
Towards Organizational Modules and Patterns
based on Normalized Systems Theory

Peter De Bruyn, Herwig Mannaert and Jan Verelst
Normalized Systems Institute (NSI)

Department of Management Information Systems, University of Antwerp
{peter.debruyn,herwig.mannaert,jan.verelst}@uantwerp.be

Abstract—Normalized Systems Theory provides prescriptive
guidance on how to design modular software structures so that
they exhibit a high degree of evolvability and low degree of
diagnostic complexity. The theory basically suggests to first
break up the modular structure in a very fine-grained way
based on “concerns” (in terms of change drivers or information
units) and then aggregate these concerns in a structured way
into patterns or “Elements”. While the relevance of this theory
for analyzing and designing organizational artefacts has been
shown previously, only the first step of the reasoning has
already been performed in the past, i.e., identifying a set
of organizational concerns to be separated. In this paper, a
first attempt to proceed to the second step (i.e., aggregating
concerns into organizational “Elements”) is proposed. We
formulate some meta-requirements for such organizational
Elements (i.e., having exhaustive interfaces, aggregating several
basic constructs into one “Element” as well as including and
identifying a relevant set of cross-cutting concerns). We also
propose a tentative set of five organizational Elements: Party,
Product or Service, Compensation, Work Unit and Asset or
Resource. The relevance of these Elements is shown by briefly
discussing some (theoretical) illustrations.

Keywords-Normalized Systems; Organizational patterns; In-
terface definition.

I. INTRODUCTION

Modularity —dividing a system into a set of interacting
subsystems— has proven in the past to be a powerful
concept in order to describe or build artefacts (such as
software, organizations, etc.) so that they exhibit a set of
advantageous characteristics, such as evolvability or lower
diagnostic complexity. Increased evolvability, as it allows
to adapt only a part (i.e., one module) of the artefact
while leaving the other parts unchanged. Lower diagnostic
complexity, as for instance erroneous outcomes can be
traced to a particular subsystem (i.e., one module) instead
of leaving the whole system to be analyzed for its cause.
However, prescriptive guidance regarding how to design
software systems or organizational artefacts as modular
structures exhibiting these properties is rare. Normalized
Systems Theory (NST) has recently proposed such prescrip-
tive guidance to develop highly evolvable systems [1] with
low complexity [2]. As a first step, the theory proposes a
set of theorems which basically prescribe how to fragment
a modular system (i.e., based on concerns such as change

drivers or information units) for this purpose. In a second
step, a set of patterns (called “Elements”) are proposed to
realistically apply the theorems in practice. Both steps have
already been performed and documented at the software
level (on which NST was originally applied). At the organi-
zational level however, only the relevance of the theory ([3],
[4]) as well as some initial guidelines to partition business
processes [4] as organizational artefacts (i.e., step 1) have
been suggested. Therefore, no set of patterns (or “Elements”)
at this organizational level are available.

In this paper, the authors propose a first attempt regarding
the formulation of such potential Elements at the organiza-
tional level in order to make an initial contribution to this
research gap. We will first briefly discuss some essential
aspects of NST, showing how the Elements at the software
level have been conceived (Section II). From this discus-
sion, we derive a set of meta-requirement which should be
fulfilled when formulating Elements at the organizational
level in Section III and propose a potential initial set of
five organizational Elements in Section IV. We then provide
some illustrations (Section V) and offer our final conclusions
(Section VI).

II. NORMALIZED SYSTEMS THEORY

In a quest for making systems more evolvable and less
complex, NST has applied the concepts of stability from
systems theory ([1], [5]) and entropy from thermodynamics
[2] to modular systems and derived a set of formally
proven design theorems prescribing how to identify and
delineate individual modules. For instance, from the evolv-
ability point of view, the Separation of Concerns theorem
prescribes that every change driver (i.e., part of system
which can independently change) should be isolated into
its own modular construct (e.g., class in a object-oriented
software environment). NST further shows that each of its
principles should be systematically applied throughout the
whole modular structure in order to truly realize its benefits.
As this results in highly fine-grained modular systems, it is
a very challenging effort to manually design a system in
reality without any theorem violations.

Consequently, as a second step in its reasoning, NST
proposes to employ a set of patterns (called “Elements”),

106Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Figure 1. A NST Data Element (based on [5]).

which are a structured aggregation of modular structures,
conforming with the NST theorems and which can be more
readily used to build real-life applications. At the software
level, five elements were proposed: Data Elements, Action
Elements, Workflow Elements, Connector Elements, and
Trigger Elements. Experience has demonstrated that this
set of elements indeed enables the creation of real-life
(business or administration oriented) software applications
[6]. Figure 1 represents the internal structure of one of these
Elements, i.e., a Data Element for storing and exchanging
information regarding an Invoice. Typically, such Element
consists out of one core construct (here: software class),
which performs or stores the main functionality of the
Element (in this case: a set of data attributes, for instance
the class “InvoiceDetails” for an Invoice Data Element).
On top of this core construct, several other constructs are
included within the Element taking care of the cross-cutting
concerns. In case of this software Data Element, such
classes are added in order to take care of persistency (e.g.,
“InvoiceData”), transactional integrity (e.g., “InvoiceBean”),
etc. In essence, each of these classes incorporating such
cross-cutting concern represents a “mini-bus” acting as a
proxy or facade to the (external) technology used for this
cross-cutting concern (e.g., JPA, EJB). Due to the NST
theorems, the parts implementing a cross-cutting concern
should be separated within their own construct inside the
Element. Such design also ensures version and implementa-
tion transparency regarding functional changes (e.g., adding
a new data attribute or updating the technology of one of
the cross-cutting concerns) as the impact of these changes
remains isolated within one instantiated Element.

While originally applied at the level of software systems,
it has been shown that NST reasoning can be applied to
organizational artifacts, such as business processes [4] or
enterprise architectures [3] as well. More specifically, a set
of guidelines has been proposed in order to help identifying
typical concerns at this organizational level, which should

Figure 2. A schematic representation of an Organizational Work Unit
deployment.

therefore be separated [4]. This again results in a very
fine-grained modular structure, difficult to arrive at each
time “from scratch”. Consequently, a set of Organizational
Elements might be beneficial at this level as well. However,
such Elements have not yet been proposed.

III. THE META-REQUIREMENTS OF ORGANIZATIONAL
NST ELEMENTS

Elements at the organizational level would imply the
creation of organizational modules, which exhibit the same
characteristics as the Elements at the NS software level.
Therefore, we discuss three necessary characteristics for
organizational “chunks” to become modules and even El-
ements eventually exhibiting high evolvability and diagnos-
tability.

A. Defining exhaustive interfaces

Earlier, we defined modularization as “the process of
meticulously identifying the dependencies of a subsystem,
transforming an ambiguously defined ‘chunk’ of a system
into a clearly defined module (of which the borders, depen-
dencies, etc. are precisely, ex-ante known)” [7]. In doing so,
we differentiated our definition from that of Baldwin and
Clark [8] in which a module should already exhibit high
intramodular cohesion and intermodular coupling. While
we acknowledge that such properties are clearly highly
valuable characteristics for modular structures, we stress the
importance of exhaustively defining a subsystem’s interface
(i.e., its interaction with its environment) before engaging in
more sophisticated optimization efforts such as maximum
cohesion and minimum coupling. In order to arrive at
such complete interfaces for modules at an organizational
level, we highlight the following aspects which should —
at minimum— be taken into account when one’s aim is to
arrive at blackbox modules having a fully defined interface.

First, a distinction could be made between those parts
of an interface which are related to the “set-up” of the
module (the so-called “deployment interface”) versus those
parts related to the calling or invocation of the module (the

107Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

so-called “usage interface”). The deployment interface can
be understood as (mostly) a “one-time” interaction to get the
module initially “deployed” and operational in its working
environment (e.g., the necessary infrastructure), whereas
the usage interface is related to the repetitive interaction
each time a request (input) to produce a certain result
(outcome) is directed towards the module. The difference
between both types of interfaces is visually depicted in
Figure 2. Second, both the “functional” or “front-end”
interface as well as the “non-functional” or “back-end”
interface should be recognized. The “functional” interface
typically relates to the input arguments given to the module
to provide a certain product or service (e.g., the amount
of money to be transfered by a payment module). The
“non-functional” interface concerns these interactions (or
parameters) which are not necessarily viewed as directly
linked to the product related input or output provided by a
module, but are nevertheless necessary to obtain its correct
execution (e.g., the presence of a well-functioning Internet
connection). Often, this functional interface aligns with the
usage interface whereas the non-functional interface mostly
corresponds to the deployment interface. As we see that, in
practice, the “deployment” and “non-functional” interfaces
are often not explicitated, while necessary to obtain true
black box modules, we suggested in the past some interface
dimensions which should be taken into account in order
to obtain exhaustively defined interfaces for organizational
modules such as:

• Supporting technologies (e.g., SWIFT, the Internet);
• Knowledge, skills and competences needed by people

carrying out tasks in the organization;
• Money and (financial) resources required to operate the

module;
• Human resources, personnel and time defining how

many (concurrent) people are required (and for how
long) in order for carry out certain activities;

• Infrastructure and real estate required to perform the
activities (e.g., offices, machines);

• Other modules or information needed for a module to
operate correctly.

B. Aggregating modular building blocks into organizational
Elements including cross-cutting concerns

Experience with NST at the software level has shown
that obtaining evolvable and diagnosable modular structures,
requires a very thorough separation of concerns resulting in
a very fine-grained modular structure. However, obtaining
such systems in practice only seems realistic when the
designer has a set of “Elements” at his disposal, each
being a structured aggregation (i.e., pattern) of modular
building blocks. At the software level, the modular building
blocks available to compose Elements are typically classes
and objects in object-oriented environments or structures,
functions, procedures in structured programming languages.

In organizations, such basic modular building blocks might
constitute people, the actions they perform (and their order),
as well as the materials they need and/or produce. The
formulation of the NST Elements based on these building
blocks is likely to be an inductive process (i.e., the Elements
eventually have to comply to the NST theorems, but are
not directly derivable from them) and the union of all NST
Elements should provide all basic functionality to build
state-of-the-art modular structures within its application
domain. At the software level, Data, Action, Flow, Con-
nector and Trigger Elements were suggested which allow
to store data, perform actions with them, define an order
of sequence between these actions, connect with external
systems in a stateful way and trigger the necessary Data
and Flow Elements on a time-based manner if needed,
respectively. Therefore, structured aggregations of modular
building blocks might equally result in Elements at the
organizational level, for instance the five Elements we will
suggest as potential candidates in Section IV.

However, we showed in Section II how NST incorporates
a set of classes in these Elements as proxies or facades to
a number of cross-cutting concerns. The concept of cross-
cutting concerns was already well-known in the software
engineering field when adopted by NST. For instance, in
the “aspect-oriented” programming paradigm, attention to
the principle of separation of cross-cutting concerns was
already given. Nevertheless, in many other application do-
mains in which modular designs are present, such cross-
cutting concerns seem to be useful as well. Consider —
as a simple example— the modular design of a house.
Each of the rooms (e.g., living, kitchen, bedroom) could
be considered as a separate module, each having their own
functionality. However, while there might be some central
and separated water, heating and electricity supply and
management systems, these facilities typically have to be
available throughout the whole house. Each room wants
to have the possibility of tapping water, using the heating
system and employing electrical devices. As a consequence,
electric cords with sockets, water pipes with taps and heating
pipes with radiators are incorporated in each module (here:
house room), connected with the central facility provision
units. Therefore, the water, heating and electricity facilities
in a typical house can be considered as quite adequate
illustrations of cross-cutting concerns in the construction
area. As organizations have been argued to be modular
structures, several modular structures seem to have “cross-
cutting concerns” and NST states that these cross-cutting
concerns should be incorporated in a structured way into
Elements in order to make the structures evolvable and lowly
complex, it seems interesting to incorporate such cross-
cutting concerns in organizational Elements as well. The
question then obviously becomes: can we identify cross-
cutting concerns at the organizational level, and of what kind
are they? Once we have some insight into this aspect, we

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

can start to formulate Elements at the organizational level.

C. Identifying cross-cutting concerns

NST reasoning suggests that identifying cross-cutting
concerns at the organizational level would allow us to obtain
highly evolvable and lowly complex artefacts in this domain.
First, the concept of “cross-cutting concerns” in organiza-
tions seems an appealing thought intuitively. Indeed, one
can easily imagine the necessity for most parts or modules
in an organization to communicate with items external to
the module, or report relevant items in the bookkeeping
system. Second, certain business modeling languages seem
to acknowledge the importance of such cross-cutting con-
cerns in an implicit way: to keep the modeling and mental
complexity manageable, they make abstraction from certain
aspects during their modeling efforts while concentrating
on mostly one relevant aspect regarding each functional
domain of an organization, thereby reflecting their “view”
on the functioning of organizations. For instance, regarding
the bookkeeping aspects of an organization, the “Resources,
events, agents” (REA) approach provides a method to design
accounting information systems [9]. As a consequence,
an organization is modeled as a set of economic events
(performed by economic agents) resulting in stock flows
in terms of economic resources. As this is the primary
focus of the modeling method, other organizational aspects
are mainly put out of scope. Another example, regarding
the communication aspects of an organization, involves
the Enterprise Ontology (EO) theory and its accompanying
DEMO method, claiming that the essence of an organization
resides within a generally recurring communication pattern
regarding ontological actions (i.e., involving human deci-
sions or the creation of products) [10]. As a consequence,
an organization is primarily modeled as a set of actors engag-
ing in the request-promise-execution-statement-acceptance
(standard) pattern of ontological (communication) acts and
facts, abstracting away from other organizational aspects
(e.g., the implementation of the execution step).

Without claiming to have the optimal or even an exhaus-
tive set of cross-cutting concerns, we suggest the following
concerns as being some suitable candidates of cross-cutting
concerns for the “Elements” at the organizational level (all of
them will be incorporated in one of our proposed Elements,
i.e., the Work Unit Element):

• Registration or logging: As tasks and their encom-
passing flows are executed, relevant information should
be logged and registered. Multiple different kinds or
“dimensions” of relevant information could be thought
of in this respect, e.g., throughput time, resource con-
sumption, quality metrics, etc. Therefore, in order to
reduce complexity during and after execution time, this
information should ideally be logged at the fine-grained
level of information units, i.e., each part within a busi-
ness process design of which independently traceable

information according to these dimensions is assumed
to be needed later on [11]. This information should
be persisted in one way or the other, which is the
responsibility of the constructs making up this cross-
cutting concern. Such information may then be used
(and possibly aggregated) later on for diagnostic, KPI-
reporting, business intelligence and other purposes.

• Transactional integrity (including cancellations): On
top of registering certain properties regarding infor-
mation units during the execution of task(s) (flows),
some modules should be able to handle requests from
outside, as well as internally triggered actions based on
stateful transactions (i.e., interacting life cycle informa-
tion objects going through their respective life cycles).
Amongst others, this means that a flow can only be
in one state at a time, no conflicting or contradicting
states should be able to occur and cancellation requests
are handled in an appropriate way (e.g., no blind
interruption of the regular or the “happy” path). These
predetermined transaction structures should be enforced
one way or the other, which is the responsibility of the
constructs making up this cross-cutting concern.

• External communication: As the organizational mod-
ules are expected not to work in isolation, they should
be able to communicate via incoming and outgoing
information streams with other modules. However, as
communication issues (such as message format, fault
handling, background technology) clearly do not belong
to the “core” responsibility of each genuine (i.e., non-
communication dedicated) module, (the connection to)
these issues should be handled in different construct
instances than those which do handle this core respon-
sibility. Consequently, to enable the interaction of a
module with external modules, communication should
be incorporated as a cross-cutting concern within orga-
nizational elements.

• Authorization policy: Typically, flows and their consti-
tuting tasks are only allowed to be executed by certain
actor(s) (roles) due to safety, legal and company defined
regulations. In addition, in certain cases, the actual
identity of these actor roles should be verified. As
the common role definitions and identity verifications
should be accessed and used throughout several orga-
nizational modules, these concerns seem to depict a
genuine cross-cutting concern as well, handling these
functionalities.

• Bookkeeping adapter: Many executed tasks and flows
result in one way or the other to changes in the
bookkeeping ledgers or financial reporting systems of
an organization. However, bookkeeping standards as
well as the way in which certain goods and assets
are valued, are clearly a different kind of concern as
the “core” activities of, for instance, a procurement or
assembly module. Therefore, some constructs should

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

be able to extract the information needed for several
bookkeeping standards (based on the logged or reg-
istered information) as a cross-cutting concern within
many organizational modules, and provide it to central
bookkeeping and financial reporting modules [12].

IV. TOWARDS NORMALIZED SYSTEMS ELEMENTS AT
THE ORGANIZATIONAL LEVEL

Looking for the Elements which might be needed in order
to fully describe the functioning of organizations, we adopt
the following perspective. As depicted in Figure 3(a), the
behavior of organizations can basically be described as a
number of interacting Organizational Work Units, executing
(flows of) tasks by employing a set of internal Assets or
Resources. Eventually, these Work Units deliver Products
and Services to Parties external to the organization (such as
customers). The delivery or procurement of certain Products
or Services is generally associated with an act in return:
a Compensation. To the extent that this set of concepts
allows us to model a domain (in this case: organizations)
and explain some reasoning about it, it could be regarded as
a kind of new, modest ontology regarding the functioning
of organizations in terms of Elements. However, before
being able to make this claim, we should more specifically
define each of these concepts and articulate the relationships
between them.

• Party: A Party is a (natural) person, company or legal
entity which is doing business. Whereas we identify an
Entity as anything from a company to an organizational
department, we consider a Party as an identifiable
“actor” which has the authorization to act on behalf
of an entity. The core of the Party Element is the
listing of its identification and idiosyncratic properties.
Additionally, a set of cross-cutting concerns is added,
which are typically needed for each Element of this
type (e.g., external communication). For instance, a
company procuring Bike Parts, assembling them to
Bikes and delivering them to customers, could be
considered as a Party (as well as its suppliers, customers
and employees under contract).

• Product or Service: A Product (typically tangible)
or Service (typically non-tangible) is something an
organization (which is a Party) is capable of providing
to its customers (which are also Parties). The core of
the Product or Service Element comprises the defi-
nition (its characteristics) and nature of the Product
or Service (i.e., production details, marketing details,
etc.). Moreover, it contains some links to Organizational
Work Units (cfr. infra) performing certain (sets) of tasks
necessary to actually provide the Product or Service
according to its characteristics defined in the “core”.
For instance, in the case of a bike producing company, a
Product could constitute a Bike so that Customer ABC
could request Company XYZ to produce a particular

Bike instance with chassis number 123. While deliv-
ering this Bike instance, the Bike company will most
likely rely upon several of its Work Units (e.g., Procure,
Assembly).

• Compensation: A Compensation is an act in return
from one Party to another Party, generally because the
latter Party has received or will be receiving a certain
Product or Service from the first one. As a consequence,
a Compensation is typically linked with a Product or
Service provided by one Party. It is important to note
that a Compensation might take on several forms (e.g.,
an invoice, followed by a payment, etc.), not necessarily
being of a financial kind. Additionally, a Compensation
might have instantiation frequencies which are not
necessarily completely aligned with the instantiation
frequency of the associated Product or Service. There-
fore, the core of the Compensation Elements consists
of the definition and properties (i.e., the “terms”) of the
Compensation, supplemented with a set of cross-cutting
concerns to complete this Compensation according to
its specified terms. For instance, a Bike producing
company could issue a Compensation instantiation with
a customer as a result of delivering a Bike to that
Customer earlier. Alternatively, the company might
have to fulfill a monthly recurring payment procedure
with its bank as part of its loan for its real estate
ownership. As a consequence, also a Compensation is
typically associated with one or more Organizational
Work Units (cfr. infra).

• Asset or Resource: Assets and Resources are defined
as both human (e.g., employees) and non-human parts
(e.g., product parts, consumable raw materials, build-
ings), which are used for carrying out tasks and/or
flows. We consider Assets or Resources as internal to an
organization. However, these may be acquired or hired
via contracting or purchases between Parties earlier in
time. Therefore, the core of the Asset or Resource
Element consists of the Asset or Resource identification
and its characteristics, as well as a set of cross-cutting
concerns to generally employ the Asset or Resource
(e.g., communicate with it). For instance, the Assets
or Resources for a Bike producing company might
constitute of a set of employees (sales people, assembly
people, etc.) and infrastructure (building, manufacturing
equipment). In order for the company to employ these
Assets or Resources, the company might have bought
the building and have hired the employees resulting in
a Compensation instantiation.

• Organizational Work Unit: An Organizational Work
unit is the whole of a set of tasks, task flows and
accompanying assets/resources needed to execute these
tasks. A Task is a small part of work (performed by
resources/assets such as human actors or machinery,
and potentially consuming other resources/assets), iden-

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

(a) (b)

Figure 3. An organization modeled as the interaction between a set of deployed Organizational Work Units, using Assets and Resources, producing
Products and Services and generating Compensations. Eventually, the Products and Services, as well as Compensations are exchanged with Parties external
to the organization.

tified as being a separate change driver or information
unit. A Task Flow is defined as a set of tasks in a
particular order (including sequences, iterations and
selections) all operating on one lifecycle information
object. The internal design of the flows and tasks
within the Organizational Work Unit should adhere to
the guidelines for designing evolvable [4] and lowly
complex business processes ([11], [13]), as documented
before. Ideally, this core of the Organizational Work
Unit (i.e., tasks and flows, complemented with a set of
Assets or Resources) should also constitute a logical
whole which is externally loosely coupled. However,
in contrast with an exhaustively defined interface, this
is not a prerequisite as a full interface enables the
analysis and optimization of the delineation of these
Work Units. Some relevant cross-cutting concerns for
an organizational Work Unit were already discussed in
Section III-C.

To sum up, we propose a Party, Product/Service, Com-
pensation, Assets or Resources and Organizational Work
Unit as a tentative set of Elements within the application
domain of organizations. The Work Units use Task (flows)
and Assets/Resources to perform their function. A potential
internal structure (i.e., content) regarding the Products or
Services, Compensation, Assets or Resources and Parties
is shown in the various panels of Figure 4. Each of the
Elements contain some core and basic information regarding
that Element type (such as identification, description, etc.)
as well as a set of cross-cutting concerns (visualized by
the ovals) depicting some viable cross-cutting concerns for
each of them. It is important that the proposed sets of cross-
cutting concerns should not be considered as exhaustive or
restrictive. Rather, our goal is to illustrate reasoning behind

the aggregation mechanism for obtaining Elements, while
incorporating cross-cutting concerns at the organizational
level. As it is clear that the major part of organizational
results is produced by the Organizational Work Units, the
internal working of external organizations or people (i.e.,
Parties) is not to be manipulated, and Products/Services as
well as Compensations largely depict the relation between
multiple Parties, let us take a closer look at the internal
structure (i.e., design of once it is deployed) of the Orga-
nizational Work Unit as depicted in Figure 5. As can be
seen from the figure, we conceive an Organizational Work
Unit as a set of individual tasks, a set of flows consisting of
tasks, consuming assets and resources (e.g., raw materials,
people performing the actions), incorporating the above
enumerated set of cross-cutting concerns and surrounded by
the appropriate (exhaustive) usage interface.

There are basically two main reasons why we chose to
start from our own set of ontological concepts, instead of
starting from one of the several already existing ones in
extant literature. First, as we already argued in Section III-C,
many existing business modeling methods in literature seem
to mainly focus on one particular aspect (e.g., one of our
suggested potential cross-cutting concerns for organizational
modules). Second, we did not want to start our discourse on
NST Elements at the organizational level by criticizing or
claiming to ameliorate one particular existing organizational
ontology. Nevertheless, we are aware that other ontological
frameworks might have similar or related concepts (e.g.,
many frameworks acknowledge the existence of things like
“actors” or “parties”), but the set of our five proposed Ele-
ments and their accompanying interpretation is —to the best
of our knowledge— new. Also, we think that our proposed
ontology largely aligns with the “common denominator” or a

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

(a) (b)

(c) (d)

Figure 4. Organizational Product/Service, Asset/Resource, Compensation and Party Elements.

lot of “heuristic feeling” when conceptualizing about organi-
zation (just as our NST ontology at the software level did).
An organization basically consists of Assets or Resources
carrying out task and their flows (eventually aggregated into
modules), in order to deliver Products or Services to Parties
in return for some Compensation. However, we encourage
other researchers to compare our NST reasoning with their
own business modeling efforts and look for opportunities of
cross-fertilization between both. For instance, we hypothe-
size that it should be perfectly possible to combine (certain
parts of) our NST reasoning on organizational Elements with
some of the already existing ontological frameworks (such
as EO, REA, etc.).

Consequently, equally as for the “Elements” previously
proposed at the software level, we are fully aware that
our initial ontology (both the set of elements as well as
their internal structure) is only one possibility of modeling
and modularizing a company, and that other ontologies or
Element structures are possible, and might potentially even
be more optimal. Rather, the main purpose of our proposed
organizational Elements is to provide a constructive proof-
of-concept regarding the feasibility of modeling and design-
ing organizations realistically in a way adhering to the NST
theorems. However, the authors want to emphasize that our

organizational elements seem to allow modularization in the
three dimension as mentioned by Campagnolo and Camuffo
(i.e., product design, production system and organizational
design) [14]. This indicates that realistically deployable
organizational modules seem to be at the intersection of
business processes and organizational departments, thereby
combining several viable modularization dimensions within
organizations (e.g., according to functional domains, mainly
process-oriented, etc.). Consequently, modularization as con-
ceived by NST Elements does not necessarily imply extreme
specialization due to its fine-grained separation: at the level
of an Element, each module has its own “core” responsibil-
ity, supplemented with a link to a variety of cross-cutting
concerns.

V. ILLUSTRATIONS

In this section, we will illustrate our reasoning from above
in two ways. First, from a more high-level approach, we will
show how nearly all aspects of an exemplary organization
(labeled as “the Custom Bikes case” by Van Nuffel [4]) can
be described or categorized while employing our proposed
ontology. Second, from a more bottom-up approach as
suggested by NST, we will elaborate on the possible internal
design of one possible Organizational Work Unit, a Payment

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Figure 5. A schematic representation of an Organizational Work Unit, an Element at the organizational level according to NST reasoning.

Element.

A. Applying the Organizational Constructs and Elements

The “Custom Bikes case” [4] concerns a small company
producing customized bicycles. Basically, for each order
which is received, an order handling process starts (e.g.,
checking the customer details, evaluating and categorizing
the order, manager approval, order scheduling). If needed, a
process can be executed to order some missing parts, after
which the assembly of the bike is done, shipped and in-
voiced. The result of applying our organizational constructs
to this organization is shown in Table I and Figure 3(b).
We can notice that nearly all aspects of the case can be
categorized within our set of ontology constructs. In the
work of Van Nuffel [4], most efforts have been invested
in the identification and modeling of the tasks and flows.
While one can argue that some initial attention has also
been given to Products or Services, Compensations and
Assets or Resources, the modeling of Parties and (often
interface-related) Assets or Resources seems to be abstracted
away in the work. Additionally, no Organizational Work
Units according to our definition can be discerned. In
essence, this means that a thorough fine-grained separation
of concerns was performed regarding task (flows), but that
no patterns or organizational “Elements” were explicitly
identified. As we explained earlier, this type of fine-grained
modularization is a first important step in the normalization
of modular structures. However, the systematic definition
of an exhaustive interface, incorporation of cross-cutting
concerns, as well as a structured aggregation of the flows
of activities (together with its Assets or Resources) should,

Table I
APPLYING THE ORGANIZATIONAL CONSTRUCTS AND ELEMENTS

Construct type candidates Manifestations in Case
Product or Service Bike

Part
Compensation Invoice

Payment
Party Customer

Employee
Part Supplier
Custom Bikes Company

Asset or Resource Sales people
Bike Assemblers
Warehouse employer
. . .
Manufacturing plant building
Manufacturing equipment
Electricity supply
. . .

Tasks and their flows Order Handling flow
Customer Entry flow
Purchase Order flow
. . .

Organizational Work Units To be identified

in our opinion, be performed in a next stage in order to arrive
at more “realistic” organizational modules and “Elements”.

B. A Design Case: Towards a Payment Element

Let us consider the inner design of a possible Payment
Element, responsible for carrying out the payments in an
organization, to demonstrate the viability of an organi-
zational Work Unit in reality. If we start by drafting a
deployment interface of such Element, we see that some
Assets/Resources are required to operate the module. First,

113Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

we need a human person to operate some of the task(flows)
within the Element, for instance expressed as a percentage of
full-time equivalents. Some IT infrastructure (e.g., servers,
PC) might be needed, as well as a connection to exter-
nal services completing the payment (e.g., Internet, Swift,
Isabel). Finally, we probably need some infrastructure as
well (buildings, desk, etc.). Ideally, this deployment interface
exhibits version transparency, meaning that if the Payment
Element or the Elements using the Payment Element are
changed (i.e., they go to a new version) the deployment inter-
face remains unchanged (i.e., no additional Assets/Resources
need to be deployed in order to ensure the proper functioning
of the Element).

Realizing the deployment interface is similar to a “con-
structor” in a software environment, in the sense that these
Assets/Resources become available for the deployed and
implemented module. As we consider Assets/Resources as
Elements as well, each of their instantiations is again en-
capsulated within their own set of cross-cutting concerns.
For example, the employment contract with the employee
is handled by the cross-cutting concern making the link to
a Compensation. The needed bookings in the bookkeeping
records for employing an Asset/Resource are handled by the
bookkeeping adapter cross-cutting concern (e.g., the yearly
depreciation of a building) and any changes in their “state”
(e.g., extra courses followed by an employee) are followed
up and tracked by the logging cross-cutting concern. This
also implies that a particular Work Unit Element could
make a request to such Asset/Resource Element instance to
receive the information about its yearly costs (e.g., in terms
of depreciation or wage) for (for instance) their own cost
accounting purposes.

In terms of the usage interface, each individual payment
to be carried out is most likely associated with a Com-
pensation stipulating a certain amount to be paid by the
company at a certain point in time in a certain currency to a
certain account. Also this interface should ideally be version
transparent so that a new version of a Compensation can still
be processed by the existing Payment Element and that new
implementations of the Payment Element can still process
the existing Compensations. The actual execution of this
payment can be typically seen as a set of (orchestrated) tasks,
being part of a (sub)flow. While some of these tasks will be
performing a genuine part of the payment execution logic
(e.g., perform a data check, verify amount of current bank
account, initiating the electronic transaction, etc.), some of
them will use the proxy or facade constructs within the
Element triggering a cross-cutting concern. For instance, the
authorization cross-cutting concern can be used to verify
whether only entitled persons carry out payments (e.g., only
managers are allowed to trigger payments over 1000 euro).
The logging cross-cutting concern would log (for instance
in a database) for every flow instance and task instance,
when it is performed, by whom, how long it took, which

resources were consumed etc. The transactional integrity
cross-cutting concern might use some rules to make sure that
cancellation requests for a Payment are consistently rejected
or might be performed when certain conditions are met, but
would in any case not allow the uncontrolled interference
of any cancellation request with the stateful and ongoing
transactions within the Element. Finally, the bookkeeping
cross-cutting concern of the Payment Element could make
sure that the outflow of monetary resources is registered
in the central bookkeeping and balance sheet. Informed
about the completion of the Payment, the bookkeeping cross-
cutting concern of the associated Compensation can make
sure that this debt is removed from the balance sheet.

Internally, the modular design of such Element and its
flow(s) is compliant with the NST guidelines for attaining
stability and avoiding entropy. It should be clear that such
element is not merely restricted to contain only one core
flow or process. For instance, in case we should decide that
the considered payment Element would not only contain a
process to pay debts but also to check whether a claim from
accounts receivable has been fulfilled or not. In that case, the
“core functionality” of the Element would contain at least
two processes.

Consequently, from a dynamic perspective, this Work Unit
might cope with several changes in a stable way. First,
the resources executing the task(flow)s might change (e.g.,
a human operator which gets replaced by a machine or
software application), without affecting other Work Units
as long as the usage interface remains unchanged. Second,
the way a cross-cutting concern is implemented or the
actor performing it, can easily be modified. For instance,
if another bookkeeping standard should be adopted or a
specified Party is appointed to take care of this cross-cutting
concern (e.g., an external bookkeeper), the changes are
isolated within this cross-cutting concern (and therefore not
spreaded out among the core functionality flows of other
Elements, which are just making the link via the proxies
in which they are encapsulated). Third, specialization and
optimization of this Work Unit could lead to the re-use of
this Element within multiple organizational departments or
even on cross-organizational scale. Indeed, one can imagine
that such Payment module might not only cope with internal
Compensations to be settled (i.e., coming from one’s own
company), but in fact any Compensation (as this could be
the only prerequisite listed in the usage interface) including
those from other organizations as well. Therefore, “perform-
ing payments” could become a re-usable Element or even
a stand-alone business in the long term if wanted. Once
again, this confirms our view on organizations as being
essentially a (structured) aggregation of Work Units, coupled
via exhaustive interfaces which are ideally loosely coupled.

Also, as the design requires very fine-grained informa-
tion tracking, the degree of entropy can be controlled.
For instance, additional cross-cutting concerns could be

114Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

imagined to be added to the Elements, later on. Consider
a company wanting to perform cost accounting. In such
case, an additional cross-cutting concern “cost accounting”
could be incorporated, performing cost calculations based
on the logged information (e.g., “500 invoices have been
processed in one month, needing 1 FTE”) and bookkeeping
information (e.g., “this 1 FTE has cost of 3000 euro a
month”).

VI. CONCLUSION

This paper addressed for the first time explicitly the re-
search gap regarding the NST Elements at the organizational
level, similar to the Elements which exist at the software
level. While we do not claim to have solved the research
gap completely, the main contributions of this work should
be situated in advancing the application of NST reasoning at
the organizational level. More specifically, we discussed the
general rationale and mechanism of such Elements, listed
a set of three necessary meta-requirements for Elements
at the organizational level (i.e., exhaustive interfaces, the
aggregation of fine-grained modular building blocks, and
the identification of cross-cutting concerns which should be
included), and proposed an initial set of five Organizational
Elements in this respect. In further (extended) work, we
aim to discuss some more in-depth case studies based on
our reasoning and look for potential issues during their
realization. For example, while we are convinced that our
reasoning regarding the formulation of exhaustive interfaces
is theoretically solid, several issues might arise when trying
to actually describe it in reality, determining the overall
potential for realistic application. Additionally, it would be
interesting to complement our work with domain related
knowledge and expertise so that some of the Elements might
become best-practice organizational artefacts which might
be adopted by several organizations in the long term.

ACKNOWLEDGMENTS

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).
Additionally, this paper is embedded within an IBM Faculty
Award for “Applying Normalized Systems Theory at the
organizational level”.

REFERENCES

[1] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives : studying evolvability
based on systems theoretic stability,” Science of computer
programming, vol. 76, no. 12, pp. 1210–1222, 2011.

[2] H. Mannaert, P. De Bruyn, and J. Verelst, “Exploring entropy
in software systems : towards a precise definition and design
rules,” in Proceedings of the Seventh International Conference
on Systems (ICONS), 2012, pp. 93–99.

[3] P. Huysmans, “On the feasibility of normalized enterprises :
applying normalized systems theory to the high-level design
of entreprises,” Ph.D. dissertation, University of Antwerp,
2011.

[4] D. Van Nuffel, “Towards designing modular and evolv-
able business processes,” Ph.D. dissertation, University of
Antwerp, 2011.

[5] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable
software architectures based on systems theoretic stability,”
Software practice and experience, vol. 42, no. 1, pp. 89–116,
2012.

[6] G. Oorts, P. Huysmans, P. De Bruyn, H. Mannaert, J. Verelst,
and A. Oost, “Building evolvable software using normalized
systems theory,” in Proceedings of the 47th Hawaii Inter-
national Conference on System Sciences (HICSS), 2014, in
press.

[7] P. De Bruyn and H. Mannaert, “On the generalization of
normalized systems concepts to the analysis and design of
modules in systems and enterprise engineering,” International
journal on advances in systems and measurements, vol. 5, no.
3&4, pp. 216–232, 2012.

[8] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of
Modularity. Cambridge, MA, USA: MIT Press, 2000.

[9] W. E. McCarthy, “The rea accounting model: A generalized
framework for accounting systems in a shared data environ-
ment,” Accounting Review, vol. 57, pp. 554–578, 1982.

[10] J. Dietz, Enterprise Ontology: theory and methodology.
Springer, 2006.

[11] P. De Bruyn, P. Huysmans, H. Mannaert, and J. Verelst,
“Understanding entropy generation during the execution of
business process instantiations: an illustration from cost ac-
counting,” in Proceedings of the Third Enterprise Engineering
Working Conference (EEWC 2013), ser. Lecture Notes in
Business Information Processing. Springer, 2013, vol. 146,
pp. 103–117.

[12] P. Huysmans and P. De Bruyn, “Activity-based costing as a
design science artifact,” in Proceedings of the 47th Hawaii
International Conference on System Sciences (HICSS), 2014,
in press.

[13] P. De Bruyn, D. Van Nuffel, P. Huysmans, and H. Mannaert,
“Confirming design guidelines for evolvable business pro-
cesses based on the concept of entropy,” in Proceedings of
the Eighth International Conference on Software Engineering
Advances (ICSEA), 2013, pp. 420–425.

[14] D. Campagnolo and A. Camuffo, “The concept of modularity
within the management studies: a literature review,” Interna-
tional Journal of Management Reviews, vol. 12, no. 3, pp.
259 – 283, 2009.

115Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

