
Evolving Agent Architecture for Data Collection

Ali Esserhir
LACL

Université Pars Est Créteil (UPEC)
Créteil, France

ali.esserhir@lacl.fr

Abstract— The use of mobile agents has shown that agent
migration is a solution for the change management. However,
the use of such architecture is often quite complex, depending
on the design approach. In this work, we propose to define a
set of Rest (REpresentational State Transfer) interfaces for
each element of our mobile agent architecture. Moreover, we
have built a toolchain based on the small set of tools that allows
the designer to easily update the facades of each element. Then,
we apply our strategy for a validation of concept. A study is
built about using mobile agents for data collection in a Rest
architecture. We analyze our results and how we treat any
changes in the design of our architecture.

Keywords-software architecture; mobile agent; REST
architecture; RESTful system.

I. INTRODUCTION

Nowadays, computer science projects have to deal with
software architecture on one hand and agile methodology on
the other side. By the end, we obtain a context where
changes in architecture have a heavy impact on the lifecycle
of the project. This topic is interesting since architecture and
agile seem to have some conflicting forces at work. The
definition of software architecture is a first challenge and the
experts provide different visions about this concept. Our
current definition is quite common, but explicit: software
architecture is the collection of decisions affecting the
system’s quality attributes, which have global effects and are
hardest to change.

As a precision, software architecture provides the frame
within which the design is built by the developers. Because a
component diagram often describes an architecture, the
component definition is essential. In our work, it is an
autonomous part of our software, which exposes a public
interface and needs outside interface for working. B. Wallace
introduces the idea that a component definition cannot exist
without a framework selection [1]. For Rainer Niekamp, a
component is first a reusable unit of software, which is able
to communicate with other components via interfaces [2].
Raphael Gfeller considers a component as an administrable
entity into a software project with dependencies and features
[3]. All these definitions depict different facets of what is a
component. In addition, we consider that, when a software
architecture evolves, it is crucial that all its components are
administrable and exchangeable through well-defined
interfaces under the control of a selection of specifications or
frameworks.

On the client side, the invocation way of a component
must be as simple as a local method call. R. Fielding has
worked on this problem and his REST philosophy is
welcomed in many projects, regardless of the programming
language is used. Such simplicity had already been applied
which the SOA (Service-Oriented Architecture) architecture
with the use of ESB (Enterprise Service Bus) framework like
Apache ServiceMix [4]. This framework requires the use of
VETO pattern for the treatment of the client requests.

Moreover, to manage the complexity of evolving a
software-distributed system, its architecture description has
to be linked through an accurate and traceable way to its
implementation. Too often, only the software architect is
able to maintain the software architecture and no one knows
the keys for updating the architecture. The software
architecture deals with multiple views of a system, including
both its functional and nonfunctional facets. A structural
approach looks at the system as a set of components that
interact via interfaces. Complexity is mastered by means of
hierarchical decomposition; a component can be composed
of subcomponents with the hierarchy’s leaf components
representing coded functionality. As the Architecture
Description Languages (ADL) group describes, this research
community has proposed numerous ADL versions [5].

Any software-distributed system is constantly subject to
software changes, usually driven by external constraints from
the runtime environment over which the developers have no
control at all. These constraints may be as diverse and
unpredictable as technological changes, enhanced user
organizational structures or business processes, new
legislation, or changes in resources. To cope with any of
these issues, all software artifacts produced and used by the
software-distributed system have to evolve. Depending on
the software artifacts’ type, the impact and rate of change
may differ. Evolving a software architecture by modifying its
description to accommodate change requests faces numerous
research challenges. In particular, the evolution of an
architectural description should typically preserve its purpose
and criticality concerns. However, often, the clients express
the changes and it is not a set of bug fixes. In addition, the
checks are on the preservation of the existing architecture.

Our work is about the lifecycle of the architectural
changes and, more precisely, in the context of Resource
Oriented Architecture (ROA) architecture. This acronym is
created by the Django framework [6] and is now used for
designing a software architecture based on REST concepts. It

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

requires that all components are accessible through a REST
API (Application Programming Interface).

This document is structured into several sections. Section
1 is around the topic of the evolving architecture for
collecting data. Section 2 is about the related works, which
are closed to our topic. Section 3 is on the use of mobile
agent for the management of changes. In Section 4, we
explain how our four-step strategy pilots the development
process of the changes of a component. In Section 5, we
apply this process for a case study on data collection over a
network. In Section 6, we detail our results and analyze the
reasons of the success of such approach. Finally, in Section
7, we summarize the main results of our contribution.

II. RELATED WORK

The software architecture field is often considered too
abstract or too technical. Software architecture includes the
global control structures, protocols for communication,
synchronization, physical distribution, scaling and
performance, and selection among design alternatives.

A. Agent architecture

One of the alternatives in the design of the software
architecture is how to access remote resources or make calls
to remote objects; or how to send the program code over the
network. Four different paradigms have been identified:
Client-Server, Remote Evaluation, Code on Demand, Mobile
Agents. In this case, the code, including its execution state
and some of its resources, is sent to a remote site where it
executes. It can continue to another site if needed.

In order to make a mobile agent system work, it is not
enough to build the agents themselves. A program at each
site is also needed to handle the incoming agents and send
out agents. This program is often called an agent factory. The
agent factory can be built differently depending on which
type of agent system is needed. The generic mobile agent
system can have a range of varying components. It needs a
communication module that handles incoming and outgoing
agents, as well as the messaging between non-local agents. It
has a repository that performs authentication, sets priorities
and queues up agents for later execution.

One of the first ideas was to use mobile agents for
searching through the Internet for the lowest prices of
products and services. While the idea was good in theory,
few companies wanted other people’s agents in their
computers, not only for security reasons, but probably for
marketing reasons, too. They wanted people to come to their
place and keep them there. Another domain is remote
control, where applications are intended to control or
reprogram remote computers, devices or unmanned vehicles
by sending agents with new commands or program updates.
These updates can be done very quickly, making it very good
for applying security patches. Agents can also be used for
monitoring devices and reporting back when status changes
or problems occur, or can even be used for intrusion
detection and active defense of computer systems [7]. A
similar example of remote control is an abstraction called
Mobile Streams [14]. Using that system, a distributed, event-
driven application can be scripted from a single point of

control and dynamically extended and reconfigured during
execution.

Another application area for mobile agents or simply
mobile code is to dynamically program the networks
themselves in order to make them more flexible, customized
and give them higher performance. At the lower level, the
network devices like routers and switches can be remotely
programmed [8] by sending mobile code which can change
the topology and routing [9]. Instead of being passive, the
networks become more active by taking a certain part in the
computations or filtering the data [10].

Instead of doing all the processing and computations on a
central computer, they can be distributed to several
computers in a network. It is somewhat similar to process
migration, but the difference is that processes usually
migrate within a tightly coupled unit with several
synchronized processors. The code is distributed to the
remote computer to do the filtering and processing locally.
This often reduces the network traffic and is a way to
balance the load of computers with different capacities. It
can also be more redundant when several computers do the
same processing and the results can be compared. The agent
migration allows the agent hosts for receiving updates of
their business code without any service stop and the clients
cannot observe any interruption of services. What stays
difficult is the agent factory interface. Often, it is written in a
specific programming language and its use from a given
project needs to write new wrapper technical code. Also,
developers and architects prefer the use of interoperable API
over a standard protocol like http.

B. REST API definition and restful system

We have studied many architectures before choosing
REST architecture. We have found that this architecture is
the most suitable for data collecting by mobile agent. We
will see below what is à REST architecture.

Roy Thomas Fielding defined REST in his 2000 PhD
dissertation "Architectural Styles and the Design of
Network-based Software Architectures". REST-compliant
Web services allow requesting systems to access and
manipulate textual representations of Web resources using a
uniform and predefined set of stateless operations.

A web service must respect 6 constraints in order to be a
Restful system:
• Client-Server: there must be a separation between server

and client (separation of concerns)
• Stateless: Client does not conserve any client contest

between two requests.
• Cacheable: Clients and intermediaries can cache

responses
• Layered system: Requires that this middleware be

inserted transparently, so that interaction between a
given service and consumer is consistent, regardless of
whether the consumer is communicating with a service
residing in a middleware layer or a service that
represents the ultimate receiver of a message.

• Code on demand (optional): Servers can temporarily
extend or customize the functionality of a client by the
transfer of executable code.

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

• Uniform interface: The uniform interface constraint is
fundamental to the design of any REST service. The
uniform interface simplifies and decouples the
architecture, which enables each part to evolve
independently. Uniform interface have four constraints:

o Identification of resources
o Manipulation of resources through

representations
o Self-descriptive messages
o Hypermedia as the engine of application

III. EVOLVING ARCHITECTURE BASED ON MOBILE AGENTS

We have already used mobile agents in our previous
work. Because technologies evolves quickly, the way we
implemented such this software concept changes also
following the discovery of more suitable frameworks. The
main concepts are unchanged like, an agent factory, an agent
server, a registry of agents and so on, but the technical
aspects are more or less hidden to the developers and the
users.

A. What is an evolution in an agent architecture ?

When a mobile agent architecture is deployed, a mobile
agent imports a behavior and data from an agent server to an
agent host. In addition, this host is enriched at runtime with
the incoming agents. In the context of network control, a
mobile agent can reconfigure an agent host with the import
of updated features such that the address of the mail server,
the connection string to a database, the name of the
persistence unit.

Another application domain is the data collection where a
mobile agent or a set of mobile agents walk through the
agent hosts and collect useful data such that the log files, the
updates of a NoSQL database, etc. Back to the agent server,
the collected data are parsed, and actions are planned
depending on their semantics. This means that a main
database is updated, or some piece of code is applied on the
log file to detect the anomalies at runtime (post analysis).

To summarize, we consider a configured mobile agent as
a concrete evolution into a mobile agent system. This
evolution will be considered when this mobile agent would
have browsed the interested agent hosts.

Figure 1 shows the main elements of a mobile agent
architecture. The agent server receives all the client requests
and depending on the previous demands; it finds a mobile

agent, which is already instantiated into the agent registry or
it asks the agent factory for creating a new mobile agent.
Then, it configures the mobile agent depending on the
incoming request. This scenario describes a strategy called
AOD. This is useful when the agent hosts know their need or
when they know that a part of their knowledge is obsolete.
Often, the hosts are not requestor and they do not know that
they need of a refresh event.

This second scenario considers another mobile agent
strategy called Proactive. It means that a mobile agent has to
propagate the updates without any demand from the hosts. In
addition, it knows a list of destination and sequentially it
updates each host identified by its uniform resource location.
Of course, the hosts should have been first configured to
accept any mobile agents. We do not consider the security
aspect in this document but it appears obvious that this has to
be enforced in a professional context. When the mobile agent
finishes its mission, then it comes back to the agent server
and provides a report about its activities on each host. This
involves new actions from the server. It can shut off a host or
restart it with a minimal configuration, etc.

We have considered only one mobile agent in action, but
we can improve the implementation of the evolution with the
launch of several mobile agent concurrently. In that context,
the mobile agent needs to exchange messages at runtime.
The use of messages allows reducing the migration of agent.
In some situation, it allows the validation of a mobile agent
activity. For instance, when a mobile agent configures the
REST interface of an agent host, then a remote agent can test
whether the availability of this interface is ok. To sum up, we
note that different types of mobile agent implement an
evolution through the browsing of the hosts. Each of them
contribute to the satisfaction of the whole mission, this
include the validation of the activity and the generation of
reports by the end. In both scenarios, the reuse of agent is
done with the use of a registry.

B. Self adaptation system

Today, the adaptation of a system is a crucial property for
the lifetime of an application. The adaptation is necessary not
only because of the aging of a software, but also because the
resources are limited in all contexts. In software, we have to
consider that the memory is finite, the run time has to be
under a threshold required by a product owner and the
energy cost has to be also under a given consumption. When
a limit is achieved, the system has to adapt its behavior for
avoiding a global failure. Aldo, in that context we have
already experimented that a mobile agent architecture is a
solution. For instance, in an embedded context (mobile
phone, tablet, etc.), it is thrifty to move the back end of a
mobile application to an application server and keep only the
front end with the graphical user interface on the mobile
device.

The transfer of data is quite common but in case of
mobile agent, the import of code is under security
constraints. Therefore, an agent loader receives a byte code
stream, converts it into a local agent, and then run it. We
consider this operation as an access to a remote resource. We

Figure 1. Overview of a mobile agent architecture.

24Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

implement this network importation as a message exchange
pattern based on request / response schema. The content of
the message is the code of the mobile agent and its current
state. Moreover, because of the security rules, the vehicle of
our message is the http protocol. These technical choices are
not too restrictive and allow several message formats
depending on the frameworks.

This means that all the elements of our architecture
(Figure 1) respect a Facade design pattern where all the
remote operations are exposed to their future clients.
Although, this involve that new operations could appear at
runtime depending on where the mobile agents could be or
depending on the scheduling of an evolution. We clearly
separate the migration concern form the implementation of
the evolution and this stresses the inner structure of a mobile
agent. It is a composite based on several parts.

At a first level, a mobile agent implements a contract,
which is used at the top abstraction of a proxy pattern
(Figure 2). Since the agent proxy and agent behavior both
implement AgentResource, it allows the client to treat the

proxy like the AgentBehavior. An agent host loads such
agent and depending on the implemented strategy, its activity
is run by a call of perform method.

IV. FOUR STEP LIFECYLE

We apply an incremental project lifecycle divided into 4
steps: agent analysis, agent design, agent development and
agent validation. This lifecycle unit is repeated until the end
of a distributed project. In the following sections, we detail
the definition of the REST interfaces of all the elements of
our distributed system based on mobile agents.

A. Agent system analysis

The analysis system means that we define rigorously the
facade of each element of our system. It starts with the
naming of the elements and their public interface with a
signature. A suitable approach consists in the construction of
an interaction diagram that describes how a group of objects
collaborates in some behavior. Typically, a single use-case
has an execution, which is described by this sequence of
interaction. The diagrams show a number of example objects
and the messages that are passed between these objects
within the use-case. It is difficult to write much about

interaction diagrams because they are so simple. However,
they have weaknesses; the main one is that although they are
good at describing behavior: they do not define it. They
typically do not show all the iteration and control that is
needed to give a computationally complete description.

A first reading of such sequence diagram provides the
naming of methods and parameters, with potential types.
Jacobson uses pseudo-code in conjunction with sequence
charts to provide a more executable model. Others have
added various diagrammatic notations to increase the model's
usability. Many of these are included in the UML notation.
We adopted a standard open software for the construction of
such diagrams like the online tool called web sequence
diagram. Because a use case can have several distinct
executions, we create more than one sequence diagrams. By
the end of the analysis step, we create all the façade of the
project.

B. REST API design

The design of the mobile agent interfaces consists in a
deeper reading of the previous sequence diagrams and the
selection of a more rigorous language for a more precise
description. He has selected the Swagger language for such
description. Its goal is to define a standard, language-
agnostic interface to REST APIs. It allows both humans and
computers to discover and understand the capabilities of the
service without access to source code, documentation.

Swagger is a formal specification surrounded by a large
ecosystem of tools, which includes everything from front-
end user interfaces, low-level code libraries and commercial
API management solutions. In addition, from a Swagger
specification, it is possible to create the service
implementations and the client parts.

First, a Swagger specification file allows us to describe
an API including:
• General information about the API
• Available paths or resource naming (/resources)
• Available operations on each path http verbs (get

/resources)
• Input/output for each operation and message format.

Once written, OpenAPI specification file contains the
description of a data model and all the supported operations.
It can also be used as:
• source material for documentation
• specification for developers
• partial or complete code generation
• and many other things such as analysis and diagram

generation

C. Skeleton generation and business delegate pattern

Because code generation means a framework selection,
our previous experiments lead us to choose Spring
framework for the service implementation. The principle
consists in the separation of concern and the use of the
Business Delegate pattern. It means that the business code
does not belong to the service but it is called from the service
implementation. The swagger code generator project, allows
the generation of API client libraries (SDK generation),

Figure 2. Mobile agent structure.

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

server stubs and documentation automatically given a
YAML specification.

Because of the code generation, the developer obtains a
Maven project with a pom.xml file. This file descriptor
contains all the knowledge of the project, its dependencies,
the useful build plugins and the report plugins. Maven
requires respecting its own lifecycle for the installation of the
project. Some user modifications are necessary into this file
descriptor to adapt the code generation to the user platform.
Then a run of the project exposes the main uniform resource
location to the public. When the application is launched
locally to a server, then a possible URL is as follows:

http://localhost:8080/v1
The response is a web page where all the operations are

proposed and a documentation page is displayed for all the
users. Therefore, a user can browse all the operations and
read the textual contract. This page allows him to create
basic test request by the use of specific forms.

This step contains also the generation of clients. In that
context, it means, the client for each element of our
architecture. These clients support the invocation process
described in Section 3 about the agent lookup into a registry
and the agent creation from the agent factory interface. For
the same reason, we selected Spring framework for the client
part and based on this result we can build our own agent
strategy.

D. Test and validation based on Exchange pattern

Validation is determining whether the system complies
with the requirements and performs treatments for which it is
intended. In addition, it meets the organization’s goals and
user needs. Of course, this step does not contain a large set of
requests sent manually to the services. We use also a
framework for the test build. SmartBear is the editor of
SOAPUI application that is a standard in the validation
domain. This means that from an interface definition, it is
able to build template of requests and then it submits them.
By the end, it compares an expected result with an actual
result.

Instead of spinning up a new browser tab, typing into a
slick user interface and clicking buttons, we reached for a
tool and thought carefully about data and endpoint paths.
When we test an API, we deal with the stuff under the covers
and the framework called REST API Testing offers all these
concepts. Therefore, we are able to test each REST interface
of our architecture and we can create script where the
interfaces are composed to validate our strategy of
architecture adaptation. We used this approach for the
demand of a new data collection to the agent server.

We use also the Swagger Test Templates (STT) module,
through either the command line interface or
programmatically. It generates a robust, end-to-end testing
suite for all a developer’s API endpoints defined in their
Swagger specification. Then we are able to fill some parts of
the code with specific assertions about the business data we

Figure 3. Sequence Diagram : Agent On Demand

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

want to send. This saves hours of test writing and enables us
to quickly deploy on our server a suitable version of all the
REST services.

V. CASE STUDY

A. Agent sequence diagram

The sequence diagram In Figure 3 describes the way that a
client asks an AgentServer for an agent able to collect data.

B. Open specification for an agent system

We have used Open specification, in order to specify our
REST web services, Swagger tool offer an online
“Swagger editor”. We have used Yaml language for
specifying our API. In Figure 4 we can see on the left side
the Yaml code we have written, and on the right side, the
documentation generated by Swagger.

C. Agent interface generation and packaging

After finishing writing the specification of REST Web
services, we generate a server and a client using the tool
provided by Swagger. In this way, we can test our REST
web services (in Figure 5).

VI. ANALYSIS AND RESULTS

Our scenario is a brief narrative description of a system
to capture relevant information for computer health and
problem management monitoring. For example, practice
management systems manage the business of the general
practice by recording computer details, managing application
servers and database system.

Figure 4. Open specification for an agent server

Figure 5. Agent interface generation

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

A. Scenario on data collection

The data collection covers a network of computers where
log files are saved. They describe the health of application
servers and database systems. This data collection starts at a
given time and the process is repeated every day. The format
of the files is text and the collection principle means to
append the file of the same structure into a master file.
Behind a file format, there is at least one mobile agent. The
number of agents depends on the number of hosts to walk
through.

In our test scenario, we consider per computer a JBoss
Server as the application server, and a MySQL server. The
application server contains many tools, which configured to
work together. Several log files are touched by the data
collections. The configuration of the database server set
features for a verbose mode and the trace of SQL statements
with all database events. The locations of the log files are
known paths when the installation is done successfully. To
sum up, this scenario groups 8 kind of file format and the
size of the files depends on the activity of the servers.

Before starting the scenario, all the agent hosts install
permissions for accepting the mobile agents of our factory
and for executing a file reading operation. The scenario starts
with a request to the agent server (Figure 1) and the build of
8 mobile agents. Their configurations come from .ini files,
which are read, by the agent factory. Next, the factory
registers the mobile agents and the agent server launches the
mission of each agent sequentially. Each mobile agent
contains the route of computers where it has to perform its
data collection. Because each agent host has a remote
interface for accepting such mobile agent, then a mobile
agent invokes the first host of its list and if automatically
installed into the virtual machine of the host. Then it reads
the set of files, which corresponds to the file format it knows
and leaves the agent host for the next host in its list. When all
the items of the list are visited, the mobile agent comes back
to the server where its data are consumed and parsed. The
test contains 6 computers with two servers to manage.

The whole data collection is finished when all the mobile
agents are back to the server and their data depose in the
corresponding folder. Another part of the scenario starts with
the analysis of text patterns and the recognition of abnormal
events or durations that are greater than expected. The
consequence could the restart of services, which belong to a
computer or the final stop in case of high gravity.

B. Events and time

In addition to the business data collection, a mobile agent
records its own activity. Each import or export event is
recorded with time. The route followed by an agent can be
observed during its course by JMX components (Java
Management eXtension).

Our first results are about the collected data size. A
mobile agent browses 6 nodes (or computers). This means
that an agent appends six log files (about 200 kbytes) in the
current test and the time cost is near 140 ms. When the data
collection occurs too early, the time results are not
meaningful, because the size of the data has consequences on
the duration of the course.

So, we rebuild the same scenario another time but after
an intensive activity period. We use Apache JMeter for
increasing the number of requests and this involves more
traffic on the database server.

During the second test, the activity has increased and the
log files are bigger. We observe that the shape of the results
is similar but the duration is bigger than the previous one
(524ms). The ratio is more than three but the size of the data
is a quadruple in comparison with the first scenario. We have
pursued this benchmark (in Figure 7) with this metric and we
confirm this observation.

VII. CONCLUSION AND FUTURE WORKS

There are many parameters to observe in such kind of
application. We have shown that mobile agent is well suited
for building a dynamic architecture. The automatize design
and build of REST interfaces is another key result of our
work. We consider that our project could help other
designers to convince that the building of a REST layer can
be done in a very predictive time.

We want to continue our measures and more precisely
the cost of a couple of actions import/export. We would like
to show that a mobile agent a good approach for the reactive
systems, especially in the control of network and its
administration.

Figure 6. Data size per mobile agent.

Figure 7. Data size per mobile agent.

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

REFERENCES

[1] R. B. Wallace, R. M. Dansereau, and R. A. Goubran:
"Methods for the detection of ECG characteristic points".
MeMeA 2012: pp. 1-6

[2] M. Krosche, R. Niekamp, and H. G. Matthies: "A Component
Based Architecture for Coupling Optimization and Simulation
Software in a Distributed Environment". SNPD 2003: pp. 20-
23

[3] R. Gfeller and P. Hauser: "Rotated Lines - A Heatmap
Representation Method for People Affected by any Kind of
Color Blindness". Mensch & Computer 2010: pp. 235-240

[4] F. Amato and F. Moscato: "Exploiting Cloud and Workflow
Patterns for the Analysis of Composite Cloud Services".
Future Generation Comp. Syst. 67: pp. 255-265 2017

[5] E. S. de Almeida and F. Oquendo: "Software Components,
Architectures and ReuseModeling, Customization and
Evaluation". J. UCS 19(2): pp. 183-185 2013.

[6] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offermann:
"What Are You Paying For? Performance Benchmarking for
Infrastructure-as-a-Service Offerings". IEEE CLOUD 2011:
pp. 484-491

[7] S. Bayati, A. K. Tripathi: "Designing a Knowledge Base for
OSS Project Recommender System: a Big Data Analytics
Approach". ECIS 2016: Research-in-Progress Paper 37

[8] K. Ranganathan and S. Arora: "Enabling Grassroots
Communication: A Memory-Aided Broadcast Mechanism for
a Community Radio Service on an Ad hoc Device-to-Device
Mobile Network". IEEE Trans. Communications 62(3): pp.
1138-1150 2014

[9] D. P. Bertsekas: "Robust Shortest Path Planning and
Semicontractive Dynamic Programming". CoRR
abs/1608.01670 2016.

[10] L. Wang, X. Wang, and T. S. T. Mak: "Adaptive Routing
Algorithms for Lifetime Reliability Optimization in Network-
on-Chip". IEEE Trans. Computers 65(9): pp. 2896-2902
2016.

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-547-0

ICONS 2017 : The Twelfth International Conference on Systems

