks and the transition function with are enriched with
guards that control the time when a transition is allowed to be
executed. A timed automaton can be defined as follows:

 are equivalent to (), is a finite set of clocks, and
 replaces the transition function . were
 describes the timing guard.

This definition is a very general description of timed
behavior. To use a model of timed automata for feature
construction it is necessary to made some simplification or
assumption of a typical use. For this reason it is argued that
every transition will take place in in a fixed time. Even if there
is more flexible timing behavior allowed or thinkable, it could
be expected that in an implementation in most cases a fixed
timing values will be used.

With this simplification it is possible to argue about the
expected timing behavior of a dedicated event. For a
continuously executed automaton where the transitions add a
fixed delay between emitted events, it can be expected that the
delay in a fixed loop is constant. If the automata have different
ways for an execution loop, different but countable delays
between the emitting of the same event can be expected. For
example consider the automaton in Fig. 1, there the time period
 between two occurrences of event can be or
 and for event it can be
 or . For this
example one can see that there would be a good chance that
there are time periods of event and that are in the range of

 . That means that the automaton
takes sometimes the lower path through event
before it enters the upper path .

Fig. 1. An example of a looped automaton

If this assumptions are correct, it is supposable that events
that belonging to the same automaton having same or similar
frequency components. These frequency components should be
better usable to calculate a distance between two different
events. This distance is later usable for clustering reasons.

B. Calculating the frequency components

A dedicated event can occur several times within a trace.
Because of this, an event is located in time. It describes more
or less a signal function with different frequencies (see Fig. 2).
To get the main frequency components out of the signal curve
the most common algorithm to use is the Fourier
transformation.

Fig. 2. Signal characteristic of a dedicated event

After applying the Fourier transformation to the signal
curve, the result looks like the chart in Fig. 3. Basically after
applying the Matlab function “findpeaks” several times, until
less than 10 frequency components are left, the results looks
like in Fig. 4. In the next steps these frequency components are
used for calculating a distance between different events.

C. Distance metrics

For clustering a simple density based hierarchical clustering
method is used. To get good clustering results the usage of the
right distance metric is essential. For this reason four different
metrics are tested within the evaluation.

The well-known distance metrics Euclidian, Manhattan and
the Hamming distances are used for a first analysis. The
definitions of this metrics are as follows:

 Euclidian distance

 √∑

205Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

 Manhattan distance

 ∑

 Hamming distance

 ∑

Fig. 3. Unfiltered frequency spectrum

Fig. 4. Filtered frequency spectrum with only 7 main frequencies

It was mentioned before, that if two different events has
one equal frequency component the probability that this two
events belonging to the same automaton is very high. Because
of this, a new distance metric is introduced and will be called in
the next frequency distance.

This new metric is derived from the hamming distance. The
difference to the hamming distance is that it does not care
about the ordering of the points that are to be compared.
Because for the proposed problem mainly the equality of
frequency components is important, not it’s ordering.

 Definition of frequency distance

With ∑ | | and

D. Evaluation Criteria

To interpret the clustering results in the manner of
identifying parallel execution graphs within a trace, it is

important have an evaluation procedure. This helps to rate if
the events in one group are belonging to the same execution
graph.

As mentioned before the assumption of clustering is, that if
events belonging to the same execution graph, they should be
generated by the same protocol automaton. It was also shown,
that if an automaton is constructed from events that belonging
to different independent automata, the resulting automaton has
a significant greater complexity. This is because of the
exponential growing of possible states, if two or more
independent automata are merged to one automaton. This
behavior is called the product of automata (2).

If it would be possible to build an automaton, which
describes the behavior of a group of events, the complexity of
the build automaton should correlate to the quality of the
clustering results. The fewer the complexity of the automata,
the better the clustering results are.

A good starting point for such a rating mechanism would
be the L* algorithm introduced by [21]. This algorithm
constructs the smallest automaton describing a given set of
sequences. It was shown in [18] that this algorithm can be
applied to the given problem were the sequences are located
within a trace. On the first glance one would calculate the
complexity from the structure of the inferred automaton. But
[18] has furthermore shown, that if L* can learn an automaton
with a tested sequence length larger than five events within a
short time, the resulting automaton will be less complex.

With this background, the evaluation of the clustered event
groups is done by applying the L* algorithm. If the algorithm
learns an automaton, which can be tested successfully with a
test length greater than five events, within a time frame of three
minutes, a good event group is argued. A good event group
means its events are not generated by independent automata
and therefore, the describing automaton of the event group is
minimal.

E. Example Application

For proofing the described method of learning behavior
models from network traces by identifying parallel execution
paths an example with real network data is provided. The
network data are recorded at a cars powertrain CAN network
within real road tests. The example application takes a
reference trace of approximately 13 min driving time.

From this reference trace all discrete events are extracted. A
discrete event is represented by discrete signals. That means no
measurement values like speed, temperature or similar
continues information are used. Discrete events are most likely
internal states like the engine status, discrete input values like
the position of light or blinker levers and internal protocol
values of interfaces. Because on CAN usually most
information are sent periodically, duplicated send events are
explicitly filtered.

After the preprocessing the CAN-trace, approximately 7500
different events are detected. Afterwards events are deleted that
occur less than two times. From the resulting 7170 different
events the frequency components were calculated. The overall
quantity of events in the reference trace is about 2.4 10

6
 events.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hz

|c
n
|

206Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

The count of events containing to one cluster was limited to
127 events, because the implementation of the L* can only
handle that amount of events per automaton. This is not
necessary a limitation because in [18] it was shown that the
performance of L* drops rapidly with more than 100 events.

F. Discussion of results from sample application

In TABLE I, the count of resulting clusters by applying the
different distance metrics are shown. It can be seen that for the
given example, a range of 400 to 700 clusters per metric are
identified.

The results from the evaluation of the identified clusters
with the L* algorithm are shown in TABLE II. As result the
highest percentage of the identified clusters that can be inferred
to valid automata with L*, offers the frequency distance with
73%. The most dedicated events describe by inferred automata
was reached with the Manhattan distance with 46%. Even the
coverage of the trace is best with Manhattan distance.

These results could be rated as success. In [18] a hand
sorted list of events that describe less than 30% of the trace
were used to learn an automaton. The learning process for this
set of events was even not successful. With the usage of the
Manhattan distance it is possible to describe about 49% of the
behavior of the trace without any prior knowledge about
dependencies of events.

TABLE I. CLUSTERING RESULTS BEFORE EVALUATION

Distance

metric

Results from different distance metrics

Count of clusters Events per cluster

Frequency 694 9,7

Euclidian 422 16,4

Manhattan 469 14,7

Hamming 570 12,6

Sum 2155 12,9

Within an additionally executed test, with randomly created
clusters, the learning rate of successfully inferred automata was
less than 4%. This leads to the expectation that the proposed
clustering methodology gets a significant improvement for
learnability of network traces with L* algorithm.

VI. IMPROVING TRACE COVERAGE

The presented clustering method extracts non overlapping
events groups from a given set of events. From this event
groups only these are usable, that lead to a learnable automaton
by L*. For describing the system behavior represented within a
trace, the description would be that better the more parts of the
trace are considered to be used.

TABLE II. CLUSTERING RESULTS AFTER EVALUATION WITH L*

Results from different distance metrics

Frequency Euclidian Manhattan Hamming

Cluster successfully

learned automaton

(percentage of found
clusters)

506

(73 %)

254

(60 %)

295

(61 %)

316

(55 %)

Ratio of successful

clustered single events
(abseolute count)

37 %

(2,689)

40 %

(2,883)

46 %

(3,298)

37 %

(2,676)

Ratio of event quantity

(trace covery)
(abseolute count of

events)

27 %
(678,820)

36 %
(917,442)

49 %
(1,259,452)

32 %
(805,294)

Additionally, there is no strict requirement that the groups
of events need not to overlap with each other. It would be quite
the contrary if there are overlapping groups usable. Because it
could be suggested, that clustering did not lead to a perfect
separation in the sense of (2), the clusters will most likely
describe only parts of independent automata. If there are
overlapping event groups the merging of this group will lead to
an automaton with describes a more complex but no parallel
execution graphs.

This consideration leads to the conclusion that all identified
clusters shall be used for describing the systems behavior. For
that reason the results from the former clustering results are
merged. The merge in that case is basically done by
interpreting the learning results of L* from all clustering
approaches. Like it is shown in Fig. 5, the different event
groups resulting from clustering are overlapping. For the merge
it should not be necessary to build new event groups and infer
new automata. Instead the different sets are analyzed and the
union set of all identified groups is calculated.

Fig. 5. Combining different clustering results

a

b

c

d

e

f

g

h

i

j

k

l

m

n

a

b

c

d

e

f

g

h

i

j

k

l

m

n

C
lu

s
te

ri
n

g
 A

C
lu

s
te

ri
n
g
 B

C
lu

s
te

ri
n
g
 C

C
lu

s
te

ri
n

g
 A

C
lu

s
te

ri
n

g
 B

C
lu

s
te

ri
n

g
 C

A
lp

h
a

b
e

t

all idendified cluster Valid cluster after

evaluation with L*

207Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

TABLE III. COVERAGE WITH MERGED CLUSTERS

Results from combining the clustering

results from Frequency, Euclidian,

Manhattan and Hamming distance

Union set of dedicated events

coverd

(abseloute count)

69 %
(4,981)

Union set of trace covered

(abseloute count)

65 %

(1,664,373)

A. Discussion of results

One can see in TABLE III. that the union set of all covered
events in relation to the total amount of events increases from
46% at Hamming distance to 69% for the union set of all
clustering results. Also the coverage of the trace increases from
49% to 65%. As a result of combination of different clustering
approaches the behavior of one single event will be described
with more than one automaton. The mapping of events to
automata is over-determined. One dedicated event is now
mapped to 2.3 automata at average.

VII. CONCLUSION AND FUTURE WORK

In this paper, a method for learning behavior models from
network traces is proposed. These behavior models are the
foundation for using reference traces to validate network
communication in distributed embedded systems.

To enable learning algorithm the problem of high
complexity within a network trace must be solved. Based on
the assumption that a trace contains several parallel and
independent activities, a system hypothesis was formulated.
With the help of this hypothesis a technique for clustering and
an evaluation method is derived and evaluated.

This technique basically uses the timestamps of the events
and generates frequency components of each dedicated event.
It was shown that clustering, based on these frequency
components, produces sufficient results. The inferred automata
from the L* algorithm helps to evaluate the clustering results
and provide at the same time the behavior models to compare
other network traces with the reference trace.

The next steps in feature work will be an estimation of the
false positive and false negative rate, when the learned models
from L* are used to compare the reference trace with other
network traces. Additionally the concept of merging several
clustering approaches promises good results and needs to be
improved. For that reasons it would be a good idea to try some
completely different clustering technics, that the union set and
so and the coverage of events will be increased more efficient.

Based on a real world example it was shown that it is
possible to separate a CAN trace in different sub-traces in the
manner that these sub-traces contain independent execution
graphs. The proposed methodology covers 69% of the events
from the example trace. That is in comparison to previous work
a significant improvement. With respect to the huge amount of
7,500 dedicated events and a trace length of 2.4 million events
of the example trace, this is high amount of successfully
interpreted data. With this results a step ahead to establish an
unsupervised self-learning approach for validating network
communication in scenarios were no specification is available.

REFERENCES

[1] R. R. Lutz, “Analyzing Software Requirements Errors in Safety-Critical,

Embedded Systems,” in Proceedings of the IEEE International

Symposium on Requirements Engineering, 1993, pp. 126‐133.

[2] R. R. Lutz ,“Requirements Discovery during the Testing of Safety-
Critical Software,” in Proc. 25th Int’l Conf. Software Eng. (ICSE 03),

IEEE CS: Press, 2003, pp. 578‐583.
[3] P. Peti, R. Obermaisser, and H. Kopetz, “Out-of-norm assertions,” in

Real Time and Embedded Technology and Applications Symposium,
2005. RTAS 2005. IEEE, 2005, pp. 280–291.

[4] G. Weiss, M. Zeller, D. Eilers, and R. Knorr, “Approach for iterative

validation of automotive embedded systems,” in Proceedings of the 3rd
International Workshop on Model Based Architecting and Construction

of Embedded Systems, 2010, pp. 69–83.

[5] K. Becker, M. Zeller, and G. Weiss, “Towards Efficient On-line
Schedulability Tests for Adaptive Networked Embedded Real-time

Systems,” in PECCS 2012 - Proceedings of the 2nd International

Conference on Pervasive Embedded Computing and Communication
Systems, Rome, Italy, 24-26 February, 2012: SciTePress, 2012, pp. 440–

449.

[6] O. Grinchtein, B. Jonsson, and M. Leucker, “Learning of event-
recording automata,” in Formal Techniques, Modelling and Analysis of

Timed and Fault-Tolerant Systems: Springer, 2004, pp. 379–395.

[7] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker, “Replaying Play in
and Play out: Synthesis of Design Models from Scenarios by Learning,”

in Proceedings of the 13th International Conference on Tools and

Algorithms for Construction and Analysis of Systems, Braga, Portugal:
Springer, 2007. pp. 435–450.

[8] V-MODELL®XT, “V-Modell-XT Complete 1.2.1.1,” IABG, Oct. 2008.

Available: http://v-modell.iabg.de/dmdocuments/V-Modell-XT-
Complete-1.2.1.1-english.pdf.

[9] F. Langer and C. Prehofer, “Anomaly detection in embedded safety

critical software,” in International Workshop on Principles of Diagnosis
(DX) , 2011, pp. 163–166.

[10] G. Adzic, “Specification by example: How successful teams deliver the

right software.” Shelter Island, N.Y: Manning, 2011.
[11] T. E. Daniels, “A functional reference model of passive systems for

tracing network traffic,” Digital Investigation, vol. 1, no. 1, 2004, pp.

69–81
[12] G. Weiss, D. Eilers, "Device for creating a marked reference data

stream", Germany EP20090015132, June 9, 2010

[13] A. S. Tanenbaum and M. van Steen, “Distributed Systems: Principles
and Paradigms” (2nd Edition), 2nd ed.: Prentice Hall, 2006.

[14] F. A. Gers, J. Schmidhuber, and F. Cummins, “Continual prediction

using LSTM with forget gates,” in Neural Nets WIRN Vietri-99:
Springer, 1999, pp. 133–138.

[15] F. Langer, D. Eilers, and R. Knorr, “Fault Detection in Discrete Event

Based Distributed Systems by Forecasting Message Sequences with
Neural Networks,” in Lecture Notes in Computer Science, KI 2009:

Advances in Artificial Intelligence, B. Mertsching, M. Hund, and Z.

Aziz, Eds.: Springer Berlin / Heidelberg, 2009, pp. 411–418.
[16] S. Jha, K. Tan, and R. A. Maxion, “Markov Chains, Classifiers, and

Intrusion Detection,” in Proceedings of the 14th IEEE Workshop on
Computer Security Foundations, Washington, DC, USA: IEEE

Computer Society, 2001, pp. 206‐219.
[17] R. A. Maxion and K. M. C. Tan, “Anomaly detection in embedded

systems,” Computers, IEEE Transactions on, vol. 51, no. 2, 2002, pp.

108–120
[18] F. Langer, K. Bertulies, and F. Hoffmann, “Self Learning Anomaly

Detection for Embedded Safety Critical Systems,” in Schriftenreihe des

Instituts für Angewandte Informatik, Automatisierungstechnik am
Karlsruher Institut für Technologie: KIT Scientific Publishing, 2011, pp.

31–45.

[19] H. Liu and H. Motoda, “Feature extraction, construction and selection:
A data mining perspective.” Boston: Kluwer Academic, 1998.

[20] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

Computer Science, vol. 126, no. 2, 1994, pp. 183–235.
[21] D. Angluin, “Learning regular sets from queries and counterexamples,”

Information and computation, vol. 75, no. 2, 1987, pp. 87–106.

208Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

