
A Safe Graphics Rendering Solution for
Consolidated Operating Systems

Angelos Mouzakitis∗, Kevin Chappuis∗, Julian Vetter∗, Michele Paolino∗, Youssef Kamoun∗ and Daniel Raho∗
∗Virtual Open Systems, Grenoble, France

Email: {a.mouzakitis,k.chappuis,j.vetter,m.paolino,y.kamoun,s.raho}@virtualopensystems.com

Abstract—New breakthroughs in the automotive domain, such
as Advanced Driver Assistance Systems (ADAS), 5G Vehicle
to Everything (V2X) connections and In-Vehicle Infotainment
(IVI) systems have made a significant impact on the automotive
industry. Virtualization plays a key role in this trend, since it
provides the ability to consolidate services with different levels
of criticality, such as for instance ADAS functions and IVI or
5G connectivity services. Today, one scenario that arises with
this new trend is the consolidation of a safety critical digital
instrument cluster which displays safety metrics, e.g., speed,
torque, etc. along with an IVI system. In such an architecture,
the Graphical Processing Unit (GPU) is of central importance
to ensure an efficient implementation. However, utilizing the
GPU in both compartments raises safety concerns, and poses
the question whether the strict isolation implemented by the
virtualization layer can be upheld. Therefore, in this paper, we
investigate this issue, and address it, by proposing a solution
that consolidates a safety critical digital cluster along with an
IVI system. We present the design of a safety mechanism to
isolate the GPU rendering in both compartments, called “split-
display”, leveraging the ARM R© TrustZone R© technology. In our
design, the secure world hosts a Real-Time Operating System
(RTOS), which handles the GPU rendering in order to protect
mission-critical tasks (e.g., speedometer and warning icons) from
potential failures occurring in the IVI system. The mechanism
provides safety guarantees for the GPU rendering of the RTOS.
Our prototype “split-display” solution for mixed-criticality sys-
tems is implemented on the Renesas R-Car H3 platform. To val-
idate our prototype implementation, we performed a number of
experiments and evaluate the performance impact that occurs due
to the consolidation. The results show that our implementation
ensures at least 30 frames per second (fps) which is in line with the
ISO 15005 safety standards. This number can even be achieved
if a failure occurs in the IVI system.

Keywords–Graphics; Split-Display; Mixed-Criticality; Real-
Time; VOSYSmonitor

I. INTRODUCTION

Road vehicles nowadays are host to a huge number of
embedded processors, executing millions of lines of code.
However, the maintenance of these large code bases is tedious
and error-prone for the vehicle manufacturers. Therefore, the
manufacturers try to use off-the-shelf software wherever possi-
ble to facilitate and streamline their development process. The
availability of existing Real Time Operating System (RTOS)
solutions proves itself useful in this respect. Especially, since
the OSEK/VDX [1]–[3] consortium certified some of these
RTOSs as suitable for the use in vehicular embedded control
units. Such OSEK/VDX-conforming RTOSs address the needs
of the vehicle manufacturers in almost all concerns. They
only fall short in a small but critical number of domains
such as In-Vehicle Infotainment (IVI), security and safety. To

address these shortcomings alternative RTOSs for the high-end
automotive domain are available today.

But not only leveraging off-the-shelf software helps to
streamline the development process of the vehicle manufac-
turers, also the integration of multiple components of differ-
ent criticality (forming a so called Mixed Criticality System
(MCS) [4]) lowers the number of embedded controllers in the
car and consequently reduces cost, space, weight, heat gen-
eration and power consumption. By leveraging virtualization,
the vehicle manufacturers can now run multiple systems on
a single embedded controller, from a highly reliable RTOS
for mission-critical functions to a highly customizable Linux-
based system for IVI services.

Although, virtualization enables numerous new applica-
tions, the trend also poses new challenges on the software
stack. One such challenge is the proper sharing of hardware
resources. Since all software components access the same
hardware components of the embedded controller, special care
must be taken when integrating such an architecture. In the
past, researchers have already shown how to undermine the
isolation enforced by the OS using shared hardware resources
(e.g., caches [5], DMA devices [6], etc). Thus, a resilient
software architecture needs to be in place.

In this context we investigate the sharing of a common dis-
play among two components with different levels of criticality.
This is not only challenging because the involved components
(e.g., Video Signal Processor) are powerful embedded devices
in itself, which have to be handled with care, to not jeopardise
the system integrity. But the task is also urgent because a rich
automotive user interface calls for the integration of an IVI
along the instrument cluster.

In this paper we present a solution, integrated into an open
source RTOS which composes multiple visual elements and
renders them to a common display to meet the needs of future
automotive applications in areas like IVI or security/safety. The
system relies on the isolation properties enforced by a highly
privileged software component called VOSYSmonitor [7],
which guarantees isolation between peripherals and memory
of both OSes using ARM R© TrustZone R©.

In particular, we make the following new contributions:
• We design a mixed criticality “split-display” solution

to allow a mission critical instrument cluster to run
side-by-side with an IVI system.

• we evaluate existing solutions, depict their advantages
and drawbacks and position our novel approach among
them.

• We implement a full prototype of our architecture
and evaluate its performance on an automotive grade
evaluation board (Renesas R-Car H3).

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

ICONS 2018 : The Thirteenth International Conference on Systems

The rest of this paper is structured as follows. In Section II,
we give background on virtualization, ARM R© processor ex-
tensions and hypervisors in general. Then, in Section III
we present related work and emphasize the advantages and
drawbacks of existing solutions compared to our design. Our
system architecture is described Section IV. Section V outlines
our design. We focus on the peculiarities of our driver and
automotive application in Section VI. We evaluate our design
in Section VII. We conclude our work and present future work
in Section VIII.

II. BACKGROUND

In the following sections we give a brief overview of
ARM R© TrustZone R©, ARM R© Virtualization Extensions (VE)
as well as the different types of hypervisors. We conclude
this section with a concise introduction to VOSYSmonitor,
which is the underlying firmware layer, providing the necessary
isolation building blocks.

A. ARM TrustZone
Under the term TrustZone R© [8], [9], ARM R© introduced a

new separation concept that is orthogonal to ELs (exception
levels). This new concept provides two worlds, a “secure
world” with the same set of ELs and a new mode, called
monitor mode, to switch between this new and the classical
“non-secure world” (Figure 1). The goal of TrustZone R© is to
keep the non-secure world fully backward compatible. Thus,
the world separation and switching between worlds is almost
fully implemented in hardware (with new sets of banked
registers, etc). A new processor instruction was introduced with
TrustZone R©, the smc (Secure Monitor Call) instruction [10],
to provide a way of interaction between both worlds. The
isolation between the worlds is enforced in combination with
other cooperating system components. A TrustZone R© com-
pliant memory controller announces the current security state
(“secure” or “non-secure”) for every bus transaction via the
AXI AxPROT signal. Also, a new TrustZone R© controller was
introduced to allow for the configuration of certain ranges of
physical memory as secure, preventing the non-secure world
from accessing them. Moreover, the standard ARM R© interrupt
controller (GIC) supports the classification of interrupt sources
into groups, allowing them to be routed to either the secure or
non-secure world.

But it is important to note that the design of TrustZone R©

aims at a large degree of autonomy of both worlds, without
the possibility (and perceived need) of close interaction. This
means, as opposed to ARM VE, TrustZone R© does not provide
the ability to trap certain instructions, provide a nested paging
mechanism or allow the direct injection of interrupts into
specific virtual machines.

B. ARM Virtualization Extensions
ARM R© added full virtualization support as an optional

feature in ARMv7 [11]. Systems with these extensions have
an additional execution mode, hypervisor mode (hyp). This
mode is located in the new privilege level EL2, placed below
EL0 and EL1. In addition, to having full access to all system
control registers that exist in EL1, software executing in EL2
is provided with additional control registers for reconfiguring
execution in EL0 and EL1, by, e.g., trapping certain instruc-
tions. ARM R© VE also introduced a nested paging mechanism.

This additional stage of translation, gives the hypervisor full
control over the address space of systems executing in EL1.

It is worth noting that all EL2-controllable traps and the
additional address translation only pertain to execution in the
non-secure world, i.e., EL2 exists only in the non-secure
world and its power does not extend beyond. However, the
opposite holds: the monitor mode, in a processor incorporating
TrustZone R©, is able to access all non-secure EL2 controls.

C. Hypervisors
In general, hypervisors can be classified into two types: The

Type-I hypervisor, also called bare-metal hypervisor, directly
runs on the hardware without relying on a host operating
system. Such a hypervisor has to bring its own set of device
drivers and low-level system mechanisms (e.g., virtual memory
management). Famous examples for such a hypervisor are Xen
[13] or Hyper-V [14].

Type-II hypervisors on the other hand rely on a host
operating system to run on. They leverage the operating system
facilities which are already in place and run as a normal
process. The host operating system however, has to corporate
with the hypervisor process and, e.g., reflect specific types of
exceptions back to this process. Famous examples for such a
hypervisor are VirtualBox [15] or Parallels [16].

Kernel-based Virtual Machine (KVM) [17] is one of a few
exception that do not allow a clear classification into one of
the two types. In it’s design it is a Type-I hypervisor, because
it runs in a privileged mode (unlike a Type-II hypervisor), but
as a Type-II hypervisor relies on a host operating system, in
this case Linux.

D. VOSYSmonitor
VOSYSmonitor is a firmware that runs in the Secure

Monitor mode (EL3) of ARMv8-A processors. It enables the
native concurrent execution of two operating systems, such
as, e.g., a safety critical RTOS along with a GPOS (General
Purpose Operating System). The execution of both, 32-bit and
64-bit applications is possible and their isolation ensured by
the means of TrustZone R©.

Since VOSYSmonitor runs in EL3, the GPOS can still opt
for a solution such as Linux-KVM, and leverage the ARM R©

VE to instantiate multiple VMs (Virtual Machines). Yet, the
RTOS running in Secure world, is completely isolated from
these applications executing in the normal world.

To ensure an efficient context switching between the two
worlds hardware exception mechanisms, such as interrupts are
used. Additionally, both OSs can voluntarily give up their ex-
ecution time by invoking the smc instruction. VOSYSmonitor
keeps tight control over these exceptions in order to ensure a
proper operation of each world.

Figure 1. ARMv8 processor architecture [12]

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

ICONS 2018 : The Thirteenth International Conference on Systems

III. RELATED WORK

In the following section we present a number of projects
or solutions which are relevant for this work.

In [18], Lee et al. describe an architecture called VADI
which enables the execution of a digital instrument cluster
on a consolidated hardware platform. The architecture is able
to concurrently process graphic commands for two isolated
execution domains using one Graphical Processing Unit (GPU)
device that renders the frames on one display [19]. VADI
implements a GPU sharing mechanism, while protecting the
GPU and display device from non-trusted software applications
by using TrustZone R©.

Since physical virtualization is vulnerable to device driver
failures, they leverage a virtualization solution called SASP,
to consolidate the digital instrument cluster along with the IVI
system. An RTOS, such as AUTOSAR [20] and a GPOS (e.g.,
Linux) can execute concurrently.

According to the evaluation phase, VADI maintains a per-
formance of 30 frame per second (FPS) [21] [22], which is in
line with the requirements for automotive control software. In
addition, VADI ensures the execution of the digital instrument
cluster component even in case of an unrecoverable failure of
the other execution domain.

A framework that allows the sharing of a single GPU
among different Virtual Machines (VMs), has been presented
by Qi et al. [23]. The framework called VGRIS provides a
GPU command queue for each VM in the main memory of
the host OS. When an application calls a GPU API function
the host OS intercepts the call and converts it into a specific
command which is stored in the GPU command queue. The
host OS runs a GPU scheduler which selects a specific queue
and sends the commands to the GPU.

The evaluation of the Service Level Agreements (SLA)
scheduling shows that the average FPS rates of the tested
games, running in independent VMs are around 30 FPS. The
drawback of VGRIS is, it depends on a Type 2 hypervisor
because it is implemented in the host OS.

The VAGS architecture proposed by Gansel et al. [24]
is an automotive display consolidation architecture which
implements GPU virtualization in a vehicle. VAGS performs
all graphic processing on a consolidated GPU device and draws
the rendered frames on several display devices, such as the
head unit screen, the center console, and the digital cluster.

VAGS consists of a Window Manager, which is based on
a hierarchical access control management for display areas
and input events. Therefore, the applications create, delete and
move their windows through a dedicated Window Manager
API. Depending on their permissions and priorities, applica-
tions are allowed to display their windows in dedicated display
areas in order to avoid the overlapping of windows applications
with different priorities.

The entire design from the virtualization manager to the
graphical applications is based on Linux. However, VAGS only
presents the design without any implementation and evaluation
details since it is a work in progress solution.

The VMGL solution by Andres et al. [25] is the most
popular GPU virtualization mechanism for virtual machines.
VMGL uses a network device to send graphic commands to a
virtualized GPU driver. The solution uses a standard network

interface, such as a socket, and thus guarantees independence
from the virtual platform. VMGL performance results closely
resemble the results of their native counterparts.

The drawbacks of VMGL are, the following. Complex sys-
tem configurations with multiple high-end applications, which
concurrently render, may impose an aggregate bandwidth
demand on VMGL of several Gbit/s. Moreover, the network
communication requires a specific device and increases the
transmission time of graphic commands between VMs since
additional network processing and data copies are needed.
In addition, automotive systems require device isolation to
protect devices from errors caused by non-critical applications.
Therefore, a system with VMGL must provide an additional
isolation mechanism for the network device. Moreover, the
VMGL mechanism is implemented on Xen [13] and VMware
for the x86 architecture. But graphic libraries for embedded
systems such as OpenGL ES and EGL are very different from
libraries for x86 desktop systems like OpenGL and GLUT,
thus further complicating the integration of VMGL into an
automotive software stack.

IV. ARCHITECTURE

The study of related work already highlights the requested
functionality for rich graphical automotive applications, and
also stresses the challenges that arise when consolidating such
a system. Based on these requirements, we present our solution

Figure 2. Automotive Architecture

in the following section.
Our architecture allows the rendering of content from both

execution domains on a common physical screen. To achieve
a high responsiveness of the digital instrument cluster we
ported an open-source RTOS (i.e., FreeRTOS [26]) to run
on top of VOSYSmonitor in the secure world while we rely
on the high customizability of Linux in the normal world.
Apart from ensuring a strict spatial and temporal isolation of
the RTOS running in the Secure world, VOSYSmonitor also
ensures a proper execution of the RTOS, when the non-critical
application in the normal world fails.

The IVI system is composed of several components. It
provides a rich interactive map that shows detailed route
information, allows route planning, and also offers direction
indicators for the driver. Along the map application which is in-
tegrated into a Linux system, we execute a virtualized Android
VM to provide an off-the-shelf car infotainment system, paired

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

ICONS 2018 : The Thirteenth International Conference on Systems

with controls for interacting with the air conditioning system,
a calling application or a video player. The digital instrument
cluster on the other hand is implemented in the RTOS and is
responsible for rendering mission critical information, such as
the accelerometer, the tachometer and different warning icons
for the temperature, missing seatbelts, etc. Figure 2 shows our
architecture and the placement of the different components in
the MCS. VOSYSmonitor constitutes the highest privileged
component in the system, on top of which two operating
systems are consolidated.

V. DESIGN AND IMPLEMENTATION

In Section IV, we described the high-level system archi-
tecture, and the placement of the components. Now we take
a closer look, on how a safe interaction between the IVI and
the instrument cluster is ensured by our architecture.

Figure 3 gives a detailed view on the vital system com-
ponents. In Figure 3, it can be noticed that the GPU driver is

Figure 3. System Architecture

only available to the secure domain, thus requiring a routing
mechanism to allow the normal world applications to interact
with the graphic buffer as well. To achieve this, we designed
two components, the S-Bridge for the secure and the N-
Bridge for the normal world. These two components allow for
an efficient message transfer between the normal and secure
world. Notifications that are issued in the normal world, are
routed to the secure world via the smc instruction. On top of
which we use the concept of Remote Procedure Calls (RPC),
to allow the normal world to invoke the desired functionality.
That is, accessing GPU resources from the normal world, relies
on invoking notifications from the N-Bridge to the S-Bridge.
The Secure world then forwards the rendering requests to the
GPU, which is in charge to render graphical content to the
non-secure framebuffer.

While calls to the GPU are forwarded to the secure world,
the planes are managed individually by the according OS
(either RTOS or Linux). But, there are two dedicated display
areas for the secure and normal world which are mapped to a
depth level representing the priority of the plane. The concept
is depicted in Figure 4. The figure shows the placement of the
two framebuffers (planes) on the display. The plane with the

Figure 4. Display controller composition

Figure 5. Hardware peripherals involved in the graphics pipeline

higher priority is displayed on top of the one with the lower
priority. So in our case, the RTOS is able to render on top
of the Linux (which is displayed on the lower plane). Such a
hierarchical management for display areas ensures that mission
critical information are never cloaked by IVI content.

To summarize the design of our “split-display” architecture,
the overall system implementation relies on the isolation ca-
pabilities of VOSYSmonitor (which makes sure that hardware
peripherals needed for graphic rendering are only accessible
from the secure world), a set of modified drivers that operate
in the Secure world as well as the S-Bridge and N-Bridge. The
design of the drivers allows both compartments to share the
hardware peripherals that are involved in the graphics pipeline,
while respecting the constraints imposed by the ISO 15005
standard for a safe display solution.

VI. DRIVERS & AUTOMOTIVE APPLICATION

In this section we discuss the different driver components
as well as their implementation. But in order to understand
the interaction of the driver components, we first have to take
a look at the hardware peripherals that are involved in the
graphics pipeline.

A. Hardware peripherals
Figure 5 illustrates the high level overview of the hardware

peripherals that are used by the graphics rendering pipeline.
The Renesas R-Car H3 contains multiple instances of these
hardware components in order to forward rendered content to
up to four different physical display connectors (VGA, LVDS
and two HDMI) in parallel.

21Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

ICONS 2018 : The Thirteenth International Conference on Systems

Our architecture ensures that all hardware peripherals and
resources that are affected by the graphics rendering pipeline
(direct or indirect), are isolated and protected from malicious
activity of the normal world. VOSYSmonitor ensures this by
configuring the memory address space of the peripherals that
are driven by the RTOS using TrustZone R©, to only allow
“secure” accesses to the memory. Moreover, VOSYSmonitor
also applies memory protection to peripherals related to the
power domain configuration, clock generation, the system reset
hardware block as well as the memory area used by the
RTOS framebuffer. This system configuration ensures a correct
rendering behaviour for the safety critical information at all
times.

B. Video Signal Processor driver
The Video Signal Processor (VSP) peripheral is the core

hardware peripheral to achieve the concept of the “split-
display”. The VSP is capable to read data from the main
memory, through an intermediate data compression peripheral,
through up to five independent read channels. Each read chan-
nel transfers data, which corresponds to a different plane. The
device composes a frame based on the internal configuration
of the composed planes.

The VSP driver operates in the RTOS and initializes the
device with a static configuration for the operational clock
and for properties of each read channel. Properties of the read
channel include, e.g., the framebuffer’s starting address, the
resolution, the color depth, the plane’s size and position in
the display. For demonstration purposes, the scenario that we
evaluate in Section VII consists of an RTOS plane, which has
the following properties: width = 1920, height = 1080 and is
placed at (0, 0) on the screen. Similarly, the Linux’s plane
has the following configuration: width = 640 height = 480 and
it is placed at (640, 300). In this context, Linux is able to
render at its own plane, that is initialized by the RTOS, and
thus preventing further configuration changes. Moreover, the
isolation of the planes for the RTOS and the Linux system as
well as the frame composition ensures that the normal world
cannot render at a part of the display that is owned by the
secure domain.

C. Display unit driver
The Display Unit (DU) peripheral is the component in

the graphics pipeline, which receives the output from a VSP
module and produces the desired output (i.e., frame) regarding
the internal configuration timings. It is important to note that
the RTOS drives the peripheral with the same security policy
as the VSP module. In this scenario, the physical connector
for the split-display screen output is the Video Graphics Array
(VGA) and the resolution is configured to 1920x1080x32bpp
utilizing the planes of both OSs.

D. Automotive application
The automotive application is highly decomposed. Figure 6

shows the individual components and how the aggregated
image is generated. For the secure world, we adapted a digital
instrument cluster to run in the RTOS. The adaption also
required us to first convert the images used by the instrument
cluster (i.e., speedometer, tachometer and warning icons) from
an ordinary image format into a binary format (according to
the properties required by the framebuffer), referencable as

Figure 6. Automotive Application

symbols in the data section of the application. In the normal
world we further decomposed the IVI components and added
an additional layer of isolation by using the KVM hypervisors.

Our final setup is shown in Figure 7. Whereby, we routed
the output of different components to different hardware ports.
Table I gives an overview were each component IVI and
instrument cluster was routed to.

Figure 7. Evaluation board and display device

TABLE I. THE DIFFERENT APPLICATIONS OF THE IVI AND
INSTRUMENT CLUSTER, WHERE THEY ARE PLACED IN THE

SOFTWARE STACK AND THEIR OUTPUT DISPLAY.

Application Component Output Port
Secure application Instrument cluster VGA
(Speedometer, Tachometer) (secure)
Navigation map IVI VGA

(non-secure)
Control application for IVI HDMI 1
heating ventilation and (non-secure)
air conditioning (HVAC)
Android Lollipop IVI HDMI 2
(Hardware accelerated) (non-secure)

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

ICONS 2018 : The Thirteenth International Conference on Systems

VII. EVALUATION

Our evaluation setup consisted of the following software
components. In the normal world we executed a system
based on Linux kernel version 4.4, while in the secure world
we executed a FreeRTOS with a modified driver stack. We
generated two realistic graphic workloads (as described in
Section IV). The speedometer along with the tachometer in
the secure world continuously rendered the vehicle’s speed and
engine torque. On the other hand we had the navigation map
in the normal world showing detailed directions to the driver.
These two applications represented our instrument cluster and
IVI system, respectively. The entire graphical workload was
being rendered using the CPU since FreeRTOS did not support
GPU drivers for hardware acceleration.

Figure 7 depicts our hardware test setup. It consisted
of a Renesas R-Car H3 [27] evaluation board. The board
offers an automotive grade solution and features multi-
ple ARM R©-Cortex R©-A57/A53 cores. The processing perfor-
mance achieved by the hardware platform was 40,000 DMIPS
(Dhrystone million instructions per second).

As shown in Figure 7, we split the display into two planes,
one for the secure world and another one for the normal
world. The upper plane displayed the speedometer, tachometer
alongside the warning icons which were rendered by the
Secure world, while the lower plane presented the navigation
map of the normal world.

A. Rendering Time
This metric determines the number of frames that the CPU

is able to render on the display. An important requirement in
automotive industry is to ensure a minimum frame rate for crit-
ical information, such as the speed indicator and the warning
icons. The purpose of this evaluation is to ascertain isolation
between two graphical applications running in both worlds and
that if a crash occurs in the normal world, performance of the
Secure world is not impacted.

For the evaluation, the CPU rendering of the RTOS and
the navigation map in the normal world are processed simul-
taneously, while a RTOS thread monitors the frames rendered
per second by the RTOS.

Figure 8 indicates the performance of the Secure world
running alongside the normal world and Figure 9 shows a
result of the Secure world while the normal world remains
idle. As shown in Figure 8, the frame rate of the digital

Figure 8. Performance of Digital cluster

cluster decreases whenever there is an animation and it is high
when the animation stops. The animation requires frequent
frame updates because it has to trace all new locations of
the corresponding item (e.g., icons and the needle of the
speedometer). Figure 9 shows that the secure world maintains

Figure 9. Performance of digital cluster when Linux fails

a minimum frame rate of 30 fps even with a fault in the normal
world. This means that the critical tasks running in the Secure
world are completely isolated from the tasks running in the
normal world. Moreover, in this evaluation, despite the fact
that the navigation map is halted due to an unrecoverable fault
(e.g., kernel fault) occurring in Linux, the speedometer remains
running without any impact on its performance.

The above figures show that the Secure world maintains
an average fps rate of 36.5, even when a fault occurs in the
normal world, which is higher than the 30 fps minimum frame
rate that is required to be able to have a smooth and fluid
animation. The obtained results prove that there is a complete
isolation between the two worlds without any world impacting
the other’s performance.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the “split display” architecture, a
novel approach to tackle the issue of security and safety aware
display sharing. Our architecture is based on VOSYSmonitor a
highly privileged entity on top of which we integrated a Linux
and an open source RTOS, functioning as our IVI and mis-
sion critical instrument cluster, respectively. Our architecture
provides a strict isolation of the graphic applications running
in the RTOS from the non-critical IVI running in the Linux.
Although, our applications have been tested without graphical
acceleration, our performance numbers still confirm our design
decisions and clearly indicate the capability of our architecture
to render mission critical information smoothly along with
non-critical applications like a navigation map. We showed
that even in the event of an unrecoverable failure in the normal
world the mission critical instrument cluster is able to operate.

Our efforts included (but were not limited to) the design
of two components called S-Bridge and N-Bridge to forward
GPU rendering requests from the normal to the secure world,
in the style of RPCs. Moreover, we ported several drivers
critical for graphical rendering from Linux to FreeRTOS. We
also developed and integrated a prototype of our architecture
on an Renesas R-Car H3 evaluation board.

Since we implemented this prototype, there is no doubt
about the feasibility of our approach.

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

ICONS 2018 : The Thirteenth International Conference on Systems

In the future we want to focus our efforts on the following
open points. First, sharing the graphic CPU rendering imple-
mentation with the FreeRTOS community. Second, improving
the application to use a dedicated GPU and thus enabling
graphical acceleration and increasing the overall FPS. Last,
supporting the QT [28] graphical framework for the open
source RTOS, to ease the creation of graphical applications.

IX. ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
NGPaaS project (grant agreement No. 761557).

REFERENCES
[1] A. Zahir and P. Palmieri, “Osek/vdx-operating systems for automotive

applications,” in IEE Seminar on OSEK/VDX Open Systems in Auto-
motive Networks (Ref. No. 1998/523), Nov 1998, pp. 4/1–418.

[2] D. John, “Osek/vdx history and structure,” in IEE Seminar on
OSEK/VDX Open Systems in Automotive Networks (Ref. No.
1998/523), Nov 1998, pp. 2/1–214.

[3] C. Hoffmann et al., “Osek/vdx network management,” OSEK/VDX
Open Systems in Automotive Networks (Ref. No. 1998/523), IEE
Seminar, November 1998.

[4] A. Burns and R. Davis, “Mixed criticality systems - a review,” Depart-
ment of Computer Science, University of York, Tech. Rep, 2013, pp.
1–69.

[5] C. Percival, “Cache missing for fun and profit,” BSDCan, 2005.
[6] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Xen 0wning trilogy,”

Invisible Things Lab, 2008.
[7] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho, “Vosys-

monitor, a low latency monitor layer for mixed-criticality systems
on armv8-a,” Euromicro Technical Committee on Real-Time Systems
2017, June 2017.

[8] T. Alves and D. Felton, “Trustzone: Integrated hardware and software
security-enabling trusted computing in embedded systems (july 2004).”

[9] “ARM Security Technology - Building a Secure System using Trust-
Zone Technology,” Whitepaper, ARM Limited, April 2009.

[10] “Smc calling convention system software on arm platforms,” Whitepa-
per, ARM Limited, November 2016.

[11] R. Mijat and A. Nightingale, “Virtualization is coming to a platform
near you,” ARM Limited.

[12] Armv8 processor architecture. [Online]. Available: https://community.
arm.com [retrieved: April, 2018]

[13] P. Barham et al., “Xen and the art of virtualization,” vol. 37, no. 5,
2003, pp. 164–177.

[14] Y. Haga, K. Imaeda, and M. Jibu, “Windows server 2008 r2 hyper-v
server virtualization,” Fujitsu Sci. Tech. J, vol. 47, no. 3, 2011, pp.
349–355.

[15] “Virtualbox,” http://www.virtualbox.com, Oracle, March 2018.

[16] Parallels, “Parallels workstation, parallels desktop,” http://www.
parallels.com, March 2018.

[17] Qumranet, “Kernel-based virtual machine for linux,” http://qumranet.
com/kvm, March 2018.

[18] C. Lee, S. W. Kim, and C. Yoo, “Vadi: Gpu virtualization for an
automotive platform,” IEEE Transactions on Industrial Informatics,
vol. 12, no. 1, 2016, pp. 277–290.

[19] C. Patsakis, K. Dellios, and M. Bouroche, “Towards a distributed secure
in-vehicle communication architecture for modern vehicles,” Computers
& Security, vol. 40, 2014, pp. 60–74.

[20] S. Martı́nez-Fernández, C. P. Ayala, X. Franch, and E. Y. Nakagawa,
“A survey on the benefits and drawbacks of autosar,” in Proceedings of
the First International Workshop on Automotive Software Architecture.
ACM, 2015, pp. 19–26.

[21] F. Chao, S. He, J. Chong, R. B. Mrad, and L. Feng, “Development
of a micromirror based laser vector scanning automotive hud,” in
Mechatronics and Automation (ICMA), 2011 International Conference
on. IEEE, 2011, pp. 75–79.

[22] V. Milanovic, A. Kasturi, and V. Hachtel, “High brightness mems mirror
based head-up display (hud) modules with wireless data streaming
capability,” vol. 9375, 2015, p. 93750A.

[23] Z. Qi et al., “Vgris: Virtualized gpu resource isolation and scheduling
in cloud gaming,” ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 11, no. 2, 2014, p. 17.

[24] S. Gansel, S. Schnitzer, F. Dürr, K. Rothermel, and C. Maihöfer,
“Towards virtualization concepts for novel automotive hmi systems,”
2013, pp. 193–204.

[25] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. De Lara,
“Vmm-independent graphics acceleration,” 2007, pp. 33–43.

[26] FreeRTOS. Open source real time operating system. [Online].
Available: http://www.freertos.org [retrieved: January, 2003]

[27] Renesas. Rcar-h3. [Online]. Available: https://www.renesas.com/en-us/
solutions/automotive/products/rcar-h3.html [retrieved: January, 2015]

[28] Qt. Cross-platform application framework. [Online]. Available: https:
//www.qt.io/ [retrieved: January, 1995]

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

ICONS 2018 : The Thirteenth International Conference on Systems

https://community.arm.com
https://community.arm.com
http://www.virtualbox.com
http://www.parallels.com
http://www.parallels.com
http://qumranet.com/kvm
http://qumranet.com/kvm
http://www.freertos.org
https://www.renesas.com/en-us/solutions/automotive/products/rcar-h3.html
https://www.renesas.com/en-us/solutions/automotive/products/rcar-h3.html
https://www.qt.io/
https://www.qt.io/

	Introduction
	Background
	ARM TrustZone
	ARM Virtualization Extensions
	Hypervisors
	VOSYSmonitor

	Related work
	Architecture
	Design and Implementation
	Drivers & Automotive Application
	Hardware peripherals
	Video Signal Processor driver
	Display unit driver
	Automotive application

	Evaluation
	Rendering Time

	Conclusions and Future Work
	Acknowledgments
	References

