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Abstract—An efficient VLSI architecture for fast spike sorting
is presented in this paper. The architecture is able to perform
feature extraction based on the Generalized Hebbian Algorithm
(GHA). The employment of GHA allows efficient computation of
principal components for subsequent clustering and classification
operations. The hardware implementation of GHA features high
throughput and high classification success rate. The proposed
architecture is implemented by Field Programmable Gate Array
(FPGA). It is embedded in a System-On-Programmable-Chip
(SOPC) platform for performance measurement. Experimental
results show that the proposed architecture is an efficient spike
sorting design with high speed computation for spike trains
corrupted by large noises.

Keywords-Spike Sorting; FPGA; Generalized Hebbian
Algorithm.

I. I NTRODUCTION

Spike sorting [1] is often desired for the design of brain
machine interface (BMI) [2]. It receives spike trains from
extracellular recording systems. Each spike train obtained from
the system is a mixture of the trains from neurons near the
recording electrodes. The goal of spike sorting is to segregate
the spike trains of individual neurons from this mixture. Spike
sorting is a difficult task due to the presence background
noise and the interferences among neurons in a local area.
A typical spike sorting algorithm involves computationally
demanding operations such as feature extraction. One way
to carry out these complex tasks is to deliver spike trains to
external computers. Because the delivery of raw spike trains
requires high bandwidth, wireless transmission may be diffi-
cult. Existing spike sorting systems may therefore be wired,
restraining patients and test subjects from free movement.

Hardware spike sorting is an effective alternative for BMI
applications. It allows the spike sorting to be carried out at the
front-end so that data bandwidth can be reduced for wireless
communication. A common approach for hardware design [3]
is based on Application Specific Integrated Circuits (ASICs). A
major drawback of ASICs is the lack of flexibility for changes.
With the wide range of spike sorting algorithms that already
exist and the continual design and improvement of algorithms,
the ability to easily change a spike sorting system for new algo-
rithms is usually desired. However, the modification in ASIC
is very difficult, especially when chips are implanted in the

Figure 1: The operations of a typical spike sorting system.

brain. In addition, the high Non-Recurring Engineering (NRE)
costs and long design and verification efforts for fabricating
ASICs can severely limit the applicability of emerging BMI
applications. The field programmable gate array (FPGA) is
an effective alternative to ASIC for hardware implementation
with lower NRE costs. Moreover, the circuits in an FPGA are
reconfigurable; thereby providing higher flexibility to a spike
sorting architecture for future extensions.

The objective of this paper is to present an effective FPGA-
based hardware architecture for spike sorting. The architecture
is able to perform online training for feature extraction in
hardware. The feature extraction is based on the generalized
Hebbian algorithm (GHA) [4]. The proposed architecture is
used as a hardware accelerator of a spike sorting system on
a System-On-Programmable-Chip (SOPC) platform for perfor-
mance evaluation. The computation time of spike sorting based
on the SOPC is measured and compared with existing works.
Experimental results reveal that the proposed architecture is
able to perform feature extraction in real time with low
hardware resource consumption.

The remaining parts of this paper are organized as follows:
Section 2 gives a brief review of the spike sorting operations
and the GHA algorithm. Section 3 describes the proposed
GHA architecture. Experimental results are included in Section
4. Finally, the concluding remarks are given in Section 5.

II. PRELIMINARIES

A. Spike Sorting Operations

Figure 1 shows the operations of a typical spike sorting
system, which consists of spike detection, feature extraction
and clustering. The spike detection identifies and aligns spikes
from a noisy spike train. A simple spike detection technique
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Figure 2: The hardware implementation of (10) and (12).

is to perform thresholding based on the absolute value of
spike samples. The feature extraction finds the feature vectors
from the detected spikes. The GHA algorithm has been found
to be an effective technique for feature extraction. Based on
the feature vectors, the final step of the spike detection is
to perform clustering and classification using unsupervised
clustering methods such as the fuzzy c-means (FCM) algorithm
[5]. Detailed discussions of each step can be found in [1].

B. GHA Algorithm

Let

x(n) = [x1(n), . . . , xm(n)]T , n = 1, ..., t, (1)

y(n) = [y1(n), . . . , yp(n)]
T , n = 1, ..., t, (2)

be then-th input and output vectors to the GHA, respectively.
In addition,m, p and t are the vector dimension, the number
of Principal Components (PCs), and the number of input and
output vectors for the GHA, respectively. The output vector
y(n) is related to the input vectorx(n) by

yj(n) =
m∑

i=1

wji(n)xi(n) (3)

where thewji(n) stands for the weight from thei-th synapse
to thej-th neuron at iterationn.

Let

wj(n) = [wj1(n), . . . , wjm(n)]T , j = 1, . . . , p (4)

be thej-th synaptic weight vector. Each synaptic weight vector
wj(n) is adapted by the Hebbian learning rule:

wji(n+1) = wji(n)+η[yj(n)xi(n)−yj(n)

j∑

k=1

wki(n)yk(n)]

(5)
where η denotes the learning rate. Given an input vector
x(n), the GHA algorithm involves the computation ofyj(n)
in (3), and wj(n) in (5) for j = 1, ..., p. After a large
number of iterative computation and adaptation,wj(n) will
asymptotically approach to the eigenvector associated with the
j-th eigenvalueλj of the covariance matrix of input vectors,
whereλ1 > λ2 > · · · > λp. A more detailed discussion of
GHA can be found in [4].

Figure 3: The architecture of each module in the SWU unit.

C. GHA Algorithm for Spike Sorting

The GHA can be used for feature extraction of spikes. To
use GHA for feature extraction, thex(n) in (2) is then-th
spike in the spike train. Therefore, the vector dimensionm is
the number of samples in a spike. Let

wj = [wj1, . . . , wjm]T , j = 1, . . . , p (6)

be the synaptic weight vectors of the GHA after the training
process has completed. Based onwj , j = 1, ..., p, the GHA
feature vector extracted from training vectorx(n) (denoted by
fn) is computed by

fn = [fn,1, ..., fn,p]
T , (7)

where

fn,j =

m∑

i=1

wjixi(n) (8)

be the j-th element offn. The set of feature vectorsF =
{f1, ..., ft} are then for subsequent classification and clustering.

III. PROPOSEDARCHITECTURE

The proposed GHA architecture consists of three functional
units: the memory unit, the synaptic weight updating (SWU)
unit, and the principal components computing (PCC) unit.

A. SWU Unit of GHA

To reduce the complexity of computing implementation,
(5) can be rewritten as

wji(n+1) = wji(n)+ ηyj(n)[xi(n)−

j∑

k=1

wki(n)yk(n)] (9)

The design of SWU unit is based on (9). Although the direct
implementation of (9) is possible, it will consume large hard-
ware resources. One way to reduce the resource consumption
is by observing that (9) can be rewritten as

wji(n+ 1) = wji(n) + ηyj(n)zji(n), (10)

where

zji(n) = xi(n)−

j∑

k=1

wki(n)yk(n), j = 1, . . . , p. (11)
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Figure 4: The GHA circuit form = 64, p = 2, b = 2 and q = 32

and zj(n) = [zj1(n), . . . , zjm(n)]T . The zji(n) can be ob-
tained fromz(j−1)i(n) by

zji(n) = z(j−1)i(n)− wji(n)yj(n), j = 2, . . . , p (12)

Whenj = 1, from (11) and (12), it follows that

z0i(n) = xi(n) (13)

Therefore, the hardware implementation of (10) and (12)
is equivalent to that of (9). Figure 2 depicts the hardware
implementation of (10) and (12). As shown in the figure, the
SWU unit produces one synaptic weight vector at a time.
The computation ofwj(n + 1), the j-th weight vector at
the iterationn + 1, requires thezj−1(n), y(n) and wj(n)
as inputs. In addition towj(n + 1), the SWU unit also
produceszj(n), which will then be used for the computation
of wj+1(n+ 1). Hardware resource consumption can then be
effectively reduced.

One way to implement the SWU unit is to produce
wj(n + 1) and zj(n) in one shot. However,m identical
modules, individually shown in Figure 3, may be required
because the dimension of vectors ism. The area costs of the
SWU unit then grow linearly withm. To further reduce the
area costs, each of the output vectorswj(n+ 1) andzj(n) is
separated intob blocks, where each block containsq elements.
The SWU unit only computes one block ofwj(n + 1) and
zj(n) at a time. Therefore, it will takeb clock cycles to produce
completewj(n+ 1) andzj(n).

B. PCC unit of GHA

The PCC operations are based on (3). Therefore, the
PCC unit of the proposed architecture contains adders and
multipliers. Because the number of multipliers grows with the
vector dimensionm, the direct implementation using (3) may
consume large hardware resources whenm becomes large.
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Similar to the SWU unit, the block based computation is used
for reducing the area costs. In fact, (3) can be rewritten as

yj(n) =

b∑

k=1

q∑

i=1

wj,(k−1)q+i(n)x(k−1)q+i(n). (14)

The implementation of (14) needs onlyq multipliers, aq-input
adder, and an accumulator.

C. Memory Unit of GHA

The memory unit contains four buffers: Buffers A, B, C
and D. Buffer A fetches and stores spikex(n) from the main
memory. Buffer B containszj(n) for the computation in PCC
and SWU units. Buffer C consists of the synaptic weight
vectorswj(n). The feature vectorsf1, ..., ft are stored in Buffer
D. The Buffers A, B and C are shift registers. Buffer D is a
two-port RAM for the subsequent access by the FCM unit.

D. Operations of the GHA unit

In typical spike sorting implementations [8], a spike may
contain 64 samples. In addition, two PCs may suffice for
feature extraction [1]. Therefore, without loss of generality, the
GHA unit for m = 64 (i.e., vector dimension is 64) andp = 2
(i.e., number of PCs is 2) is considered in this subsection. In
the GHA unit, each vector is separated into 2 blocks. Moreover,
the dimension of each block is 32. Therefore, we setb = 2
andq = 32 for the circuit implementation. Figure 4 shows the
resulting GHA circuit form = 64, p = 2, b = 2 andq = 32.
The operations of the GHA circuit can be separated into 4
states, as revealed in Figure 5. The most important operations
of the GHA circuit are the PCC operations in State 3 and
SWU operations in State 4. These two operations are further
elaborated below.

Assume the input vectorx(n) is available in Buffer B.
In addition, thecurrent synaptic weight vectorsw1(n),w2(n)
are stored in the Buffer C. Based onx(n) andw1(n),w2(n)
the PCC unit produces output vectory1(n), y2(n). The com-
putation of yj(n) is separated into two steps. The first
step finds

∑32
i=1 wj,i(n)xi(n). The second step computes∑64

i=33 wj,i(n)xi(n), and then accumulate the result with that
of the previous step to findyj(n). These two steps share the
same circuit in the PCC unit.

Upon the completion of PCC operations, the SWU unit will
be activated in State 4. Usingx(n), yj(n) andwj(n), j = 1, 2,
the SWU unit computes the new synaptic weight vectors
wj(n + 1), j = 1, 2, which are then stored back to Buffer
C for subsequent training. Similar to the computation of
yj(n), the computation ofwj(n + 1) consists of two steps.
The first step computes the first half ofwj(n + 1) (i.e.,
wj,1(n + 1),...,wj,32(n + 1)). The second step calculates the
second half. These two steps also share the same circuit in
the SWU unit. Moreover, the computation ofw1(n+ 1) also
producesz1(n), which is stored back to Buffer B.

After the training process of GHA circuit is completed,
the Buffer C contains the synaptic weight vectorsw1 andw2.
Based on the synaptic weight vectors, the PCC unit can be used
for feature extraction operations. The computation results are
stored in Buffer D as feature vectorsfn, n = 1, ..., t, for the
subsequent FCM clustering operations.

Figure 5: The training operations of the GHA circuit.

E. NOC-based GHA System

The proposed architecture is used as a custom user logic
in an NOC system consisting of softcore NIOS CPU, DMA
controller and on-chip RAM. An NOC is a new platform
for implementing advanced SOCs in an interconnection net-
work strategy, which solves the problems of traditional bus
architecture, such as communication efficiency, latency and
single clock synchronization. In a typical spike sorting system,
delivery of spike signals, feature vectors, and classification
results are required. The NOC therefore is beneficial for
enhancing transmission speed and throughput of the proposed
architecture.

In the NOC system, all the detected spikes are stored in
the on-chip RAM and then transported to the proposed GHA
circuit for feature extraction. The DMA-based training data
delivery is performed so that the memory access overhead can
be minimized. The softcore NIOS CPU coordinates different
components in the NOC. It is responsible for circuit activation
and control. The results of feature extraction are stored in
the memory unit of the GHA circuit for subsequent clustering
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TABLE I: CCRS OF THE PROPOSED ARCHITECTURE FOR THE SPIKE

SORTING WITH DIFFERENTSNR LEVELS.

SNR (dB)

1 2 4 6 8 10

t 1651 1638 1621 1656 1662 1653

c = 2 t̄ 1644 1632 1617 1654 1660 1651

CCR 99.58% 99.63% 99.75% 99.88% 99.88% 99.88%

t 1850 1860 1842 1870 1873 1828

c = 3 t̄ 1571 1672 1737 1791 1812 1769

CCR 84.92% 89.89% 94.30% 95.78% 96.74% 96.77%

operations.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
architecture for spike sorting, the simulator developed in[8] is
adopted to generate extracellular recordings. The simulation
gives access to ground truth about spiking activity in the
recording and thereby facilitates a quantitative assessment
of architecture performance since the features of the spike
trains are known a priori. Various sets of spikes with different
signal-to-noise (SNR) ratios and interference levels havebeen
created by the simulator for our experiments. All the spikes
are recorded with sampling rate 24000 samples/sec. The length
of each spike is 2.67 ms. Therefore, each spike has 64
samples. The dimension of vectors for GHA training therefore
is m = 64. The number of PCs isp = 2 for the circuit design.

We first consider the classification correct rate (CCR) of
the proposed architecture. The CCR for spike sorting is defined
as the number of spikes which are correctly classified by the
total number of spikes. To show the robustness of the proposed
architecture against noise interference, various SNR ratios are
considered, ranging from SNR=1 dB to 10 dB. Table I shows
the resulting CCRs for the spike trains with two target neurons
(c = 2) and three target neurons (c = 3). The duration of the
spike trains is 14 seconds. The spikes extracted from the spike
trains are used for the GHA and FCM training, as well as spike
classification. The total number of spikes used for training
and classification (t), and the number of spikes which are
correctly classified (̄t) are also included in the table. Because
the performance of FCM training may be dependent on the
selection of initial vectors, each CCR value in the table is the
average CCR values of 40 independent executions. From the
table, it can be observed that the proposed architecture is able
to attains CCR above 84 % forc = 3 when SNR=1 dB.

Table II compares the CCRs of the GHA- and PCA- based
spike sorting algorithms. They all use the FCM method for
clustering. It can be observed from the table that the GHA
algorithm has slightly higher CCRs over the PCA for various
SNR levels. The hardware implementation of the PCA may
be difficult because it requires the covariance matrix of input
data. Therefore, the GHA algorithm is well suited for spike
sorting due to its simplicity for hardware design, and its high
CCRs.

To further elaborate the effectiveness of the GHA and FCM
algorithms for spike sorting, Figure 6 shows the distribution of
GHA feature vectors of spikes for SNR=4, and the results of

TABLE II: CCR VALUES OF VARIOUS SPIKE SORTING ALGORITHMS.

SNR (dB)

1 4 6 8 10

GHA 84.92 % 94.30 % 95.78 % 96.74 % 96.77 %

PCA [5] 84.21 % 94.08 % 95.72 % 96.69 % 96.72 %
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Figure 6: The distribution of GHA feature vectors of spikes,and the results
of FCM clustering for SNR=10. (a) Ground truth of neuron spikes, (b)

Clustering results produced by FCM.

FCM clustering. The center of each cluster produced by FCM
are also marked in the figure. By comparing Figure 6.(a) with
Figure 6.(b), we see that the proposed GHA and FCM circuits
are able to correctly separate spikes even for large noises.

The proposed NOC-based spike sorting system features fast
computation. Table III shows the training time of the proposed
GHA system for various clock rates. The design platform for
the experiments is Altera Quartus II with Qsys [9]. The target
FPGA device is Altera Cyclone IV EP4CGX150DF31. The
training time of its software counterpart running on Intel I7
processor is also included in the table for the comparison
purpose. The training set for these experiments consists of800
spikes. The number of epoches for GHA training is 100. It can
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TABLE III: T HE TRAINING T IME OF THE PROPOSEDGHA CIRCUIT FOR VARIOUS CLOCK RATES.

Implementation NOC-based GHA Software GHA

Processor Altera NIOS II Intel I7

Clock Rate 50 MHz 200 MHz 400 MHz 600 MHz 800 MHz 1 GHz 2.61 GHz

GHA (ms) 35.60 8.92 4.46 2.97 2.23 1.78 181.38

TABLE IV: C OMPARISONS OF THEPROPOSEDGHA CIRCUIT WITH OTHER FPGA-BASEDFEATURE EXTRACTION IMPLEMENTATIONS.

Arch. FPGA Logic Cells DSP elements Embedded Max. Clock Throughput

Devices or LEs or Multipliers Bits Rate

Proposed Altera

GHA Cyclone IV

Arch. EP4CGX150 15688 128 63488 1G Hz 4.50 × 107

Xilinx

GHA Arch. Virtex 6

in [6] XC6VSX315T 12610 12 0 100M Hz 1.60 × 106

Xilinx

GHA Arch. Cyclone IV

in [7] EP4CGX150 9144 432 63448 50M Hz 2.75 × 106

be observed from Table III that the propose NOC-based spike
sorting system is able to operate up to 1 GHz clock rate. In
addition, the GHA training time decreases linearly with the
clock rate. When clock rate becomes 1 GHz, the total training
time of the proposed NOC-based spike sorting system is only
1.99 ms. By contrast, the training time of the Intel I7 processor
is 193.18 ms. The speedup of the proposed hardware system
over its software counterpart is therefore 97.08.

In Table IV, we compare the area costs and throughput
of the proposed GHA circuit with those of other FPGA-
based hardware implementations [6], [7] for feature extraction.
The throughput is defined as the number of input training
vectors the circuit can process per second. It can be observed
from Table IV that the proposed GHA architecture attains
highest clock rate and throughput at the expense of higher
area costs. In fact, the proposed architecture has throughput
28.125 (4.50× 107 vs. 1.60× 106) and 16.3 times (4.50× 107

vs. 2.75×106) higher than that of architectures in [6] and [7],
respectively. The proposed algorithm has superior performance
because it is based on shift registers for storing weight vectors
and input vectors for high speed computation. In addition,
although the proposed architecture has higher area costs, it
only consumes a small fraction of the hardware resources
available in the target FPGA. In fact, there are 149760 LEs,
6635520 embedded memory bits, and 360 multipliers in the
target FPGA Cyclone IV EP4CGX150DF31. The proposed
architecture utilizes only 10.78 %, 0.96 % and 35.56 % of
the LEs, memory bits and multipliers of the target FPGA,
respectively. All these facts show the effectiveness of the
proposed architecture.

V. CONCLUSION

The proposed architecture has been implemented on the
Altera FPGA Cyclone IV for physical performance measure-
ment. The architecture is used as an hardware accelerator to
the NIOS CPU in a NOC platform. Experimental results reveal
that the proposed spike sorting architecture has advantages of

high CCR and high computation speed. For SNR=10, its CCR
is above 96 % for three target neurons. When SNR becomes 1
dB, it is still able to retain CCR above 84 %. The architectureis
able to achieve 1 GHz clock rate. The speedup over its software
counterpart running on Intel I7 processor is above 97. The
GHA circuit has higher computation speed as compared with
existing hardware implementations for GHA feature extraction.
These results show that the proposed system implemented by
FPGA is an effective realtime training device for spike sorting.
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