
MZZ-GA Algorithm for Solving Path Optimization in 3D Printing

Mateusz Wojcik, Leszek Koszalka, Iwona Pozniak-Koszalka and Andrzej Kasprzak
Department of Systems and Computer Networks

Wroclaw University of Technology
Wroclaw, Poland

e-mail: wojcik.mateusz991@gmail.com, {leszek.koszalka, iwona.pozniak-koszalka, andrzej.kasprzak}@pwr.edu.pl

Abstract— This paper is focused on fused deposition process
which is one of the technologies that can be used in rapid
prototyping process. This process is divided into four different
stages, one of which is path planning. This stage has a
remarkable impact on the overall timing of the printing
process. In this paper the implemented algorithms for solving
the path optimization problem are presented. The properties of
the implemented MZZ-GA algorithm are investigated, with the
use of the designed two-stage experimentation system. Basing
on the obtained results, we can conclude that the proposed
approach seems to be promising.

Keywords-algorithm; pathfinding; printing; optimization;
simulation experiments

I. INTRODUCTION

Nowadays rapid prototyping is one of the fastest growing
technologies. This process allows for creating a solid object
without any specific tooling. The main advantage of this
process is the ability to create a very complex object, in short
time. There are several different systems which can be used
in this technology, including: (i) Stereo-lithography (SL), (ii)
Selective laser sintering (SLS), and (iii) Fused deposition
modeling (FDM). In this paper, we use FDM which belongs
to the so-called Layered Manufacturing (LM) technology, in
which a solid object is produced by the deposition of
material layer. The object in LM has to be processed before
printing. According to [1] this process requires the
completion of the four main tasks:

 Object orientation - the best orientation for the
object is determined.

 Support generation – the additional element is
generated in order to holds the parts of the object
(after printing these additional elements can be
dissolved).

 Slicing – a special algorithm extracts the layers (in
the vector form) from the object. The 3D model is
converted into the 2D images.

 Path planning – the algorithm plans the moves of
the extruder.

For the purposes of this paper we have focused on the
last task. The path planning problem can be divided into two
different sub-problems: (i) path generating, and (ii) path
optimization. To solve the first sub-problem an algorithm
should generate and group the tool path segments into
individual sub-paths. The paths can belong to one of the two
groups: the contour paths or the raster paths. The raster paths

are filling the interior section of the layer (always after
contours). To solve the second sub-problem, an algorithm
should optimally link the sub-paths which were found
previously. The criteria for the optimality that should be met
include: best possible surface quality, minimum tool wear,
shortest machining time achieved, or minimum machining
cost.

There are several different algorithms for solving these
sub-problems. The algorithms proposed for solving path
generating problem are based on strategies, such as: Raster
[2], ZigZag [3], Contour [4], Spiral [5], and Fractal space
curves [6]. The algorithms proposed for solving path
optimization problem are based on approaches, such as:
Genetic Idea [7], Adaptation of TSP [8], and Neural Network
[9].

In this paper, the algorithm called MZZ-GA is proposed
for solving path planning problem. This algorithm enables
path generating with the designed Modified Zig Zag (MZZ)
algorithm, and next, using the obtained result, it solves path
optimization problem with the implemented Genetic
Algorithm (GA). The properties of MZZ-GA are evaluated
with a designed and implemented experimentation system.

This paper is organized as follows. In Section II, the
related works are discussed. In Section III, the formal model
of the considered problem is stated. Section IV presents the
proposed algorithms for a solution to the problem. Findings
from computational experiments are presented in Section V.
Conclusion and plans for further research in the area appear
in Section VI.

II. RELATED WORK

A. Paths generating algorithms

In paper [10], it is showed how to improve planning
process for Rapid Prototyping / Manufacturing for the
complex product models, such as biomedical models. That
work contains a description of several different algorithms,
including a path generating algorithm used to generate
contour tool–paths along the boundary. Also, the zig-zag
tool-paths used to generate paths for the internal area of the
layer are described. The most interesting is the proposition
for the solution of the path optimization problem with the use
of zig-zag algorithm in which the variable for the
optimization is the slope of the zig-zag direction. The most
important conclusion of that work is that the mixed tool-path
algorithm can balance the geometrical quality and the
effectiveness.

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

Paper [11] presents the Zig-Zag algorithm. This
algorithm was developed for 3-axis computer numerical
control (CNC) machine. In this algorithm the tool moves in a
straight line in a feed-forward direction. Also, an algorithm
for finishing operation on the machines is described. Because
that algorithm was developed for CNC machines, the authors
of [11] have also developed a tool holder collision detection
algorithm.

B. Path optimization algorithms.

In [8] two different methods for path optimization in
Layered Manufacturing are presented. One of them is based
on genetic approach, and the other one is based on the
strategy which is used for solving a combination of
Asymmetric Traveling Salesman Problem and Assignment
Problem (TSP-Assign). The authors of [8] formulated the
problem of path finding as constructing a set of curves on a
layer, from which the algorithm should find the optimum
sequence and direction of curves. They conclude that GA
optimization can improve path planning tremendously, but
this method is computationally expensive. Moreover, they
state that TSP-Assign algorithm for path optimization was
even more time-consuming than the GA approach. Also, an
approach which combines GA and local search approach is
proposed. This technique may improve path planning by
reducing the jump distance by up to 50%.

The authors of paper [12] propose two different
algorithms. The first is based on a simple greedy option
(nearest neighbor procedure). A heuristic algorithms starts
from the upper right corner and in every step adds points
which belong to the counter that has not been visited yet.
After the algorithm has visited all corners it begins searching
for the path in the internal area. The second algorithm is
based on the combination of the nearest and the farthest
insertion method. At the beginning, it adds a point which
belongs to the first corner. After that it checks if it should
add a point which belongs to the second corner. The authors
of [12] draw the conclusion that depending on geometry
different methods can give better or worse results. The first
algorithm produces better results when there are only a few
counters and a few continuous raster segments. If the number
of those objects increases, the second algorithm can produce
better results.

III. PROBLEM STATEMENT

In this paper, we concentrate mainly on the path planning
problem, in particular on the path optimization on the single
layer. In the mathematical form, the problem can be stated as
follows:

Given:

 Printing layer as a set of the binary points (an
example of the layer can be seen at Figure 1):

ܺ = ቄ
1 ݂݅ ݅݃݊ݐ݅݊ݎ݅ ݐ݊

0 ℎݐ ݓݎ݁ ݏ݅݁
�݅ ∈ ݆݊∈ ݉

(1)

 Lengths between two points defined by (2):

ೌ್ܮ = ඥ(ܽ−)ܿଶ + (ܾ− ݀)ଶ

(2)

where:
 n – Lengths of the printing layer,
 m – Width of the printing layer.

Figure 1. Example of the printing layer
(grey points refer to printing area).

To find:

 V – order of points that will be visited:

ܸ = [ܺ ܺௗ ܺ…]

(3)

 The decision about using the tool to extrude the
plastic on the single point:

ܷ= ቄ
1 − ݂݅ ܸܾ݈݈݁݅ݓ ݐ݁݊ݎ݅ ݀

0 − ℎݐ ݓݎ݁ ݏ݅݁
�

(4)

 The total length of the final path:

=ܮ ((ܸ[]݇ − ܸ[݇− 1])

ୀଵ
∗ ܷ)

= ௧ௗܮ + ௦௪௧ܮ ௧,

(5)

where p is the number of the visited points.

Such that:

 Lopt = min(L).

Subject to constraints:

 Each point can be visited only once:

ܸ[]݅ ≠ ܸ[]݆.

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

IV. ALGORITHMS

There were implemented two different algorithms for
paths generating and one algorithm for path optimization. In
this section, the both algorithms are presented in detail.

Figure 2. An example - the MZZ algorithm in action.

A. Modified Zig Zag algorithm

The MZZ algorithm works in the following way:

1. Start from top, left corner (Figure 2.1) – extruder’s
home position is point (0,0); because of that top left
corner will be the closest point from extruder.

2. Move into the right corner (Figure 2.2) – next step
is to select all points which lay to the right of the
first pixel.

3. Check the bottom pixels (Figure 2.3) – when there
are no more pixels on the right, the algorithm
checks starting from the right corner below if there
are pixels available.

4. Check the pixels above – when previous step ends
with no results, algorithm checks the pixels above.
Otherwise the algorithm skips this step.

5. Choose the pixel in the rightmost position (Figure
2.3) - if any of those pixels is available – i.e. it has
not been visited yet – the rightmost pixel is
selected.

6. Check the pixels to the left (Figure 2.4) – after step
4 the algorithm starts checking and selecting pixels
which lay to the left of the pixel which has been
chosen in step 4.

7. Check the pixels below (Figure 2.5) – when there
are no more pixels to the left, the algorithm checks
if the pixels below are available. It starts from the
lower left corner.

8. Check the pixels above– when the previous step
ends with no results, the algorithm checks the pixels
above. Otherwise the algorithm skips this step.

9. Choose the pixel in the leftmost position (Figure
2.5) - if any of those pixels is available – i.e. it has
not been visited yet – the lower leftmost pixel is
selected.

10. Repeat the procedure – the algorithm repeats the
steps from step 2 to 9. This creates the zig-zag-
shaped paths.

11. When there are no more pixels available to select in
the neighborhood of the previous pixel, but there
are some available in the whole layer, the algorithm
goes to step 1.

The important difference as compared to the standard
Zig-zag algorithm appears, when the MZZ algorithm finishes
checking available pixels on the bottom. Standard Zig-Zag
algorithm will now start a new path, while the MZZ
algorithm will also check the pixels above. If there are any
pixels available there, it will continue adding those pixels
(Figure 2.6).

B. Genetic Algorithm for path generating

GA as path generating algorithm works in the same way
as the standard GA [7]. It starts with generating population.
The single solution in this population is the path which
contains all the points of the layer. The initial solutions in the
population are generated randomly. After this GA selects the
best solutions from the population, i.e., the algorithm selects
the “m” solutions with the shortest path lengths. The next
step is to crossover the paths to make another population.
The crossover process is not so complicated. At first the
algorithm randomly chooses two parents – two different
paths from which the crossover will be made. Then
algorithm selects “l” random points from the first parent. The
rest of the points belong to the second parent. As in standard
GA, in “p” percent of the new paths random mutations
occur. If the mutation occurs, two points are swapped. The
whole procedure is repeated “t” times.

C. Genetic Algorithm for path optimization

This algorithm is responsible for optimizing the path that
is already found by MZZ algorithm. The standard MZZ
algorithm connects sub-paths as they are found. This means
that at the beginning the MZZ algorithm finds the first path,
then the second, and so on. After that it connects the last
point from the first path with the first point from the second
path, and so on.

In the proposed implementation the GA looks for the best
linking of the sub-paths found by MZZ algorithm. An
example of the implemented GA can be seen in Figure 3,
where 3(a) shows sub-paths which were found by the MZZ
algorithm; 3(b), 3(c) and 3 (d) are possible final paths which
appear after linking of the sub-paths.

The process of this algorithm goes like that of the
standard Genetic Algorithm. At first it generates population.
The single solution in this population is the path which
contains all sub-paths. The first population is generated

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

randomly. After that the “m” best solutions are selected. In
this case the better solution is when the path is shorter. The
next stage is to crossover the paths to make the next
population. This process is done as follows. At first it selects
two parents – paths that will be used to make a new solution.

Figure. 3. An example of possible paths made from linking sub-paths.

The new solution contains the “l” sub-paths from the first
parent, and rests of the sub-paths belong to the second
parent. The parameter “l” is chosen randomly. The next
process is mutation. A small percentage of the whole
population passes through this process. In this process the
randomly chosen sub-paths are swapped.

V. INVESTIGATION

A. Software

The experimentation system, i.e. the application for
testing algorithms has been designed by the authors of this
paper and implemented in Java. The experiments were
carried out on computer with Intel Core i5-3210M CPU
2.50GHz.

B. Experiment design

We took into consideration four different objects
denoted as Pic. 1, Pic. 2, Pic. 3, and Pic. 4. All objects can
be seen in Figure 4. The main differences between the
objects were in the number of pixels and complexity. The
first three objects had a small number of pixels and were not
complex. The last object had a much bigger number of
pixels and was much more complex than the other objects.

Two-stage experiments were carried out in the following
way:

1. In the first stage of the experiment the algorithms GA
path generating and MZZ path generating were tested for all
the objects. In order to adjust the internal parameters, the
GA path generating algorithm was tested in respect of two

internal parameters: the number of population and the
number of epoch.

Figure. 4. Four different objects which are tested during the experiment.

2. In the second stage of the experiment the optimization
algorithm MZZ-GA was tested. In this experiment GA was
linking sub-paths which were found by the MZZ algorithm.
Also, the influence of the number of population and the
number of epoch on the obtained results was tested.

The experiments with GA path generating algorithm and
MZZ-GA path optimization algorithm were carried out with
different number of epoch (NP) and different number of
population (NE). Three different values of NP and NE for
each of the tested objects were planned.

As the result of a single experiment two values were
taken:

- The execution time of the algorithm,
- The length of the founded path.

Because the GA contains random operations, the single
experiments were repeated ten times. Therefore, the
averaged values of two metrics were considered as the
indices of the performance. Those metrics are:

- The average execution time (AET),
- The average length of the founded path (ALP).

Moreover, the standard deviation was calculated (sdLP).

C. Results of experiments

Table 1 shows the results of the experiments in the first
stage for GA path generating algorithm. Table 2 shows the
final results of MZZ-GA, i.e. the results of GA path
optimization connected to MZZ.

It may be observed in Table 1 that GA path generating
gave better results when the number of epoch (NE) was
bigger than the number of population (NP).

The same conclusion can be drawn from Table 2.
However, in this case, for objects with low number of pixels
and less complexity, there is no need to use such a big
number of populations and of epoch. For the objects named

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

as Pic. 1, Pic. 2, and Pic. 3, the same results of ALP were
obtained.

TABLE 1. RESULTS OF GENETIC ALGORITHM AS PATH
GENERATING ALGORITHM.

GA PATH GENERATING

AET
[MS]

SDLP ALP NP NE

PIC. 1

139 4.5 105.9 100 100

1783 0.9 108.25 1000 100

939 5.4 84.9 100 1000

PIC.2

176 2.2 130.4 100 100

1062 2.8 135.0 500 100

912 1.8 126.5 100 500

PIC. 3

1216 3.4 538.1 100 100

4170 1.1 541.6 300 100

3996 3.1 555.7 100 300

PIC. 4

606 8.7 10903.0 10 10

8698 1.8 10912.0 100 10

7201 25.2 10873.0 10 100

In the case of the object denoted as Pic. 4, the one with a
high number of pixels and high complexity, using bigger
number of epoch gave better results than using bigger
number of population. Moreover, for those parameters the
solution was found in shorter time.

TABLE 2. RESULTS OF GENETIC ALGORITHM AS PATH
OPTIMIZATION ALGORITHM.

GA PATH OPTIMIZATION

AET
[MS]

SDLP ALP NP NE

PIC. 1

93 0 57.2 100 100

1416 0 57.2 1000 100

542 0 57.2 100 1000

PIC. 2

71 0 108.7 100 100

1392 0 108.7 1000 100

583 0 108.7 100 1000

PIC. 3

55 0 304.0 100 100

1325 0 304.0 1000 100

534 0 304.0 100 1000

PIC. 4

781 51.4 4016.6 100 100

4244 33.4 4015.7 500 100

4065 37.3 3798.9 100 500

Table 3 shows the results of both indices of performance
(ALP and AET) for all algorithms. The best results obtained
for GA path generating (from Table 1) are shown in column

GA-GEN, and the best results obtained for MZZ-GA
optimization (from Table 2) are shown in the column GA-
OPT. The column MZZ presents the results obtained with
MZZ path generating algorithm.

TABLE 3. COMPARISON OF ALL ALGORITHMS

No. OF
PIXELS

GA-GEN MZZ GA-OPT

AET ALP AET ALP AET ALP

55 939 84.9 0 5.5 93 57.2

89 912 126.5 0 129.5 71 108.7

294 1216 538.1 1 484.2 55 304.0

2335 7201 10873.0 12 4158.8 4065 3798.9

It can be seen that the GA path generating produced the
worst results – ALP and AET are the highest. The path
length for the complex object (Pic. 4) is twice as big as the
length of the path found by MZZ algorithm. From the results
of MZZ algorithm it can be seen that work time in this case
is the shortest, and that path lengths are almost in every case
better than in cases when they were given by GA path
generating algorithm. The results for GA path optimization
algorithm are the best. It can be seen that for any object the
GA significantly improved path lengths found by MZZ
algorithm. It is also evident that the execution times are
much shorter than those produced by the GA as path
generating, but longer than for simple MZZ algorithm.

VI. CONCLUSION

On the basis of the obtained results of experiments, it can
be concluded that MZZ algorithm is not the best algorithm
that can be used for path finding individually. Also, the
classic genetic path generating algorithm should not be used
as a path generating algorithm.

The genetic algorithm certainly should be recommended
(as the path optimization algorithm) when it is used together
with MZZ path generating algorithm as a combined MZZ-
GA algorithm.

When using MZZ-GA algorithm, it is necessary to bear
in mind that its merits are governed by the reasonable
number of epoch and the proper number of population (see
Table 2). However, the user may face some difficulties - for
the bigger number of pixels it will be difficult to use the
same number of epoch and the same number of population as
for smaller data.

In further research in the area the authors are planning to
consider more algorithms for path generating and path
optimization based on other evolutionary approaches, e.g. the
one presented in [13]. In particular, using the hybrid
approach and contour approach in constructing effective
algorithms seems to be very promising.

There are also several interesting issues that might be
discussed in future work in this area, such as designing and
implementing experimentation systems to conduct the
multistage experiments in the automatic manners, along with
the issues presented in [14].

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

ACKNOWLEDGMENT

This work was supported by the statutory funds of the
Department of Systems and Computer Networks,
S40029_K0402, Wroclaw University of Technology,
Poland.

REFERENCES

[1] K. P. Venuvinod and M. Weiyin, Rapid prototyping Laser-
based and Other Technologies, Springer, 2004.

[2] M. R. Dunlavey, “Efficient polygon-filling algorithms for
raster displays”, ACM Trans. Graph., 1983, pp. 264–273.

[3] S. C. Park and B. K. Choi, “Tool-path planning for direction-
parallel area milling”, Comput Aided Design, vol. 32, 2000,
pp. 17–25.

[4] R. Farouki, et. al., “Path planning with offset curves for
layered fabrication processes”, J. Manuf. Syst., vol. 14, 1995,
pp. 355–368.

[5] H. Wang, et. al., “A metric-based approach to two-
dimensional tool-path optimization for high-speed
machining”, J. Manuf. Sci. Eng., 2005, pp. 127-133.

[6] P. Kulkarni, et. al., “ A review of process planning techniques
in layered manufacturing”, Rapid Prototyp. J., vol. 6, 2000,
pp. 18–35.

[7] J. Balic, A. Nestler, and G. Schulz, “Prediction and
optimization of cutting conditions using neural networks and
genetic algorithm”, J. Mech. Eng., Assoc. Mech. Eng. Tech.
Slovenia, ISSN 0039-2480, 1999, pp. 192–203.

[8] P. K. Wah, K. G. Murty, A. Joneja, and L. C. Chiu, “Tool
path optimization in layered manufacturing”, IEE Trans., vol.
34, 2002; pp. 335–347.

[9] J. Balic and M. Korosec, “Intelligent tool path generation for
milling of free surfaces using neural networks”, International
Journal of Machine Tools & Manufacture, vol. 42, no. 10,
2002, pp. 1171-1179.

[10] G. Q. Jin, W. D. Li, and L. Gao, “An adaptive process
planning approach of rapid prototyping and manufacturing”,
Robotics andComputer-Integrated Manufacturing, vol. 29,
2013, pp. 23–38.

[11] D. Misra; V. Sundararajan, and P. K. Wright, “ZigZag tool
path generation for sculptured surface finishing”, DIMACS
Series in Discrete Mathematics and Theoretical Computer
Science, 2003.

[12] N. Volpato, R. T. Nakashima, L. C. Galvão, A. O. Barboza,
P.F. Benevides, and L. F. Nunes, “Reducing repositioning
distances in fused deposition-based processes using
optimization algorithms,” Advanced Research in Virtual and
Rapid Prototyping. London: CRC Press - Taylor and
FrancisGroup, vol. 1. 2013, pp. 417-422.

[13] D. Ohia, L. Koszalka, and A. Kasprzak, “Evolutionary
algorithm for solving congestion problem in computer
network”, Lecture Notes in Computer Science, Springer, vol.
5711, 2009, pp. 112-121.

[14] L. Koszalka, D. Lisowski, and I. Pozniak-Koszalka,
“Comparison of allocation algorithms for mesh structured
networks using multistage simulation”, Lecture Notes in
Computer Science, Springer, vol. 3984, 2006, pp. 58-67

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

http://www.informatik.uni-trier.de/~ley/pers/hd/o/Ohia:Dawid.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kasprzak:Andrzej.html

