
SSICC: Sharing Sensitive Information in a Cloud-of-Clouds

Rick Lopes de Souza, Hylson Vescovi Netto, Lau Cheuk Lung, Ricardo Felipe Custodio
Department of Informatics and Statistics

Federal University of Santa Catarina
Florianopolis, Brazil

Email: {rick.lopes, hylson.vescovi, lau.lung, custodio}@inf.ufsc.br

Abstract—The need to share and manipulate sensitive data is a
challenge for most content providers using the cloud for storage.
The objective of this work is to propose an architecture to ensure a
distributed access control to secure sharing of sensitive electronic
documents in the cloud. This paper will explain the architecture of
the model, details of the protocols, implementation, and analysis
on security, usability, and performance. The main features of
the proposed model are: the use of Identity-Based Encryption,
byzantine fault tolerance, reliable integrity check, secure user
revocation, low complexity in the management of cryptographic
keys and secure sharing of sensitive electronic documents.

Keywords-Privacy; Sensitive; Cloud.

I. INTRODUCTION

The possibility of decreasing investment in infrastructure
for data storage become real through the use of cloud com-
puting. A user can send, edit, save, and access his data in
the cloud using any device. These characteristics are attractive
for many corporations due to economic facilities provided. The
cloud service provides savings in acquisition and configuration
of hardware and software, making corporations to pay only for
what they actually use.

The advantages of using cloud services bring with them
the problem of ensuring the security of stored data. Typically,
cloud services allocate more than one application or data in
the same structure and, therefore, problems such as attacks
coming from other corporations or even employees of cloud
providers become real. Today, one of the main concerns of
companies adopting cloud services is ensuring security and
privacy of sensitive data. It is not difficult to find cases of
data theft, as the case of SalesForce in 2007, where criminals
have succeeded in stealing information about customers, such
as e-mails and addresses [1]. In order to allow users to control
the access to their sensitive data stored in a public cloud, a
suitable access control is required. The access policies must
restrict data access to only those intended by the data owners.
These rules must be guaranteed by the cloud providers. If
the system is allocated in just one cloud provider, the data
owners have to assume that the cloud providers are trusted
and they will prevent the access from unauthorized users.
Thus, storing unencrypted data in public clouds can expose
sensitive information to a malicious third party. To provide the
necessary security, the cloud provider must not have access to
unencrypted data. Therefore, the action of sharing a sensitive
document to groups or roles is still considered a challenge.

Many techniques have been proposed to address these
problems, but there is not a singular better solution. The
traditional public key encryption techniques that uses public
certificates with a public key infrastructure can not resolve all
the problems involved in the sensitive document sharing and
it is infeasible when the system grows in number of users.
Another technique that can be used is called Identity Based
Encryption (IBE) [2] and it was first introduced by Shamir in
1985. The IBE consists in three entities: sender, receiver, and a
trusted authority. The sender of a message specifies an identity
(a set of characters) such that only a receiver that matches
that identity can decrypt and read it. The trusted authority is
responsible for the authentication process and to supply the
necessary private keys. These private keys are directly tied to
the users identities.

The IBE trusted authorities can access the users private key
and, for this reason, the IBE technique faces some resistance to
be implemented in some systems. To overcome this limitation,
multiple trusted authorities can be used, such that any of them
can posses the users private key. The work of Aniket [3]
proposes a multi authority to IBE systems. In his work, a set
of authorities execute a modified algorithm of Joint Feldman
Distributed Key Generator (JF-DKG) [4] to generate the master
secret in a distributed manner. Users can contact a subset
of authorities to request a part of the private key and then,
reconstruct the entire user private key.

Another IBE limitation is the user revocation. Since one
user has an identity ’ID’, if the related key is compromised,
there is no way to generate another private key to the same
identity ’ID’ without affecting other users. There are many pro-
poses to overcome this problem. One of the proposals is to use
Attributed Based Encryption [5]. This technique was proposed
by Amit Sahai and Brent Waters and it posses the concept that
every user has some attribute in a specific company or entity.
The private keys are tied to users attributes that are given to
then by a singular trusted authority. Recent works [6], [7], [8],
[9], [10], [11] are based on multi-authorities but they still have
some problems with user revocation due to re-encryption of
documents and rekeying. Zhou et al. [12] proposes a modified
algorithm of Boneh and Fraklin Identity Based Encryption
(BF-IBE) [13] proposing a role based encryption. Our work
has a similar idea of the Zhou et al. paper, using the concept
of roles and groups to identify the users and encrypt sensitive
documents.

This paper has as main focus to propose an architecture

185Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems



to ensure secure sharing of sensitive documents in a cloud of
clouds. To make it possible, this paper uses Identity Based
Encryption with multi-authorities to manage the cryptographic
keys. The main contribution of this paper is an architecture
to store sensitive documents and share it in public or private
clouds. This architecture makes practical the maintenance of
users and groups, by using multi-authorities with IBE, secret
sharing and erasure codes. This work touches the areas of
Secure User Revocation, Reliable Integrity Check, Backward
and Forward Secrecy, Byzantine Fault Tolerance, Storage
Economy, and Efficient Document Sharing.

This paper is organized as follows. In Section 2, we present
the math preliminaries and the related work. Section 3 presents
the architecture of the proposed solution. Section 4 presents
a detailed system model. In Section 5, we will analyze the
security and performance of the system model. Finally, Section
6 presents the conclusions of the study and discussion of
possible future works.

II. PRELIMINARIES AND RELATED WORK

A. Bilinear Pairing

Let G1, G2 be additive groups and GT a multiplicative
group, all of prime order p. Let P ∈ G1, Q ∈ G2 be generators
of G1 and G2 respectively. A pairing is a map: e : G1×G2 →
GT for wich the following holds:

• Bilinearity: ∀a, b ∈ Z∗p : e(aP, bQ) = e(P,Q)a,b

• Non-degeneracy: e(P,Q) 6= 1

• Computability: There is an efficient algorithm to
compute e(P,Q) for any P ∈ G1 and Q ∈ G2.

The IBC protocols used in this work have a special form
of pairing called symmetric pairing which has: e(P,Q) =
e(Q,P ). The security of the techniques used in this work are
based on the Decisional Diffie-Hellman (DDH) problem and
the Decisional Bilinear Diffie-Hellman (DBDH) problem. Our
work rely on the assumption that no probabilistic polynomial-
time algorithms can solve the DDH and DBDH problem with
non-negligible advantage.

B. Distributed Key Generation

We use a completely distributed key generation based on
the Joint-Feldman distributed key generator (JF-DKG), the
distributed key generation proposed by Aniket [3]. The JF-
DKG requires a number n ≥ 3t + 1 nodes to run correctly,
being the simplest and most efficient DKG. We use the BF-
IBE technique due to it’s simplicity of setup and methods.
In BF-IBE Setup, a Private Key Generator (PKG) gener-
ates private keys (d) for clients using their known identities
(ID) and master-key (s). We seek an (n, t) distributed key
generation over an elliptic curve group G of order q and
generator U , where n are the total nodes involved and t + 1
honest nodes are sufficient to generate it correctly. Let F(z) =
a0+a1z+ ...+atz

t ∈ Zq[z] be the current shared polynomial
and s = a0.

The protocol proposed by Aniket uses an improved version
of Feldman Verifiable Secret Sharing (Feldman VSS) algo-
rithm to generate in a distributed manner the master-key. It has

a bulletin board that generates the public parameters of BF-IBE
Setup, publishes the values and than initializes the Ak and Aik

values to zero, for i = 1, ..., n and k = 0 ... t, where Ak = akU
and Aik = aikU . The master key is set to zero. The nodes
initiates the Feldman VSS. After t + 1 nodes run their protocols
successfully, the distributed shares are considered safe. These
nodes are called qualified nodes. Here, we denote their set as ∂.
The bulletin board computes and broadcasts the coefficients Ak

(for k = 0... t) for the implied shared polynomial F(z).U as Ak

=
∑

Pj∈∂ Aik. After verifying the new Ak values, nodes send
confirmation signatures to the bulletin board. On receiving t
+ 1 confirmation signatures, the Ak values are finalized. Each
node then computes their secret share as si =

∑
Pj∈∂ sji.

Mode details can be obtained in the work of Aniket [3].

C. Private Key Extraction

To extract the private key in a distributed way, the client
must contact the nodes and send a specific ID. After receiving
the ID, the PKGs Pi ∈ O authentic and authorize the user and
then returns a private-key share SiH(ID) over a secure chan-
nel. The H represents a hash function H : (0, 1)∗ → G∗. Upon
receiving t + 1 correct shares of her private key, the client can
reconstruct the private key Did as Did =

∑
Pi∈O λisiH(ID),

where the Lagrange coefficient λi =
∏

Pj∈O,j 6=i
j

j−i .

D. Related Work

Recent works propose the use of privacy services [14],
[15] to address the privacy documents storage problem, as
well as some others works [16], [17] propose not to encrypt
the files and just split it and then send it to different cloud
providers. These works try to solve the problems involved
to store sensitive documents in cloud, however, they can not
provide all the necessary features to make a secure sharing. The
work of Itani et al. [14] didn’t provide a sharing scheme and a
fault tolerance system. If the privacy service stops, the client
can not encrypt or decrypt the files. The propose of Padilha
[16] use the technique of homomorphism to modify the privacy
parts of sensitive documents through the use of addictive
functions, however, the techniques to provide secrecy using
total homomorphism are theoretical and lack of pragmatic
implementations. Practical implementations of total homo-
morphism to secrecy systems are still open issues research,
therefore, are not applicable in the present circumstances of
corporations.

Other line of work is to use Atributed Based Encryption
(ABE), where each user receives credentials from the trusted
authorities which releases the access to the sensitive docu-
ments. Some works as [6], [7], [8], [9], [10], [11] proposes
the use of multi-authorities to generate the user private key,
avoiding the cloud key escrow. These papers also works with
a distributed manner of providing the attributes, supplying the
needs of identity confidentiality. However, the solutions that
involve ABE have the drawback of revocation. Once the key
that encrypts one document is revoked, the system needs to
re-encrypt the sensitive documents and then have to re-keying.
Another peculiarity in almost all these related works is that
they don’t support fault tolerance. The proposes are based on
multi-authorities just do extract the private keys, nevertheless,
they store the files on just one cloud provider. If this cloud

186Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems



provider fail for any reason, the user will not have access to
his sensitive documents. Another issue due to these facts is
that if an attacker can compromise one cryptographic key and
have access to the cloud provider, he can obtain all the sensitive
data.

Other line of work made by Bessani et al [18] uses concepts
that we are going to use: symmetric encryption, Shamir secret
sharing and erasure optimal code. Nevertheless the paper does
not propose any mechanism to share the necessary keys to
guarantee the integrity of the shares. It simply admits that there
is a mechanism to share keys, however, this is one of the main
challenges in sharing sensitive documents using encryption.
Another downside is the read data algorithm that does not
check integrity with a public key to verify the hash of the
parties. If the cloud provider is a malicious attacker, it can
modify the parts and provide false hashes for integrity check,
thus compromising the system.

Our work resembles to the Zhou et al [12]. His work
proposes the use of a modified IBE to enforce role-based
access control, providing the possibility to encrypt a file to
a single user or roles. The propose is efficient if it does not
have many revocation operations, otherwise it will present high
complexity. Zhou work does not solve the key escrow problem.
The system administrator can access users keys in the extract
operation. Another issue is the single point of failure and if the
administrator fails, undertake part of the revocation system.

Based on earlier research, this article identified the main
challenges to share sensitive documents in a secure manner. We
have proposed an architecture to tackle all these challenges
involving the use of IBE to provide the following features:
Secure User Revocation, Reliable Integrity Check, Backward
and Forward Secrecy, Byzantine Fault Tolerance, Storage
Economy, and Efficient Document Sharing.

III. SYSTEM ARCHITECTURE

There will be two main types of components in the archi-
tecture for the solution. The first component represents public
clouds that host the application servers and store sensitive
documents. The second component is the end users that
possess mechanisms to encrypt and decrypt sensitive data, as
well as mechanisms to securely store cryptographic keys used.

The client side is responsible for editing, encrypting and
decrypting files. This side also aims to define who are the cus-
todians of sensitive data to be encrypted. These custodians are
delimited by access rules specified for each application. The
storage servers must be hosted on different cloud providers.
The main features that are needed: the distribution of access
control through state machine replication and the distributed
manner of application servers spread across nodes.

Figure 1 illustrates how the architecture of secrecy works.
Briefly, the architecture works as follows: N nodes (cloud
providers) will conduct first a system setup, so they can share
a private key. Each node shares access control and provides
an application to users to share sensitive documents. Users
who wish to share confidential documents must encrypt the
document locally, perform operations of breaking and encoding
then the document is sent and stored in the cloud providers.
The document owner must inform who may have access to

sensitive data. A user who wishes to obtain a document must
authenticate to the cloud providers to obtain the required data
to join, decode, and decrypt the document. In this work, it is
used an abstraction called Data Block that store data about
the sensitive documents. The Data Block contains five items:
ID, part of the encrypted symmetric key, signed hash of the
encrypted key, part of the encrypted document and signed hash
of the encrypted document.

Application Server

Storage

Cloud Provider 1

Application Server

Storage

Cloud Provider 2

Application Server

Storage

Cloud Provider 3

Data Owner Data Receiver

Document Document

Data Block Data Block Data Block Data Block Data Block Data Block

Figure 1. System Model - A Data Owner send N datablocks to cloud providers
to share it. The Data Receiver must obtain a pre-defined number of datablocks
to recompose the file.

The access control must be implemented in a distributed
form. A cloud provider should not impersonate a user to obtain
the other parts of the secret. Each cloud provider will posses
an access control list and it will make the authentication and
authorization of each user. As we consider the cloud as a semi-
honest entity, the access control is considered reliable.

We focus on the architecture to provide distributed access
control to documents and we will not discuss in details the
access control. This proposal has the following assumptions:

• Every cloud provider has an access control;

• There is no concurrency for documents access;

• There is no concurrency for control access;

• The cryptography algorithms are resistant collision;

• The cloud providers are semi-trusted (They will be-
have correctly before the user requests, but can be
curious and see the data stored);

IV. SYSTEM MODEL

We use the secret sharing scheme to integrate the confiden-
tiality and the availability. Since all encrypted keys are splitted
in N pieces (N is the total number of cloud providers), the user
needs a minimum of M parts (M is provided in the setup of the
system) to recombine the encrypted key. In fact, we reuse the
access control of an application to control which readers are
able to access the stored data. We also use the mechanism of
information-optimal erasure code [19], enforcing an economy
in the cloud providers to store different versions of the same
document. Otherwise, the costs would increase by a factor of n

187Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems



if it was necessary to replicate it to n clouds. Each share has a
reduced size by a factor of n

f+1 [20], considering f the number
of faulty servers. Here we consider that the minimum number
of parts to recover a Shamir secret sharing is directly related
to the redundant parts of the information-optimal erasure code.
For example, if we consider a total number N = 4 of nodes
and a minimum number M = 2 of nodes to recover some key,
the erasure code will consider a total of T = N −M and a
redundant number of R = M . It will be always necessary to
gather at least two parts of the total to recombine the parts.

We use the BF-IBE scheme to encrypt symmetric keys
building a specific ID containing the following information:
Name of the Document, Group of Custodians, and Document
Version. We use this specific ID due a set of characteristics
that are necessary to share sensitive documents. The Name
of the Document in ID is to generate a different key to each
document stored in the cloud. The Group of Custodians is to
limit the access control of the document. As we will be reusing
the access control system, this group of custodians will be used
to authenticate and allow access to sensitive documents. For
every different group of custodians, there is a different key.
The version number and the others elements has the intention
to control the access for different versions of the documents
and to guarantee the backward and forward secrecy. The Hess
Signature technique [21] is used to sign the parts of encrypted
symmetric key and encrypted data to guarantee the integrity.
In this work, we use the same key pair to encrypt and sign,
facilitating the key sharing and management.

Before users can use the system, it must be made the Pri-
vate Key Generators (PKGs) setup. The protocol is described
in the section II-C and it is responsible for the distributed
generation of IBE master secret. After this step, reusing the
system access control, the users can share sensitive documents
through the use of the following methods: Write Data and Read
Data. The Write Data algorithm is data owner responsibility
and it encrypts, encode, and send all the encrypted and signed
parts to the cloud providers. The Read Data algorithm is
executed by the data receivers that wants to visualize the
document content.

The Write Data (Figure 2) authenticates the user and asks
the access control for the document metadata (line 4). The new
document to be stored will have the last version found (line 5)
plus one (line 6). A symmetric key is randomly created (line
7) to encrypt the document (line 9). An ID for the document is
defined (line 10) and a public key based on this ID is created
(line 11) using the BF-IBE technique. The symmetric key
is encrypted with the public key (line 12) and then splitted
into shares using Shamir secret sharing scheme (line 13). The
encrypted document is encoded using an information-optimal
erasure code algorithm (line 14), reducing the size of data
that will be stored in the cloud providers. A private key is
created, based on the ID (line 15) based on the procedure of
the Session II-B. For each part of splitted encrypted key and
encoded encrypted data, we provide hashes (lines 17 and 18)
and then sign it (lines 19 and 20) using the Hess Signature
scheme. A data block will be created, gathering all necessary
information to store the document (line 21). The data block
will be sent to the cloud providers (line 22) and the entry of
this storing is sent to the access control (line 25).

The Read Data (Figure 3) first authenticate the user and

Figure 2. Write Data Algorithm - Executed by the data owner to encrypted
and send the sensitive information to the cloud of clouds.

asks the access control for the document metadata (line 3).
The last version is chosen (line 4) and the ID is composed
(line 7). A key pair is generated from the ID using BF-IBE
(lines 5-6) and the requests for data are started (line 8). The
data blocks are requested from clouds (line 9), where each
gotten data block is verified about its signatures and hashes
using Hess Technique (line 12). After getting the necessary
data blocks (line 19), the pieces of the encrypted document
are joined using erasure code (line 23), the symmetric key is
restored using secret sharing (line 24) and decrypted (line 25),
and finally, the original document is decrypted (26).

V. IMPLEMENTATION

We have implemented the protocols in Java and C++.
The implementation is divided into three parts: The PKGs
Setup, The Distributed Access Control and the Algorithms
of Write and Read Data. The PKGs Setup was implemented
by Aniket in his work [3] using C++ and modifying the JF-
DKG protocol. The work of Aniket uses the pairing-based
cryptography library [22]. The necessary communication pro-
tocols to make a distributed access control were implemented
in java using sockets to send and receive messages. The
Write and Read Data algorithms was implemented in C++

188Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems



Figure 3. Read Data Algorithm - Executed by the data receiver to obtain
and decrypt the sensitive that from the cloud of clouds.

using the following libraries: pbc library [22] to make the
pairing based operations, the gfshare library to make Shamir
secret sharing [23], jerasure to encode and decode files using
information-optimal erasure code [19] and OpenSSL to make
some traditional cryptographic operations [24].

Our implementation was made by modules and it was a
proof of concept that could be optimized to achieve better
results. We have used the AES algorithm to encrypt files
with 128-bit key size. We also have used SHA-1 [25] for
cryptographic hashes, BF-IBE [13] to encrypt symmetric keys,
Hess Signature to sign the parts of the encrypted keys and data
and we used a total of four nodes with a redundant number of
two nodes (this number is tied to the PKG Setup of Aniket,
which requires a minimum of 3f + 1 nodes, being f + 1 the
quorum to recompose the master secret).

VI. ANALYSIS

This section presents quantitative and qualitative analysis
about the algorithms and the security of the system. Due to
the lack of space in this paper, we can not extend our analysis
and make a deeper review of the benefits. We will focus on the
main benefits and we will make a superficial analysis about
the algorithms and what they solve.

A. Security Analysis

One of the problems pointed out by SP800-144 [26] is
the vulnerability of internal attacks and lack of legal support
in cases of intrusion due to the geographical location of the
servers. To solve these problems, this paper proposes the use of
distributed PKGs using the JF-DKG protocol to generate the
master key without any of the trusted entities have ultimate
control of it. By using this scheme, two parameters are set:
t and N where N is the total number of PKGS and t
represents the minimum number of parts that must be collected
to recover a private key a user. Thus an agent discovering
malicious need a total of t shares to recover the secrets,
therefore decreasing the chances of success in an attack. Using
the protocols of Aniket, we achieve a numerous benefits as:
Distributed PKG Setup, Forward Secrecy, Availability of the
Public Key, Periodic master-key modification, Secret Share
Renewal, Secret Share Recovery, Group Modification and
Threshold Modification. All the computation costs of these
operations are O(n2).

To maintain the confidentiality of information, it is recom-
mended to use more parameters to identify the public key of
the IBE. One part of the solution is not to bind a key per
user and rather bind user groups with documents, thus having
a semantic key. This work proposes the use of identifiers
containing access rules concatenated with the name of the
document and a version of the same. The access rules are
checked by the PKGs through access controls that must be
done in a distributed and reliable manner . The document name
binds the public key to a specific document. The version makes
for each modification of this document to have a different
public key. Thus, a member who was part of a group and
obtained the private key to decrypt a document in a version X
does not obtain a consequent deciphering key to a document
with version X + 1 if he is no longer part of the group. If a
user has already obtained the private key, this had access to
document content in this version. Therefore, there is no need
to reencrypt a document content that was already exposed. If a
user has not obtained the private key and get out of a particular
group, it will no longer have access to the private key, because
the access control check if the member complies with the rules
imposed on the classified document.

Using distributed PKGs, secret sharing and erasure codes
we can ensure fault tolerance. Thus, this paper proposes proto-
cols based on verifiable shared secret quorum, thus increasing
the rigor of the checks widespread parts. The Byzantine fault
tolerance and availability are provided with the property that
a total of 3f + 1 PKGs only f may fail and therefore should
always consult a total of f + 1 responses to verify that the
majority of obtained final secrets are equal.

We also use the Hess Signature Scheme to guarantee the
integrity of the digest obtained from the encrypted symmetric
key and data parties. The use of the same key pair to encrypt
the symmetric keys and to sign the digests improve our
architecture due to the key granularity and the simple and
secure manner to share the IBE keys. The security of the Hess
Signature follows from the security of the generic scheme in
the random oracle model and is based on the Diffie Hellman
Problem in the domain of the used pairing. Using IBE we
also achieve chosen ciphertext security (IND-CCA) that is the

189Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems



standard acceptable notion of security for a public encryption
scheme.

TABLE I. COMPARISON OF DIFFERENT SOLUTIONS AND SOLVED
PROBLEMS.

Procedure This
Work

Ruj
et al.
2011

Zhou
et al.
2011

Bessani
et al.
2011

Custody of Keys X X X X
User Revocation X X X X
Fault tolerance X X X X
Reliable Integrity
Check

X X X X

The work proposed here can solve some cloud privacy
sharing problems in a simple and safe manner using a set
of cloud providers, splitting techniques and as main tool the
identity-based encryption. Table I compares the results of the
related work to this article.

B. Performance Analysis

With our implementation we could evaluate the perfor-
mance of the algorithms. We have chosen to evaluate the
performance of the algorithms of Write Data and Read Data,
mentioned in the Section IV. We did a sequence of simulations
using the implementation with different file sizes. We have
started with 1Kbyte files to 524288Kbytes (512 MBytes).
The tests were executed in a computer with the following
characteristics: Processor Intel I3, 4GB RAM with the oper-
ational system Linux Ubuntu. We have executed one week
each algorithm and evaluated the standard deviation. Among
1 Kbyte and 16384 Kbytes times were unstable, surpassing the
5% standard deviation. However, this is because the size of the
files were small. But even files with 1 Kbyte to 16384 Kbytes
kept coming times of 300ms. From 16384 Kbytes files, the
time began to grow linearly as doubling the size of the file. As
shown in the graph of Figure 4, it can be noted that the increase
was linear, demonstrating the stability of the algorithms for
different file sizes.

 

0

5000

10000

15000

20000

25000

30000

35000

1 4 16 64 256 1024 4096 16384 65536 262144 524288

Ti
m

e 
in

 M
ill

is
ec

o
n

d
s

File in Kbytes

Time to Execute Algorithms

ReadData WriteData

Figure 4. Graph illustrating the performance of Write Data and Read Data
Algorithm.

Depending on the application that are using the algorithms,
most of the files will be encrypted and sent to the clouds with-
out major performance problems. For example, in applications
sharing text files as PDFs with sizes less than 16Mbytes have
good performance around 300ms, as in the case of courts of
justice (e-justice and e-health). The cases where there is a
greater need to share documents, such as medical imaging,
where there is a need for high resolutions and video files
starting with the 16Mbytes, have satisfactory performance due
to file sizes.

VII. CONCLUSION AND FUTURE WORK

This paper proposed an architecture to share sensitive
documents in clouds. Because the new trends of computer-
ization of data, large corporations and government entities
are increasingly investing resources in cloud computing that
has demonstrated economically viable for data storage. These
stored documents require encryption support to ensure the
confidentiality of sensitive data that should not be accessible
to unauthorized third parties.

The proposed model is based on the use of identity-
based encryption and provides a secure manner to share
sensitive documents between data providers and consumers of
information. The main benefits that this work provides are:
secure sharing of sensitive documents,reliable integrity check,
reducing the custody of cryptographic keys and fault tolerance.

As future work, we suggest to improve the implementation
to achieve better performance results and improve the work to
provide identity privacy. It is also suggested the validation of
protocols in a formal way so that they can be used in practice
for large companies and government entities.

REFERENCES

[1] A. Greenberg, “Cloud computing’s stormy side,” Forbes
Magazine, Last Visited: December, 2013. [Online]. Avail-
able: http://www.forbes.com/2008/02/17/web-application-cloud-tech-
intel-cx ag 0219cloud.html

[2] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
Advances in cryptology. Springer, 1985, pp. 47–53.

[3] A. Kate, Y. Huang, and I. Goldberg, “Distributed key generation in the
wild.” IACR Cryptology ePrint Archive, vol. 2012, 2012, p. 377.

[4] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in Advances in
Cryptology, EUROCRYPT, 99. Springer, 1999, pp. 295–310.

[5] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances
in Cryptology–EUROCRYPT 2005. Springer, 2005, pp. 457–473.

[6] S. Ruj, A. Nayak, and I. Stojmenovic, “Dacc: Distributed access
control in clouds,” in Trust, Security and Privacy in Computing and
Communications (TrustCom), 2011 IEEE 10th International Conference
on. IEEE, 2011, pp. 91–98.

[7] T. Jung, X.-Y. Li, Z. Wan, and M. Wan, “Privacy preserving cloud data
access with multi-authorities,” in IEEE INFOCOM, 2013, pp. 2625 –
2633.

[8] K. Yang, X. Jia, and K. Ren, “Dac-macs: Effective data access control
for multi-authority cloud storage systems.” IACR Cryptology ePrint
Archive, vol. 2012, 2012, p. 419.

[9] K. Yang, Z. Liu, Z. Cao, X. Jia, D. S. Wong, and K. Ren, “Taac: Tem-
poral attribute-based access control for multi-authority cloud storage
systems.” IACR Cryptology ePrint Archive, vol. 2012, 2012, p. 651.

[10] K. Emura, A. Miyaji, A. Nomura, K. Omote, and M. Soshi, “A
ciphertext-policy attribute-based encryption scheme with constant ci-
phertext length,” in Information Security Practice and Experience.
Springer, 2009, pp. 13–23.

190Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems



[11] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Financial
Cryptography and Data Security. Springer, 2010, pp. 136–149.

[12] L. Zhou, V. Varadharajan, and M. Hitchens, “Enforcing role-based
access control for secure data storage in the cloud,” The Computer
Journal, vol. 54, no. 10, 2011, pp. 1675–1687.

[13] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Advances in Cryptology - CRYPTO 2001. Springer, 2001,
pp. 213–229.

[14] W. Itani, A. Kayssi, and A. Chehab, “Privacy as a service: Privacy-
aware data storage and processing in cloud computing architectures,”
in Dependable, Autonomic and Secure Computing, 2009. DASC’09.
Eighth IEEE International Conference on. IEEE, 2009, pp. 711–716.

[15] S. Pearson, Y. Shen, and M. Mowbray, “A privacy manager for cloud
computing,” in Cloud Computing. Springer, 2009, pp. 90–106.

[16] R. Padilha and F. Pedone, “Belisarius: Bft storage with confidentiality,”
in Network Computing and Applications (NCA), 2011 10th IEEE
International Symposium on. IEEE, 2011, pp. 9–16.

[17] Y. Singh, F. Kandah, and W. Zhang, “A secured cost-effective multi-
cloud storage in cloud computing,” in Computer Communications
Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on. IEEE,
2011, pp. 619–624.

[18] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky:
dependable and secure storage in a cloud-of-clouds,” in Proceedings of
the sixth conference on Computer systems. ACM, 2011, pp. 31–46.

[19] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in
c/c++ facilitating erasure coding for storage applications-version 1.2,”
University of Tennessee, Tech. Rep. CS-08-627, vol. 23, 2008.

[20] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” Journal of the ACM (JACM), vol. 36,
no. 2, 1989, pp. 335–348.

[21] F. Hess, “Efficient identity based signature schemes based on pairings,”
in Selected Areas in Cryptography. Springer, 2003, pp. 310–324.

[22] B. Lynn, “The pairing-based cryptography (pbc) library,” Last Visited:
December, 2013. [Online]. Available: http://crypto.stanford.edu/pbc

[23] S. McVittie, “A secret sharing library - libgfshare,” Last Visited:
December, 2013. [Online]. Available: https://launchpad.net/libgfshare

[24] E. A. Young, T. J. Hudson, and R. S. Engelschall, “Openssl,” Last
Visited: December, 2013. [Online]. Available: http://www.openssl.org/

[25] D. Eastlake and P. Jones, “Us secure hash algorithm 1 (sha1),” RFC
3174, September, 2001.

[26] W. Jansen and T. Grance, “Nist sp 800-144 draft: guidelines on security
and privacy in public cloud computing, security division,” Information
Technology Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD, 2011, pp. 20 893–20 899.

191Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems


