
Monte Carlo Tree Search for Optimizing Hyperparameters of Neural
Network Training

Karolina Polanska, Wiktoria Dywan, Piotr Labuda, Leszek Koszalka, Iwona Pozniak-Koszalka, and
Andrzej Kasprzak

Dept. of Systems and Computer Networks
Wroclaw University of Science and Technology

Wroclaw, Poland
Email: {209108, 218457, 218740}@student.pwr.edu.pl, {leszek.koszalka, iwona.pozniak-koszalka,

andrzej.kasprzak}@pwr.edu.pl

Abstract—In tasks related to machine learning, the right
selection of hyper-parameters can significantly impact training
time and quality of the obtained results. Often, iterative search
algorithms are used. In this paper, we propose an approach,
based on our own modification of Monte Carlo Tree Search.
The new algorithm is designed to work on discrete hyper-
parameter spaces, and uses feedback from training process to
learn and adjust its subsequent outputs. In the paper, the
properties of the algorithm are studied, in particular for
training Multilayer Perceptron. Moreover, three search
algorithms are compared: Grid Search, Random Search and
the proposed Monte Carlo Tree Search. As it is shown, the
Monte Carlo Tree Search can give promising results and can
be treated as fair competition to the off-shelf solutions.

Keywords-algorithm; Monte Carlo approach; Tree search;
hyperparameter; neural network.

I. INTRODUCTION

In the recent decades, a lot of improvements were made
in the area of known computing technologies, which had an
essential impact on popularizing machine learning, leading
to new, and more computationally complex algorithms
being created [1]. Despite many advantages of machine
learning as we know it nowadays, the high complexity of
these methods translates to the time needed by a given
model to learn what is desired; hence, a lot of attention
given to developing the best way of automatically tuning
hyper-parameters can be observed [2].

Hyper-parameters of a neural network are parameters of
the learning process itself, such as learning rate, activation
function, loss function or number of layers [3]. Their
selection can significantly impact training time and results
and therefore choosing hyper-parameters for neural network
is an optimization problem [4][5]. There is a variety of
available methods, for instance based on Bayesian
approaches [6], or Sequential Model-based Algorithm
Configurations (SMAC) [7]. Their performance varies with
the type of network and chosen data. Monte Carlo Tree
Search (MCTS) proposed in [8] is a heuristic search
algorithm for decision processes; this method is often used
in game play [9]. Notable example of usage is AlphaGo, an
artificial intelligence application to play Go [10]. It is

believed that using Monte Carlo Tree Search could bring
satisfying results in hyper-parameter optimization process
[8]. The main objective of this work is to improve Monte
Carlo Tree Search algorithm so that it finds the best set of
neural network hyper-parameters by executing the minimal
amount of iterations and to compare the proposed method
with two known algorithms, namely Grid Search and
Random Search.

Grid Search searches the multidimensional grid of
hyper-parameters by giving a trial to every node of the grid.
This algorithm requires to manually specify the set of
possible values for each parameter. The algorithm moves
through the grid in iterative manner. This approach makes
Grid Search suffer from the curse of dimensionality as the
amount of nodes grows exponentially with the number of
hyper-parameters [11].

Random Search is more effective in optimization for
high dimensional spaces as it draws subsequent sets of
parameters. For discrete parameter collection, Random
Search moves over grid nodes, but, unlike Grid Search, in
random order [12].

We introduce our method that involves Monte Carlo
Tree Search to optimize hyper-parameters. Also, the
proposed MCTS algorithm itself can be described along
with the applied optimizations and method limitations.

The proposed experimentation system allows the
comparison of MCTS with Grid Search and Random Search
with regards to the obtained accuracy in subsequent trials. It
was decided to focus on classification problems, particularly
on Convolutional Neural Network (CNN), Multilayer
Perceptron (MLP) and Support Vector Machine (SVM)
[13], to confirm that MCTS algorithm can be applied to
various machine learning techniques, not only neural
networks.

All tests presented in this paper were conducted on
Modified National Institute of Standards and Technology
dataset (MNIST) [14], which is the biggest available
collection of handwritten digits. It consists of about 60 000
samples in shape of matrices 28x28 pixels.

The rest of the paper is organized as follows. Section II
contains a short review of important scientific papers in the
area. In Section III, the problem is formulated. The core of
the paper is Section IV with the presentation of the proposed

61Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

algorithm. The designed and implemented experimentation
system is described in Section V. This section contains
experiment design, the obtained results and comments. The
conclusion and plans for further research appear in the last
Section VI.

II. RELATED WORK

Traditionally, a manual search (meaning an approach
based on empirical research) has been used for finding the
most satisfying hyper-parameters [15]. While this approach
can be enough for some researchers while training simple
models, it still requires constant conscious management of
chosen hyper-parameters values as even the slightest change
in data used for learning can make them insufficient for
achieving satisfactory results.

Several methods of automated choosing values of hyper-
parameters were proposed over the years. One of the most
common approaches is known as Grid Search, which looks
for the best combination of parameters within whole space
of previously defined fixed values, thus it can become time-
consuming for a large space of potential solutions [16].

One of the most popular approaches, Random Search, is
also one of the simplest. As suggested by its name,
combinations of hyper-parameters values are chosen
randomly until a satisfactory result of learning process is
received. As presented in [12], Random Search can achieve
the same results as Grid Search, but without the need to
check every possible combination, i.e., it is relatively faster.

The Monte Carlo approach is applied to support solving
many problems in artificial intelligence area [17], in
particular in optimization of reinforcement learning process
[18]. Very new and interesting review of applications of
Monte Carlo Tree search can be found in [19].

III. PROBLEM STATEMENT

Given an artificial neural network N, with variable
vector of hyper-parameters V, let a(V) be the accuracy of
the vector V, defined as the highest accuracy reached by
network N, trained with hyper-parameters V, among all the
accuracies reached in a 10-fold cross-validation.

Let S be an algorithm searching through the possible
space of hyper-parameter vectors V. During its operation,
algorithm S produces the number of m hyper-parameter
vectors. Accuracy of the algorithm A(S,-m) is defined as the
highest a(Vi), where i = 1, 2,…, m.

As training a neural network can be a computationally
expensive operation, the optimization task lies in finding an
algorithm S such that A(S, m) is maximized, while m is
minimized at the same time.

IV. PROPOSED METHOD AND ALGORITHM

The proposed method of exploring the hyper-parameter
space is based on a modified Monte Carlo Tree Search
approach. We introduced several changes that allowed the
approach to be used for exploring a discrete hyper-
parameter space.

A. Building the tree

For each neural network, the hyper-parameter space to
be explored is defined as a discrete set of possible values for
each of hyper-parameters taken into consideration. When
transforming the space into a tree data structure, the
following approach was used:

First, hyper-parameters are ordered according to their
number of possible values, from lowest to highest. The
ordered list of hyper-parameters is marked as HS.

The root node of the tree represents the beginning of the
decision process. For each possible value of first hyper-
parameter in the list HS, a child node is added to the root
node, representing the choice of that value for a given
hyper-parameter. Then, for each possible value of the
second hyper-parameter in the list HS, a child node is added
to all of the level 2 nodes. The process repeats itself until
there are no more hyper-parameters on the list HS to further
expand the tree.

The resulting tree has every possible combination of
chosen values represented as a leaf node, and represents the
whole space of hyper-parameters as a multi-staged decision
process.

B. The algorithm

The modified version of the MCTS algorithm follows a
standard model:
Selection - Expansion - Simulation - Backpropagation.

Each node (except the root) in the tree has a value
representing expected accuracy of a neural network trained
using hyper-parameters represented by leaf descendants of a
given node. This value is assigned and updated by the
MCTS algorithm during its operation.

a) Selection: As long as the node the algorithm is in
has children nodes of known value, the algorithm chooses a
node of highest value and moves to it.

b) Expansion: If the node has no children of known
value, a node is chosen at random for the Simulation phase.

c) Simulation: To complete the set of hyper-
parameter values the algorithm chooses remaining values at
random. A neural network of choice is constructed and
trained using this set of hyper-parameters, and its accuracy,
measured as a result of 10 k-fold cross-validation, is
assigned as a value of the node the algorithm started from.

d) Backpropagation: After all child nodes created
during expansion phase are assigned a value, the value of
their parent node is updated to the mean of their values. The
process propagates recursively, updating the parent nodes
value until the root is reached.

C. Optimisation

As the search algorithms are compared on what was
their best proposed solution after N trials (one trial being
equal to one 10 k-fold validation of a given set of hyper-
parameters), three optimizations were introduced to
maximize the algorithms performance within the three
allowed trials described below.

62Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

a) Hyper-parameter sorting: As described in Section
IV-A, hyper-parameters are ordered from the one with least
possible values to the one with the most. The algorithm will,
therefore, always have to start by expanding the root node of
the tree. If the initial expansion requires a small amount of
simulations, the algorithm can start making more informed
decisions sooner, relying less on random choice and more
on past values of the nodes.
b) Node exclusion: The algorithm can find itself in a
local maximum of accuracy when the entire set of hyper-
parameters is chosen based on node values and not random
chance. In that case the leaf node of this solution is marked
as excluded and cannot be included in any following set of
hyper-parameters. This forces the algorithm to consider
other options, and due to backpropagation will gradually
push the algorithm to the global maximum as the number of
generated solutions tends to infinity.
c) Result caching: Due to random choice, it might
occur that an algorithm generates the same solution multiple
times. For that reason, all previously generated solutions
and their respective accuracy are stored, and can be used to
substitute the training process when such case occurs. Since
this does not count as a generated solution, the MCTS can
generate overall better results within a given solutions limit.

D. Limitation

Due to its nature, MCTS is significantly harder to
execute in parallel than Random Search or Grid Search. Due
to the fact that next set of hyper-parameters is known only
after training the network on previous sets, the execution
has to be done sequentially. Only during the expansion
phase several sets of hyper-parameters to test are known in
advance and the order of their testing does not matter.
Alternatively, the algorithm could be modified to test
several promising nodes of the tree at once - however, this
hypothetical method is beyond the scope of this paper and
poses several questions about potentially redundant work.

V. EXPERIMENTATION SYSTEM

The main goal of the research was checking whether the
proposed method of exploring hyper-parameter space is
useful while solving the classification task. In addition, the
results of comparative research aimed in comparison of the
accuracy of known algorithms and the accuracy of a new
algorithm based on Monte Carlo tree search are presented.

A. Experiment Design

In order to conduct research, the Python application has
been created. Its components have been written with usage
of Keras, TensorFlow and Scikit libraries [13][20].

The classification of the MNIST dataset [14] has been
chosen as the task to train the network on. It is a popular set
of handwritten letters and digits represented as bitmap. It
was chosen with regards to its size of around 60 000
samples. A Multilayer Perceptron classifier was trained, and
several parameters of the training process and network’s
structure were chosen as the hyper-parameter space to

compare the search algorithms. Table I presents the hyper-
parameters and their values used in experiments.

TABLE I. HYPERPARAMETERS

Hyper-parameter Possible Values

Learning rate 0.1, 0.01, 0.001

Activation function tanh, relu, sigmoid

Hidden layer units 1, 30, 100, 800

First dropout 0.1, 0.25, 0.7, 0.9

Second dropout 0.1, 0.3, 0.5, 0.9

Three search algorithms, Random Search, Grid Search,

and our own, were tested at finding the best set of hyper-
parameters in as few guesses as possible.

B. Results

The obtained results of the number of sixteen
experiments, conducted on Multilayer Perceptron, are
shown: in Figure 1, produced by Grid Search, in Figure 2,
produced by Random Search, and in Figure 3, produced by
our Monte Carlo Tree Search.

Figure 1. Results of the experiment with Grid Search.

Figure 2. Results of the experiment with Random Search.

63Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

Figure 3. Results of the experiment with Monte Carlo Tree Search.

C. Comments

As shown in Figure 1 and Figure 2, the known search
algorithms are susceptible to a sudden spike of precision due
to accidental finding of a good solution. Contrary, as it can
be observed in Figure 3, our Monte Carlo Tree Search
algorithm is able to make small incremental changes from
session to session.

VI. CONCLUSION

The presented approach to exploring hyper-parameters
space, in particular the proposed Monte Carlo Tree Search
algorithm can be considered as an interesting alternative for
the off-shelf solutions. Its computational overhead is
significantly higher than in the case of Grid Search or
Random Search but negligible compared to the typical task
of training artificial neural networks.

In the near future, we plan to conduct more research
using the proposed approach on Convolutional Neural
Network and Support Vector Machine. Also, we are in the
process of some improvement consisting in implementation
of the multistage experimentation system along with the
rules described in [21].

ACKNOWLEDGMENT

This work was supported by the statutory funds of the
Department of Systems and Computer Networks under
grant no. 0401/0132/18, Faculty of Electronics, Wroclaw
University of Science and Technology, Wroclaw, Poland.

REFERENCES
[1] G. Montavon, G. Orr, and K-R. Muller, “Neural Networks: Tricks of

the Trade,” LNCS, vol. 7700, Springer, 2012.

[2] W. Koehrsen, “Automated Machine Learning Hyper-Parameter
Tuning in Python,” https://towardsdatascience.com/automated-
machine-learning-hyperparameter-tuning-in-python-dfda59b72f8a
[retrieved: January 2019].

[3] A. Honchar, “Neural Networks for Algorithmic Trading. Hyper-
Parameters Optimization,” https:/medium.com/@alexrachnog/neural-
networks-for-algorithmic-trading-hyperparameters-optimization-cb2b
[retrieved: January 2019].

[4] R. Bardenet, M. Brendel, B. Kegl, and M. Sebag, “Collaborative
Hyper-Parameter Tuning,” Proc. of ICML, 2013, pp. 199-207.

[5] P. Sharma, “Improving Neural Networks – Hyper-Parameter Tuning,,”
analyticsvidhya.com/blog/2018/11/neural-networks-hyperparameter-
tuning-regularization-deeplearning [retrieved: January 2019].

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting,” Journal of Machine Learning Research, vol. 15,
2014, pp. 1929-1958.

[7] F. Huffer, H. H. Hoos, and K. Leyton-Brown, “Sequential model
Based Optimization for General Algorithm Configuration,” Learning
and Intell. Optim., Springer, 2011, pp. 507-523.

[8] G. M. J-B. Chaslot, “ Monte Carlo Tree Search,” PhD Thesis,
Maastricht University, 2010, Dissertation Series No. 2010-41, ISBN
978-90-8559-099-6.

[9] T. Cazenave and N. Jouandeau, “A Parallel Monte Carlo Tree Search
Algorithm,” Proc. Comput. And Games, LNCS, vol. 5131, 2008, pp.
72-80.

[10] H. Bajer and M. H. Winands, “Beam Monte Carlo Tree Search” Proc.
IEEE Conf. Comput. Intell. Games, 2012, pp. 227-233.

[11] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, “Algorithms for
Hyper-Parameter Optimization,” Advances in Neural Information
Processing Systems 24 (NIPS 2011), pp.2546-2554.

[12] J. Bergstra and Y. Bengio, “Random Search for Hyper-parameter
Optimization," Journal of Machine Learning Research, vol. 13(1),
2012, pp. 281-305.

[13] S. Raschka, “Python Machine Learning,” Packt Publishing, 2016.

[14] Yann.lecun.com/exdb/mnist, [retrieved: November 2018].

[15] P. Koch, B. Wujek, O. Golowidov, and S. Gardner, ”Automated
Hyper-parameter Tuning for Effective Machine Learning,” 2017,
SAS514-2017.

[16] S. Li and M. Tan, “Tuning SVM Parameters by Using-Hybrid
CLPSO-BFGS Algorithm,” Journal of Neurocomputing, vol. 73, June
2010, pp. 2089-2096.

[17] H. Akiyama, K. Komiya, and Y. Kotani, “Nested Monte Carlo Search
with AMAF Heuristic,” Proc. Int. Conf. Tech. Applica. Artif. Intell,
2010, pp. 172-176.

[18] J. Asmuth and M. L. Littman, “Learning Planning Near Bayes
Optimal Reinforcement Learning via Monte Carlo Search,” Proc.
Conf. Uncert. Artif. Intell., 2011, pp.19-26.

[19] J. N. van Rijn and F. Hutter, “Hyper-parameter Importance Across
Datasets,” Proc. 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 2367-2376.

[20] Stackshare.io/stackups/keras-vs-scikit-learn-vs-tensorflow [retrieved:
January 2019].

[21] M. Hudziak, I. Pozniak-Koszalka, L Koszalka, and A. Kasprzak,
“Multiagent Pathfinding in the Crowded Environment with
Obstacles,” Journal of Intelligent and Fuzzy Systems, vol. 32(2),
2017, pp. 1561-1573.

64Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

