
Can I Let You In?
On Event-Centric Context-Aware Authorization

Philip Attfield∗, Paul Chenard∗, Marta Piekarska†, Julia Narvaez∗, Mike Hendrick∗ and Simon Curry∗

∗Sequitur Labs
33404 Redmond Fall City Rd. SE,

Fall City, WA, 98024, USA,
E-mail: <name>.<last name>@seqlabs.com

†Technische Universität Berlin
Security In Telecommunications,

Ernst-Reuter-Platz 7, 10587 Berlin, Germany,
E-mail: marta@sec.t-labs.tu-berlin.de

Abstract—Current mechanisms for control and protection of
computing resources were conceived decades ago. At that time
constraints on power management, connectivity and the types
of computing assets were far simpler. Today’s mobile and dis-
tributed information systems are vulnerable to much wider and
sophisticated threats. Thus, they require more flexible, extensive
and powerful policy-based protection. This paper contributes
a framework for policy-based authorization and illustrates its
implementation. Details describing the architecture, methodology
and tool flow for reliable synthesis of custom policy-based
authorization are presented. The hypothesis is that access control
applicable to a variety of devices should be event-centric and
context-driven. The integrity and security of the authorization
systems as well as the end-to-end trust that is guaranteed in the
process used to create them are discussed. The applicability of
the solution and its ability to mitigate the threats are discussed.
A wide range of systems from simple to complex, including the
emerging Internet of Things is covered. (Abstract)

Keywords–Mobile Operating Systems, Access Control, Mobile
Device Management, Internet of Things.

I. INTRODUCTION

Users are accustomed to a world full of choices and possi-
bilities. Thus they are often surprised and frustrated by usage
restrictions and constraints that computer and communication
devices impose upon them [1]. The way that we manage
devices is by policies/rules, that define access to, and the use
of, the resources made available. There is a growing need, even
an expectation, that these should cover the variety of ways in
which people and organizations want to use the devices instead
of reflecting the engineering limitations [2].

With good authentication, the system can validate the bona
fides of the current operator of the device. However it cannot
offer control over the way the assets available on those devices
are being used, either deliberately or inadvertently. These
include hardware components like the camera or microphone
on a mobile phone, and software elements such as files,
applications or network resource access. This paper elaborates
on the problem of policy for the authorization of requests that
arise in the everyday use of the device. It also proposes an
implementation that solves that issue.

In a world where we can software-define almost anything,
policies must be programmable. It is not important whether
the computing asset is a mobile device, an Internet of Things
(IoT) element, a Personal Computer (PC), a server, a Virtual
Machine (VM) or a newly instantiated virtual network function
(VN). A real-time, dynamic, contextually-aware policy model

with a definable policy enforcement action (not just “allowed”
or “not allowed”) is more effective and more useful than the
traditional static approach, as will be shown. The solution
presented creates a hierarchy of policies, where multiple par-
ties can author rules, which are then prioritized. This paper
contributes to the field in several ways:

• It identifies lack of authorization mechanisms suited
for mobile and distributed information systems.

• It presents a framework and an architecture that has
general application to the management of many device
types. This solution will find wide application with
spread of Internet of Things approach.

• It shows how much more extensive and complex
systems can be subject to powerful and flexible policy
control of arbitrary granularity.

The rest of the paper is organized as follows. Section II
reviews work that precedes our research. Section III presents
an overview of the Framework architecture, explaining the
general approach that was taken. Section IV discusses the
components of the event centric portion of the Framework,
while Section V discusses policy and policy administration
for it. The work is summarized in Section VI.

II. RELATED WORK

On a more abstract level, the work done by van Thanh
et al., presents the concept of Device Management Service
(DMS) [3]. This is a “virtual terminal” that can be used
to manage multiple phones, both mobile and stationary. Un-
like the Universal Personal Telecommunications (UPT), DMS
allows for parallel registration, collaboration and work. This
work from 2001 can be seen as the precursor of actual Mobile
Device Management (MDM) solutions.

Another attempt to solve the problem of device manage-
ment is presented in [4]. Here, the authors present a secure
device management framework that aims to securely deliver
services to user devices, manage credentials and interact with
service providers. However, it mostly focuses on access control
within a single unit, usually for the security purposes and secret
handling.

Mei et al. discuss a design of a remote device management
framework that is crafted for personal devices in [5]. This
tool allows access to information about operational status,
maintenance functionalities and potential security issues of the
device. The advantage of their work is that it includes an open

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-451-0

ICONS 2016 : The Eleventh International Conference on Systems (includes EMBEDDED 2016)

Figure 1. Framework Overview. The PDK captures the user’s design intent
at Level 1, and generates an instance of the PDP at Level 0.

implementation based on the SyncML Device Management
(DM) specification.

Song et al. identify the problem of managing and control-
ling machine-to-machine (M2M) devices in [6]. This mostly
state-of the-art work shows several architectures for M2M
devices that are subject to standardization, with the focus
on key functionalities that are used to manage and control
them. On the other hand, Internet Protocol (IP) Multimedia
Subsystem device management issues are presented in [7].
The paper also suggests an architecture for management by
separating functions and providing service provisioning and
tracing functionalities.

On the subject of security level analysis, Landman provides
an in-depth analysis of the types and nature of threats to an
organization from the use of smartphones as well as controls,
available security software and tools, in [8]. He also shows the
state of corporate security programs.

Another extensive work, where the authors suggest a new
modeling methodology and present threats that MDM systems
face is presented in [9]. They achieve this by an analysis of
the agents, assets and ad-verse actions.

III. FRAMEWORK

This section provides details of a novel, context-aware
policy management solution that is applicable to a wide variety
of systems, as will be shown. On a high level it comprises two
layers:

a) Level 0:: Includes the operational components that
communicate together to implement the policy authorization
process in a live system. This level also includes compilers1

that synthesize policy specifications in the Policy Object Lan-
guage (POL) language into executable Policy Decision Point
(PDP) instances for use in a live system.

b) Level 1:: Contains the Policy Design Kit (PDK),
a GUI-based policy design environment that simplifies the
authoring of complex policy sets. It also manages the end-to-
end process of creating an instance of a Level 0 framework,
ensuring its integrity, authenticity and correctness.

The data flow from the user’s design intent, through Level
1, and Level 0 to produce an instance of the framework is
shown in Figure 1.

IV. FRAMEWORK LEVEL 0 ARCHITECTURE

As depicted in Figure 2, the operational architecture of
the framework has four components: Policy Enforcement Point
(PEP), Policy Decision Point (PDP), Policy Information Point
(PIP) and Fabric.

1The discussion of POL compilers is deferred to the section on Level 1.

Figure 2. Framework Level 0 Architecture. The Level 0 architecture consists
of four components: Policy Enforcement Point, Policy Decision Point, Policy

Information Point and the Fabric (denoted by the double headed arrow).

A. Operational Elements

A PEP is an agent located on a device, such as a mobile
phone. It monitors events on the device that represent requests
to access resources under policy control. For each such request,
the PEP creates a query message that contains details of the
request and of the state of the device at the time of the request
and transmits it to a PDP; it then waits for a response. When
the PEP receives a response, it enforces the decision contained
therein.

A PDP is a server that may be located remotely or,
sometimes, co-located with the PEP in a device. The PDP
listens for queries from PEPs and, using the data within the
query and policies specific to the instance of the PDP, transmits
a response to the requesting PEP.

A PIP is a data source, external to the PDP, containing
information needed to evaluate policies. PIPs are typically
directory services. The PDP has special features that exploit
access to PIPs efficiently.

Depending upon the nature and disposition of the PEPs
and PDPs and the application for which they provide an
authorization service, PEP queries and PDP responses may
be transmitted through the Fabric that may be any of a wide
variety of external media. As will be detailed further, these
may be a complex as User Datagram Protocol (UDP) over
Universal Mobile Telecommunications System (UMTS) [10]
or as simple as shared memory. The Fabric is depicted as a
double headed arrow in Figure 2.

B. Structure of a query

From an abstract point of view, queries and responses
consist of an array of elements and a fabric dependent header.
Each array element represents a PEP state attribute or data
pertinent to the request. For responses, each array element
contains an attribute of the response, such as a verdict or
information qualifying the verdict, for example a stipulation.
Array items are identified by their indices, as agreed in a
dictionary shared by the PEP and the PDP. The array is referred

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-451-0

ICONS 2016 : The Eleventh International Conference on Systems (includes EMBEDDED 2016)

Figure 3. Policy enforcement. The Policy Enforcement Points (PEPs) are
remote agents located on the managed device that are triggered by access
requests. PEPs query the PDP for authorization and enforce the response.

to as the dynamic array, and each of its elements is referred
to a dynamic.

C. Policy Enforcement Point (PEP)
Depending on the type of resource, the PEP can be located

at the driver level or implemented as an application. The PEP
consists of a Trigger, a Policy Query Module (PQM) and an
Effector, as depicted in Figure 3.

The Trigger, interrupting the normal flow of an event,
gathers the relevant dynamic content and sends it to the PQM.

The purpose of the PQM is to create queries and enforce the
intent of responses on the operation of the device. Depending
on the Trigger and any included dynamic attributes it may look
for additional environmental variables to form a query. It then
sends the query to a designated PDP (local or remote). Finally,
it obtains a policy decision and provides the response to the
appropriate Effector for that Trigger.

The process followed by the PQM varies according to the
nature of the PEP. This includes consideration of the state of
the device (online or offline), whether or not the device policy
cache may be used and which PDPs may be consulted for a
policy response.

The Effector enforces verdicts returned by the PQM. It
provides a meaningful control path for each possible ver-
dict/stipulation combination and ensures a sensible user ex-
perience for all outcomes.

Caching is shared by all PEPs on a given device because
the wireless network can present an inconsistent and sporadic
connection to all back-end services. Policies can direct caching
of responses for a specified period of time. This reduces fabric
bandwidth demand on the network and allows for near-instant
response (to queries that match the same conditions) without
recourse to an external connection. This is useful for devices
that have a high frequency request cycle, such as a camera that
may query as frequently as 60 times a second.

In the event that there is no cached decision and the PDP is
not reachable, a simple set of decisions is stored on the device
to provide a fail-safe response for all PEPs. If the network does
not allow for a real-time decision to be received, the response
is equivalent to that provided by traditional MDM solutions.

Policy decisions may include stipulations that require log-
ging. There is a common service which collects log data
and delivers it efficiently. For example, if multiple control
points are logging and the network is unavailable, the common
service will hold the data and deliver it as a bulk payload

Figure 4. Policy Decision Point. The PDP is a server that issues that issues
responses to queries from PEPs. Its responses are based on PDP-specific

policies. PEPs and PDPs communicate through a two-way channel.

once the connection is restored. This relieves individual control
points from tracking and performing these functions.

The heartbeat function maintains periodic communication
between the PEP and the PDP confirming PEP presence
and state. The PDP may respond to heartbeats with control
messages.

The installation of PEPs to devices depends on the nature of
the implementation and the protected resource. PEPs protecting
hardware resources are implemented at the hardware resource
driver level. For example, a camera resource needs to be
implemented in the camera driver. PEPs protecting data files
(for example), may be implemented as part of a file system
driver or as part of an application.

The PEP ensures a sensible outcome for the end user or
application when an access attempt is denied. Devices do not
appear broken; applications do not crash.

D. Policy Decision Point (PDP)
A PDP is a server that issues responses to queries received

from PEPs. The responses are based on policies that are
specific to the PDP and that make use of the dynamic values
in the query. Refer to Figure 4 for more detail.

1) Characteristics of a PDP: In order to ensure availability,
a PDP always returns a response to a PEP even if no relevant
policy is found. A PDP is defined as permissive or restrictive
depending on whether it sends an ”allow” or ”deny”. A PDP
can handle large collections of policies (thousands or more)
without significant performance degradation. The PDP is state-
less. This improves performance and simplifies interactions
with PEPs and management of PDP farms. For audit and
forensic analysis purposes, a PDP generates a log of all query
transactions. A PDP may respond to PEP heartbeat signals
with commands that affect the state of the PEP or host device.
One of the operations that may be requested is maintenance
for a PEP instance.

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-451-0

ICONS 2016 : The Eleventh International Conference on Systems (includes EMBEDDED 2016)

The decision engine of the PDP interfaces at the level of
abstract query objects. This allows the use of various harnesses
to adapt the PDP to a variety communication fabrics. Further-
more, this provides for the creation of systems with multiple,
concurrent PDP instances for higher bandwidth needs.

2) Security Design of a PDP: PDP architecture minimizes
the opportunities for malicious intervention. The code of the
PDP itself, as well as the representation of policies is attestable
(signed and authenticated) through a chain of trust. The process
of creating PDPs and their policies and delivering them can
be made verifiably secure.

The PDP is synthesized by a compiler which directly
generates its executable, including the embedding harness,
from policy specifications in the proprietary POL language.
The PDP offers no programming API or facility for source
code tampering or modification and the executable may be
signed.

To limit the attack surface, the PDP has only one I/O
channel on which encrypted packets are received (queries)
and transmitted (responses). It has an output channel on
which logging information is emitted. Moreover, in order to
prevent unauthorized access and modification of the policy
database and rules, the database is password-protected. Only
the compiled PDP and the data-base server have the key, which
is generated at compile time. Essential database fields may also
be encrypted.

Lastly, when it comes to network fabric, queries and re-
sponses are transmitted using a protocol that is resilient to man-
in-the-middle attacks and spoofing. The PDP drops incoming
packets as soon as protocol discrepancies are detected.

E. Policy Information Point (PIP)
Corporate data, particularly personnel data, is often stored

in active directories and databases which deliver fast data
retrieval and consistency. Policy formulation often requires
precisely this kind of data. The PDP has been designed to
connect to directories. The POL language provides directory
specification and search functionality to make the data avail-
able for policy evaluation by the PDP.

V. POLICY AND POLICY MANAGEMENT

From the forgoing description it is clear that the behavior of
devices governed by the system is dependent upon the policies
embedded in the PDP. A policy is a rule that dictates what
actions should be taken for a particular event under a given
set of conditions. Individual policies are gathered together
into policy sets which together address all of the events and
circumstances of interest to the policy authors.

A. Characteristics of Policy Management
The objectives of policy management include the follow-

ing:

• The method of expressing policies is rich enough to
express policy author intent under a wide range of
circumstances, some of which cannot be foreseen. It
is succinct so that the resulting policy sets remain
manageable in size and complexity.

• Policies are written only by those who have the
required authority for the resource being governed.

• Policy sets created by many authors are combined
with a clear order of precedence, with any conflicts
or logical problems detected and addressed.

• Information referenced by the policies to arrive at
decisions, in PIPs or otherwise, are only writable by
properly authorized authors.

• Compilation and deployment of PDPs employs a con-
trolled process and is done by authorized individuals.

B. Chain of Trust

A result of a stringent implementation is a chain of trust
for the policy data, beginning with the creation of policy and
extending through to the deployment of PDP. This chain of
trust ensures that the integrity of policy intent is maintained.

The establishment of the chain of trust requires two types
of policies: Level 0 policies which specify how PDPs respond
to device requests, and Level 1 policies which govern access
control for data used to create Level 0 policies. These also
secure custody of the data.

1) Policy Specification, Level 0: Level 0 policies are spec-
ified in a formal policy language, the POL. POL is terse
and declarative to facilitate synthesis and static verification of
policy sets. It follows a pattern of: Subject, Agent, Object,
Action and Environment (SAOAE). Each component has a
corresponding clause in the model which consists of an ar-
bitrary expression that can reference dynamic data from the
query, static data from a PIP or data from the policy set itself.
The clauses organize policy considerations along the following
lines:

• Subject: the identity of the entity making the request,
e.g. the user.

• Agent: the means by which the request will be carried
out, e.g. the program that will make the access.

• Object: the elements and items affected by the request
and being acted upon by the Agent.

• Action: the specific function that the Agent applies to
the Object.

• Environment: information in the request that would be
observable at the PEP but independent of any given
event, such as time or location.

The POL language provides a mapping feature that allows
query and PIP data to be tagged along arbitrary lines. Tags can
be tagged themselves, forming chains which begin with query
or PIP data, allowing large numbers of specific data elements to
be aggregated into manageable categories for expressing policy
intent. Support is provided for regular expression constructs,
simple geolocation constructs and time intervals. For example,
a tag chain could be constructed to map an identifier from
a mobile device into an employee number, and then into a
role or a location or an authorization level. Clauses in SAOAE
statements can reference tag chains in their expressions. The
number of tags and length of tag chains is not dictated by
the language. It can be used to construct both policies with
a wide scope and general application, or policies for specific
situations with very fine granularity.

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-451-0

ICONS 2016 : The Eleventh International Conference on Systems (includes EMBEDDED 2016)

Figure 5. Policy Ownership Tree. Policy stakeholders are arranged in a
hierarchy, each responsible for their own domain and allowed to delegate

authority to those beneath them.

2) Policy Application, Hierarchy and Delegation: Desig-
nated authorities are permitted to write the policies for those
areas within their domain. As shown in Figure 5, Policy
stakeholders are arranged in a hierarchy and are allowed to
delegate authority to those beneath them. This permits higher-
ranking authorities to reserve for themselves the rights they
need and to delegate policy decisions to others as appropriate.
Policies may be marked as default, to permit policy set closure
if no lower-ranking policy authors provide an applicable policy.

This policy ownership tree model can be applied in various
ways to simplify the management of complex policy sets. For
example, one approach might use an organization chart to map
the hierarchical tree such that levels of policy authority corre-
spond to levels of organizational authority. Another example
might use a high-ranking policy set to specify some coarse-
grained generic default policies and one or more lower-ranking
policy sets to create categories of specific exceptions to the
generic rules.

3) Administrative Policies, Level 1: The POL language and
its constructs define Level 0 policies which address the manner
in which the system responds to requests from devices. In order
to implement the chain of trust as outlined above, another layer
of administrative, or Level 1 policies is required to govern
the authentication and authorization of stakeholders as they
perform their duties within the system. These duties can consist
of policy and data entry, configuring policy information points,
compiling and deploying PDPs, introspection and debugging
of policy sets, and administration and management of the
administrative policies themselves. Administrative policies are
defined and enforced in the PDK.

C. Policy Design Kit (PDK)

The PDK is a general purpose authentication and authoriza-
tion platform that provides controlled access to the data and
tools and a policy life-cycle framework. Its work is presented
in Figure 6. After authenticating to the PDK, users receive
a fine-grained set of abilities dictating allow/deny access to
various resources. Data objects in the PDK have a strict chain
of ownership back to a user. These abilities combine with
the object ownership to enforce Level 1 policy. Relationships
between users are established in the PDK to enforce rules for
sharing data, and to establish relative positions in the policy
ownership tree.

Figure 6. Policy Design Kit. The PDK is a policy life-cycle management
framework with a set of tools for the policy administrator to conduct policy
authoring, introspection of policy sets, PDP generation, sanity checking and

deployment.

1) Policy Capture, Level 0: The PDK provides policy
models that allow users to express their Level 0 policy intent
at a level of abstraction suitable for a given application. For
example, a policy model that governs a resource according to
a time interval and a location might present an interface that
captures just the interval and the location. No knowledge of
POL is required to use the models. Data to populate a policy
model’s tags is also captured by the model at an appropriate
level of abstraction. The PDK provides a number of policy
models; however, a given user only has access to those for
which they are authorized by Level 1 policy.

2) PIPs and Data Sharing: While PIPs usually contain
common organization data, often additional data is required
for policy authoring. For this reason, the PDK provides models
that allow users to capture extra data and explicitly share the
information with other selected policy authors by using the
PDK’s authorization mechanism. The shared data is available
to a second user’s policy models but cannot be viewed or
changed. As an example, an employee in HR may be responsi-
ble for maintaining employee data, while an IT employee may
dictate network policies using a role-based scheme bound to
that employee data.

3) Configuration: The PDK provides a set of user adminis-
tration functions that allow users authorized by Level 1 policy
to manage other users in the PDK. These functions include the
typical user life-cycle operations, as well as the assignment of
abilities to users which grant them access to various functions,
policy models and shared data in the PDK. Users and their
policy sets can also be assigned to their positions in the policy
ownership tree.

4) PDP Generation, Sanity Checking and Deployment:
The PDK provides tools for the generation and compilation of
PDPs from policy set trees. The first step in the process is to
synthesize POL code from the policy model and captured data.
The POL code is then compiled to produce C++ code and any
associated database. The compiler carries out simple semantic

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-451-0

ICONS 2016 : The Eleventh International Conference on Systems (includes EMBEDDED 2016)

checks as well as a sanity check, which verifies that the policy
set possesses certain properties. For example, it verifies that
there is no ambiguity where two policies might apply to the
same query, and it verifies that there is a set of query data
capable of activating each policy in the set. The last step is
to compile the C++ code to produce the executable PDP. The
entire flow can be executed stepwise or automatically as a
single step.

The PDK provides functionality to define server elements,
to transfer the executable PDP to them and to set them running.
Server elements can be designated as database servers, PDP
servers or both. This allows flexibility in the number of PDPs
deployed, and in load balancing the number of executing PDPs
to the number of corresponding database servers.

D. Debugging and Introspection
The executable PDP produced by the compiler has minimal

I/O. I/O is limited to receiving requests, emitting decisions,
and providing a log file. The log file provides an indication
of which policy was used to arrive at a decision; however,
it doesn’t provide any information on how that policy was
selected. As policy set complexity increases, so does the
need for tools to analyze and debug them, and examine
them forensically. To address this, the PDK provides features
for log file analysis and management as well as policy set
introspection.

Authorized users of the PDK can collect PDP log files from
various servers, combine and analyze them. The log entries
for any given device may be distributed amongst a number of
PDPs in a farm. Combining them allows the entire history for
any one device to be examined. The combined log is elaborated
to allow any sequence of events to be found quickly.

Introspection refers to the activity of studying policy set
behavior by simulating the PDP look-up process, while dis-
playing all intermediate results. For a given simulated request,
each of the policies considered are displayed in rank order,
along with the values of all policy clauses. Intermediate terms
and tag expressions in the clauses are also evaluated and
displayed, providing detailed information showing why any
given policy was selected, rejected or not evaluated. This
capability allows authors to evaluate different scenarios against
policy sets and groups of policy sets to determine if desired
outcomes are being produced.

VI. CONCLUSIONS

The paper postulates that as computing assets become
commonplace, the need to manage data on an event-centric
and context-aware basis is becoming urgent. Mobile Device
Management has been adopted as the industry standard for
mobile security. However, current MDM solutions are hard to
manage, are inflexible and apply the rule “define once, run al-
ways”. When it comes to mobile devices, Personal Computers,
servers, health trackers, Virtual Machines or Internet of Thing
devices, more power and flexibility is needed.

This paper presents a novel, context-driven policy defini-
tion and enforcement framework which addresses these short-
comings. Instead of deciding whether access is granted to a
resource at configuration time, this solution takes into account
the state of the system, time, location and any other definable
factors at the time of the event. The solution addresses the

entire policy life-cycle: formulation, management, verification,
debug and analysis of policy behavior at time of definition as
well as execution, policy server generation and secure delivery
of the implementation.

The solution can be applied to many fields, not only those
with a focus on the enterprise. The Framework elements that
are common to all foreseeable applications are discussed:
the Policy Design Kit, the Policy Decision Point, the Policy
Enforcement Point and the Policy Information Point. The
application of the solution to MDM is presented. It shows
how extensive and complex systems can be subject to powerful
and flexible policy control with appropriate granularity, while
still remaining manageable. Evaluation is based on comparison
with existing solutions.

The context-aware policy framework provides generalized
resource access control based on a wide set of conditions.
The wide range of factors that may be considered in policy,
the unrestricted specification of policy, the hierarchical and
delegation features, the real-time assessment of events and
conditions, and applicability to other domains, such as the
Internet of Things, are unavailable in current solutions. Most
importantly, the combination of these features represents a
significant step forward in the field of access control.

REFERENCES
[1] B. J. Myers, “Student perceptions of computer anxiety: The rela-

tionship of computer attitude, computer experience, age, gender, and
socioeconomic status,” Ph.D. dissertation, Vermillion, SD, USA, 2006,
aAI3255100.

[2] S. M. AlHaj, “Context-aware policy management platform: Based
multi-agent systems mas,” in Proceedings of the 2011 Developments
in E-systems Engineering, ser. DESE ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 490–495. [Online]. Available:
http://dx.doi.org/10.1109/DeSE.2011.89

[3] D. V. Thanh, T. Jonvik, E. Vanem, D. van Tran, and J. Audestad, “The
device management service,” in Intelligent Network Workshop, 2001
IEEE, May 2001, pp. 199–211.

[4] A. Leung and C. Mitchell, “A device management framework for secure
ubiquitous service delivery,” in Information Assurance and Security,
2008. ISIAS ’08. Fourth International Conference on, Sept 2008, pp.
267–274.

[5] H. Mei and J. Lukkien, “A remote personal device management
framework based on syncml dm specifications,” in Proceedings of the
6th International Conference on Mobile Data Management, ser. MDM
’05. New York, NY, USA: ACM, 2005, pp. 185–191. [Online].
Available: http://doi.acm.org/10.1145/1071246.1071275

[6] J. Song, A. Kunz, M. Schmidt, and P. Szczytowski, “Connecting
and managing m2m devices in the future internet,” Mob. Netw.
Appl., vol. 19, no. 1, pp. 4–17, Feb. 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11036-013-0480-9

[7] J. Ma, J. Liao, and X. Zhu, “Device management in the ims,” J.
Netw. Syst. Manage., vol. 16, no. 1, pp. 46–62, Mar. 2008. [Online].
Available: http://dx.doi.org/10.1007/s10922-007-9092-7

[8] M. Landman, “Managing smart phone security risks,” in 2010
Information Security Curriculum Development Conference, ser.
InfoSecCD ’10. New York, NY, USA: ACM, 2010, pp. 145–
155. [Online]. Available: http://doi.acm.org/10.1145/1940941.1940971

[9] K. Rhee, D. Won, S.-W. Jang, S. Chae, and S. Park, “Threat modeling of
a mobile device management system for secure smart work,” Electronic
Commerce Research, vol. 13, no. 3, pp. 243–256, September 2013.
[Online]. Available: http://dx.doi.org/10.1007/s10660-013-9121-4

[10] M. Sauter, Communication Systems for the Mobile Information Society.
John Wiley, 2006.

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-451-0

ICONS 2016 : The Eleventh International Conference on Systems (includes EMBEDDED 2016)

http://dx.doi.org/10.1109/DeSE.2011.89
http://doi.acm.org/10.1145/1071246.1071275
http://dx.doi.org/10.1007/s11036-013-0480-9
http://dx.doi.org/10.1007/s10922-007-9092-7
http://doi.acm.org/10.1145/1940941.1940971
http://dx.doi.org/10.1007/s10660-013-9121-4

	Introduction
	Related Work
	Framework
	Framework Level 0 Architecture
	Operational Elements
	Structure of a query
	Policy Enforcement Point (PEP)
	Policy Decision Point (PDP)
	Characteristics of a PDP
	Security Design of a PDP

	Policy Information Point (PIP)

	Policy and Policy Management
	Characteristics of Policy Management
	Chain of Trust
	Policy Specification, Level 0
	Policy Application, Hierarchy and Delegation
	Administrative Policies, Level 1

	Policy Design Kit (PDK)
	Policy Capture, Level 0
	PIPs and Data Sharing
	Configuration
	PDP Generation, Sanity Checking and Deployment

	Debugging and Introspection

	Conclusions
	References

