
Natural Language Processing of Textual Requirements

Andres Arellano
Government of Chile,

Santiago, Chile
Email: andres.arellano@gmail.com

Edward Carney
Lockheed Martin,

College Park, MD 20742, USA
Email: edward.carney@lmco.com

Mark A. Austin
Department of Civil Engineering,

University of Maryland,
College Park, MD 20742, USA

Email: austin@isr.umd.edu

Abstract—Natural language processing (NLP) is the application
of automated parsing and machine learning techniques to analyze
standard text. Applications of NLP to requirements engineering
include extraction of ontologies from a requirements specification,
and use of NLP to verify the consistency and/or completion
of a requirements specification. This work-in-progress paper
describes a new approach to the interpretation, organization
and management of textual requirements through the use of
application-specific ontologies and natural language processing.
We also design and exercise a prototype software tool that
implements the new framework on a simplified model of an
aircraft.

Keywords-Systems Engineering; Ontologies; Natural Language
Processing; Requirements; Rule Checking.

I. I NTRODUCTION

Model-based systems engineering development is an ap-
proach to systems-level development in which the focus and
primary artifacts of development are models, as opposed
to documents. As engineering systems become increasingly
complex the need for automation arises [1]. A key element
of required capability is an ability to identify and manage
requirements during the early phases of the system design
process, where errors are cheapest and easiest to correct. While
engineers are looking for semi-formal and formal models to
work with, the reality remains that many large-scale projects
begin with hundreds – sometimes thousands – of pages of
textual requirements, which may be inadequate because they
are incomplete, under specified, or perhaps ambiguous. State-
of-the art practice involves the manual translation of text
into a semi-formal format (suitable for representation in a
requirements database). A second key problem is one of
completeness. For projects defined by hundreds/thousands of
textual requirements, how do we know a system description is
complete and consistent? The motivating tenet of our research
is that supporting tools that make use of computer processing
could significantly help software engineers to validate the
completeness of system requirements. Given a set of textual
descriptions of system requirements, we could analyze them
making use of natural language processing tools, extracting
the objects or properties that are referenced within the re-
quirements. Then, we could match these properties against
a defined ontology model corresponding to the domain of
this particular requirement. This would throw alerts in case
of lacking requirements for some properties.

II. PROJECTOBJECTIVES

Significant work has been done to apply natural language
processing (NLP) to the domain of requirements engineering
[2] [3] [4]. Applications range from using NLP to extract
ontologies from a requirements specification, to using NLP
to verify the consistency and/or completion of a requirements
specification. This work-in-progress paper outlines a frame-
work for using NLP to assist in the requirements decom-
position process. Our research objectives are to use modern
language processing tools to scan and tag a set of requirements,
and offer support to systems engineers in their task of defining
and maintaining a comprehensive, valid and accurate body of
requirements. Section III describes two aspects of our workin
progress: (1) Working with NLTK, and (2) Integration of NLP
with ontologies and textual requirements. A simple aircraft
application is presented in Section IV. Section V covers the
conclusions and directions for future work.

III. W ORK IN PROGRESS

Topic 1. Working with NLTK. The Natural Language Toolkit
(NLTK) is a mature open source platform for building Python
programs to work with human language data [5].

Figure 1. Information extraction system pipeline architecture.

Figure 1 shows the five-step processing pipeline. NLTK pro-
vides the basic pieces to accomplish those steps, each one
with different options and degrees of freedom. Starting with
an unstructured body of words (i.e., raw text), we want to
obtain sentences (the first step of abstraction on top of simple

93Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

Figure 2. Output from building a chunking grammar.

Figure 3. Output from the example on chinking.

words) and have access to each word independently (without
loosing its context or relative positioning to its sentence). This
process is known astokenizationand it is complicated by the
possibility of a single word being associated with multiple
token types. Consider, for example, the sentence: “These
prerequisites are known as (computer) system requirements
and are often used as a guideline as opposed to an absolute
rule.” The abbreviated script of Python code is as follows:

text = "These prerequisites are known as (computer)
system requirements and are often used as a
guideline as opposed to an absolute rule."

tokens = nltk.word_tokenize(my_string)
print tokens
=>
[’These’, ’prerequisites’, ’are’, ’known’, ’as’,
’(’, ’computer’, ’)’, ’system’, ’requirements’,
’and’, ’are’, ’often’, ’used’, ’as’, ’a’,
’guideline’, ’as’, ’opposed’, ’to’, ’an’,
’absolute’, ’rule’, ’.’]

The result of this script is an array that contains all the
text’s tokens, each token being a word or a punctuation
character. After we have obtained an array with each token
(i.e., word) from the original text, we may want to normalize
these tokens. This means: (1) Converting all letters to lower
case, (2) Making all plural words singular ones, (3) Removing
ing endings from verbs, (4) Making all verbs be in present
tense, and (5) Other similar actions to remove meaningless
differences between words. In NLP jargon, the latter is known
as stemming, in reference to a process that strips off affixes
and leaves you with a stem [6]. NLTK provides us with higher
level stemmersthat incorporate complex rules to deal with the
difficult problem of stemming. The Porter stemmer that uses
the algorithm presented in [7], the Lancaster stemmer, based
on [8], or the built in lemmatizer – Stemming is also known as
lemmatization, referencing the search of thelemmaof which
one is looking an inflected form [6] – found in WordNet.
Wordnet is an open lexical database of English maintained
by Princeton University [9]. The latter is considerably slower
than all the other ones, since it has to look for the potential
stem into its database for each token.

The next step is to identify what role each word plays

on the sentence: a noun, a verb, an adjective, a pronoun,
preposition, conjunction, numeral, article and interjection [10].
This process is known aspart of speech tagging, or simply
POS tagging[11]. On top of POS tagging we can identify
the entities. We can think of theseentitiesas “multiple word
nouns” or objects that are present in the text. NLTK provides
an interface for tagging each token in a sentence with supple-
mentary information such as its part of speech. Several taggers
are included, but anoff-the-shelfone is available, based on the
Penn Treebank tagset [12]. The following listing shows how
simple is to perform a basic part of speech tagging.

my_string = "When I work as a senior systems
engineer, I truly enjoy my work."

tokens = nltk.word_tokenize(my_string)
print tokens

tagged_tokens = nltk.pos_tag(tokens)
print tagged_tokens
=>
[(’When’, ’WRB’), (’I’, ’PRP’), (’work’, ’VBP’),
(’as’, ’RB’), (’a’, ’DT’), (’senior’, ’JJ’),
(’systems’, ’NNS’), (’engineer’, ’NN’), (’,’, ’,’),
(’I’, ’PRP’), (’truly’, ’RB’), (’enjoy’, ’VBP’),
(’my’, ’PRP$’), (’work’, ’NN’), (’.’, ’.’)]

The first thing to notice from the output is that the tags
are two or three letter codes. Each one represent a lexical
category or part of speech. For instance, WRB stands for
Wh-adverb, including how, where, why, etc. PRP stands for
Personal pronoun; RB for Adverb; JJ for Adjective, VBP for
Present verb tense, and so forth [13]. These categories are
more detailed than presented in [10], but they can all be traced
back to those ten major categories. It is important to note the
the possibility of one-to-many relationships between a word
and the tags that are possible. For our test example, the word
work is first classified as a verb, and then at the end of the
sentence, is classified as a noun, as expected. Moreover, we
found two nouns (i.e. objects), so we can affirm that the text
is saying something aboutsystems, an engineerand a work.
But we know more than that. We are not only referring toan
engineer, but to asystems engineer, and not only asystems
engineer, but a senior systems engineer. This is our entity
and we need torecognizeit from the text (thus the section

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

Figure 4. UML diagram of the application models.

name). In order to do this, we need to somehow tag groups of
words that represent an entity (e.g., sets of nouns that appear
in succession:(’systems’, ’NNS’), (’engineer’, ’NN’)). NLTK
offers regular expression processing support for identifying
groups of tokens, specifically noun phrases, in the text. The
rules for the parser are specified defininggrammars, including
patterns, known aschunking, or excluding patterns, known as
chinking. As a case in point, Figures 2 and 3 show the tree
structures that are generated when chunking and chinking are
applied to our test sentence.

Topic 2. Integration of NLP with Ontologies and Tex-
tual Requirements. In order to provide a platform for the
integration of natural language processing, ontologies and
systems requirements, and to give form to our project, we built
TextReq Validation, a web based software that serves as a proof
of concept for our objectives. The software stores ontology
models in a relational database (i.e., tables), as well as a
system with its requirements. It can do a basic analysis on these
requirements and match them against the model’s properties,
showing which ones are covered and which ones are not. The

software has two main components: The web application that
provides the user interfaces, handles the business logic, and
manages the storage of models and systems. This component
was built using Ruby on Rails (RoR), a framework to create
web applications following the Model View Controller pattern
[14]. The views and layouts are supported by the front-end
framework Bootstrap [15]; These scripts are written using
Python. Figure 4 is a UML diagram showing all the models.
The modelscorresponding to the MVC architecture of the
web application, reveal the simple design used to represent
an Ontology and a System. The first one consists of a Model
– named after an Ontology Model, and not because it is a
MVC model – that has many Entities. The Entities, in turn,
have many Properties. The latter is even simpler, consisting of
only a Systemthat has manySystem Requirements. Most of
the business logic resides in the models. Notice, in particular,
system-level interpretation of results from the natural language
processing.

IV. SIMPLE A IRCRAFT APPLICATION

We have exercised our ideas in a prototype application,
step-by-step development of a simplified aircraft ontology
model and a couple of associated textual requirements. The
software system requires two inputs: (1) An ontology model
that defines what we are designing, and (2) A system defined
by its requirements. We manage a flattened (i.e., tabular)
version of a simplified aircraft ontology. Figure 5 shows the
aircraft model we are going to use.

Figure 5. Simplified ontology model for an aircraft.

This simple ontology suggests usage of a hierarchical model
structure, with aircraft properties also being represented by
their own specialized ontology models. Second, it makes sense
to include a property in the model even if its value isn’t set.
Naturally, this lacks valuable information, but it does give us
the knowledge that that particular property is part of the model,
so we can check for its presence. The next step is to create
a system model and link it to the ontology. We propose a
one-to-one association relationship between the system and an
ontology, with more complex relationships handled through
hierarchical structures in ontologies. This assumption simpli-
fies development because when we are creating a system we
only need to refer to one ontology model and one entity.
The design of the system is specified throughtextual system
requirements. To enter them we need a system, a title and
a description. Figure 6 shows, for example, all the system
Requirements for the systemUMDBus 787. Notice that each

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

Figure 6. Panel showing all the requirements for the systemUMDBus 787.

requirement has a title and a description, and it belongs to a
specific system. The prototype software has views (details not
provided here) to highlight connectivity relationships between
the requirements, system model (in this case, a simplified
model of a UMDBus 787), and various aircraft ontolology
models. The analysis and validation actions match the system’s
properties taken from its ontology model against information
provided in the requirements. The output from these actionsis
shown in Figures 7 and 8, respectively.

V. CONCLUSIONS ANDFUTURE WORK

When a system is prescribed by a large number of (non
formal) textual requirements, the combination of previously
defined ontology models and natural language processing tech-
niques can play an important role in validating and verifying
a system design. Future work will include formal analysis
on the attributes of each property coupled with use of NLP
to extract ontology information from a set of requirements.
Rigorous automatic domain ontology extraction requires a
deep understanding of input text, and so it is fair to say
that these techniques are still relatively immature. A second
opportunity is the use of NLP techniques in conjunction with
a repository of acceptable “template sentence structures”for
writing requirements [16]. Finally, there is a strong need
for techniques that use the different levels of detail in the
requirements specification, and bring ontology models from
different domains to validate that the requirements belongs to
the supposed domain. This challenge belongs to the NLP area
of classification.

REFERENCES

[1] M.A. Austin, and J.S. Baras, “An Introduction to Information-Centric
Systems Engineering”. Toulouse, France: Tutorial F06, INCOSE, June
2004.

[2] V. Ambriola and V. Gervasi, “Processing Natural Lan-
guage Requirements,” in Proceedings 12th IEEE Interna-
tional Conference Automated Software Engineering. IEEE

Comput. Soc, 1997, pp. 36–45. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=632822

[3] C. Rolland and C. Proix, “A Natural Language Approach forRequire-
ments Engineering,” in Advanced Information Systems Engineering.
Springer, 1992, pp. 257–277.

[4] K. Ryan, “The Role of Natural Language in Require-
ments Engineering,” in [1993] Proceedings of the IEEE
International Symposium on Requirements Engineering. IEEE
Comput. Soc. Press, 1993, pp. 240–242. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=324852

[5] NLTK Project, “Natural Language Toolkit NLTK 3.0 documentation.”
[Online]. Available: http://www.nltk.org/

[6] C. Manning and H. Schuetze, Foundations of Statistical
Natural Language Processing. The MIT Press, 2012.
[Online]. Available: http://www.amazon.com/Foundations-Statistical-
Natural-Language-Processing-ebook/dp/B007L7LUKO

[7] M. Porter, “An Algorithm for Suffix Stripping,”
Program: electronic library and information systems,
vol. 14, no. 3, Dec. 1980, pp. 130–137. [Online].
Available: http://www.emeraldinsight.com/journals.htm?issn=0033-
0337&volume=14&issue=3&articleid=1670983&show=html

[8] C. D. Paice, “Another Stemmer,” ACM SIGIR Forum,
vol. 24, no. 3, Nov. 1990, pp. 56–61. [Online]. Available:
http://dl.acm.org/citation.cfm?id=101306.101310

[9] Princeton University, “About WordNet - WordNet - About WordNet.”
[Online]. Available: http://wordnet.princeton.edu/

[10] M. Haspelmath, “Word Classes and Parts of Speech,” 2001. [Online].
Available: http://philpapers.org/rec/HASWCA

[11] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. O’Reilly Media, Inc., 2009.

[12] University of Pennsylvania, “Penn Treebank Project.”[Online].
Available: http://www.cis.upenn.edu/ treebank/

[13] B. Santorini, “Part-of-Speech Tagging Guidelines forthe Penn
Treebank Project (3rd Revision),” 1990. [Online]. Available:
http://repository.upenn.edu/cisreports/570

[14] Ruby on Rails. See http://rubyonrails.org/ (Accessed, March 2015).

[15] Bootstrap. See http://getbootstrap.com/2.3.2/ (Accessed, March 2015).

[16] E. Hull, K. Jackson, and J. Dick, Requirements Engineering. Springer,
2002. [Online]. Available: http://www.amazon.com/Requirements-
Engineering-Elizabeth-Hull-ebook/dp/B000PY41OW

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

Figure 7. Basic stats from the text, and a list of the entitiesrecognized in it.

Figure 8. This is the final output from the application workflow. It shows what properties are verified (i.e., are present inthe system requirements) and which
ones are not.

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

