
Monte Carlo Tree Search for Optimizing Hyperparameters of Neural 
Network Training 

 

Karolina Polanska, Wiktoria Dywan, Piotr Labuda, Leszek Koszalka, Iwona Pozniak-Koszalka, and 
Andrzej Kasprzak 

Dept. of Systems and Computer Networks 
Wroclaw University of Science and Technology 

Wroclaw, Poland 
Email: {209108, 218457, 218740}@student.pwr.edu.pl, {leszek.koszalka, iwona.pozniak-koszalka, 

andrzej.kasprzak}@pwr.edu.pl 
 
 

Abstract—In tasks related to machine learning, the right 
selection of hyper-parameters can significantly impact training 
time and quality of the obtained results. Often, iterative search 
algorithms are used. In this paper, we propose an approach, 
based on our own modification of Monte Carlo Tree Search. 
The new algorithm is designed to work on discrete hyper-
parameter spaces, and uses feedback from training process to 
learn and adjust its subsequent outputs. In the paper, the 
properties of the algorithm are studied, in particular for 
training Multilayer Perceptron. Moreover, three search 
algorithms are compared: Grid Search, Random Search and 
the proposed Monte Carlo Tree Search. As it is shown, the 
Monte Carlo Tree Search can give promising results and can 
be treated as fair competition to the off-shelf solutions. 

Keywords-algorithm; Monte Carlo approach; Tree search; 
hyperparameter; neural network. 

I.  INTRODUCTION  

In the recent decades, a lot of improvements were made 
in the area of known computing technologies, which had an 
essential impact on popularizing machine learning, leading 
to new, and more computationally complex algorithms 
being created [1]. Despite many advantages of machine 
learning as we know it nowadays, the high complexity of 
these methods translates to the time needed by a given 
model to learn what is desired; hence, a lot of attention 
given to developing the best way of automatically tuning 
hyper-parameters can be observed [2]. 

Hyper-parameters of a neural network are parameters of 
the learning process itself, such as learning rate, activation 
function, loss function or number of layers [3]. Their 
selection can significantly impact training time and results 
and therefore choosing hyper-parameters for neural network 
is an optimization problem [4][5]. There is a variety of 
available methods, for instance based on Bayesian 
approaches [6], or Sequential Model-based Algorithm 
Configurations (SMAC) [7]. Their performance varies with 
the type of network and chosen data. Monte Carlo Tree 
Search (MCTS) proposed in [8] is a heuristic search 
algorithm for decision processes; this method is often used 
in game play [9]. Notable example of usage is AlphaGo, an 
artificial intelligence application to play Go [10]. It is 

believed that using Monte Carlo Tree Search could bring 
satisfying results in hyper-parameter optimization process 
[8]. The main objective of this work is to improve Monte 
Carlo Tree Search algorithm so that it finds the best set of 
neural network hyper-parameters by executing the minimal 
amount of iterations and to compare the proposed method 
with two known algorithms, namely Grid Search and 
Random Search. 

Grid Search searches the multidimensional grid of 
hyper-parameters by giving a trial to every node of the grid. 
This algorithm requires to manually specify the set of 
possible values for each parameter. The algorithm moves 
through the grid in iterative manner. This approach makes 
Grid Search suffer from the curse of dimensionality as the 
amount of nodes grows exponentially with the number of 
hyper-parameters [11]. 

Random Search is more effective in optimization for 
high dimensional spaces as it draws subsequent sets of 
parameters. For discrete parameter collection, Random 
Search moves over grid nodes, but, unlike Grid Search, in 
random order [12]. 

We introduce our method that involves Monte Carlo 
Tree Search to optimize hyper-parameters. Also, the 
proposed MCTS algorithm itself can be described along 
with the applied optimizations and method limitations. 

The proposed experimentation system allows the 
comparison of MCTS with Grid Search and Random Search 
with regards to the obtained accuracy in subsequent trials. It 
was decided to focus on classification problems, particularly 
on Convolutional Neural Network (CNN), Multilayer 
Perceptron (MLP) and Support Vector Machine (SVM) 
[13], to confirm that MCTS algorithm can be applied to 
various machine learning techniques, not only neural 
networks. 

All tests presented in this paper were conducted on 
Modified National Institute of Standards and Technology 
dataset (MNIST) [14], which is the biggest available 
collection of handwritten digits. It consists of about 60 000 
samples in shape of matrices 28x28 pixels. 

The rest of the paper is organized as follows. Section II 
contains a short review of important scientific papers in the 
area. In Section III, the problem is formulated. The core of 
the paper is Section IV with the presentation of the proposed 
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algorithm. The designed and implemented experimentation 
system is described in Section V. This section contains 
experiment design, the obtained results and comments. The 
conclusion and plans for further research appear in the last 
Section VI. 

II. RELATED WORK 

Traditionally, a manual search (meaning an approach 
based on empirical research) has been used for finding the 
most satisfying hyper-parameters [15]. While this approach 
can be enough for some researchers while training simple 
models, it still requires constant conscious management of 
chosen hyper-parameters values as even the slightest change 
in data used for learning can make them insufficient for 
achieving satisfactory results.  

Several methods of automated choosing values of hyper-
parameters were proposed over the years. One of the most 
common approaches is known as Grid Search, which looks 
for the best combination of parameters within whole space 
of previously defined fixed values, thus it can become time-
consuming for a large space of potential solutions [16]. 

One of the most popular approaches, Random Search, is 
also one of the simplest. As suggested by its name, 
combinations of hyper-parameters values are chosen 
randomly until a satisfactory result of learning process is 
received. As presented in [12], Random Search can achieve 
the same results as Grid Search, but without the need to 
check every possible combination, i.e., it is relatively faster. 

The Monte Carlo approach is applied to support solving 
many problems in artificial intelligence area [17], in 
particular in optimization of reinforcement learning process 
[18]. Very new and interesting review of applications of 
Monte Carlo Tree search can be found in [19]. 

III.  PROBLEM STATEMENT 

Given an artificial neural network N, with variable 
vector of hyper-parameters V, let a(V) be the accuracy of 
the vector V, defined as the highest accuracy reached by 
network N, trained with hyper-parameters V, among all the 
accuracies reached in a 10-fold cross-validation. 

Let S be an algorithm searching through the possible 
space of hyper-parameter vectors V. During its operation, 
algorithm S produces the number of m hyper-parameter 
vectors. Accuracy of the algorithm A(S,-m) is defined as the 
highest a(Vi), where i = 1, 2,…, m. 

As training a neural network can be a computationally 
expensive operation, the optimization task lies in finding an 
algorithm S such that A(S, m) is maximized, while m is 
minimized at the same time. 

IV.  PROPOSED METHOD AND ALGORITHM 

The proposed method of exploring the hyper-parameter 
space is based on a modified Monte Carlo Tree Search 
approach. We introduced several changes that allowed the 
approach to be used for exploring a discrete hyper-
parameter space. 

A. Building the tree 

For each neural network, the hyper-parameter space to 
be explored is defined as a discrete set of possible values for 
each of hyper-parameters taken into consideration. When 
transforming the space into a tree data structure, the 
following approach was used: 

First, hyper-parameters are ordered according to their 
number of possible values, from lowest to highest. The 
ordered list of hyper-parameters is marked as HS. 

The root node of the tree represents the beginning of the 
decision process. For each possible value of first hyper-
parameter in the list HS, a child node is added to the root 
node, representing the choice of that value for a given 
hyper-parameter. Then, for each possible value of the 
second hyper-parameter in the list HS, a child node is added 
to all of the level 2 nodes. The process repeats itself until 
there are no more hyper-parameters on the list HS to further 
expand the tree. 

The resulting tree has every possible combination of 
chosen values represented as a leaf node, and represents the 
whole space of hyper-parameters as a multi-staged decision 
process. 

B. The algorithm 

The modified version of the MCTS algorithm follows a 
standard model: 
Selection - Expansion - Simulation - Backpropagation. 

Each node (except the root) in the tree has a value 
representing expected accuracy of a neural network trained 
using hyper-parameters represented by leaf descendants of a 
given node. This value is assigned and updated by the 
MCTS algorithm during its operation. 

a) Selection: As long as the node the algorithm is in 
has children nodes of known value, the algorithm chooses a 
node of highest value and moves to it. 

b) Expansion: If the node has no children of known 
value, a node is chosen at random for the Simulation phase. 

c) Simulation: To complete the set of hyper-
parameter values the algorithm chooses remaining values at 
random. A neural network of choice is constructed and 
trained using this set of hyper-parameters, and its accuracy, 
measured as a result of 10 k-fold cross-validation, is 
assigned as a value of the node the algorithm started from. 

d) Backpropagation: After all child nodes created 
during expansion phase are assigned a value, the value of 
their parent node is updated to the mean of their values. The 
process propagates recursively, updating the parent nodes 
value until the root is reached. 

C. Optimisation 

As the search algorithms are compared on what was 
their best proposed solution after N trials (one trial being 
equal to one 10 k-fold validation of a given set of hyper-
parameters), three optimizations were introduced to 
maximize the algorithms performance within the three 
allowed trials described below. 

62Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems



a) Hyper-parameter sorting: As described in Section 
IV-A, hyper-parameters are ordered from the one with least 
possible values to the one with the most. The algorithm will, 
therefore, always have to start by expanding the root node of 
the tree. If the initial expansion requires a small amount of 
simulations, the algorithm can start making more informed 
decisions sooner, relying less on random choice and more 
on past values of the nodes. 
b) Node exclusion: The algorithm can find itself in a 
local maximum of accuracy when the entire set of hyper-
parameters is chosen based on node values and not random 
chance. In that case the leaf node of this solution is marked 
as excluded and cannot be included in any following set of 
hyper-parameters. This forces the algorithm to consider 
other options, and due to backpropagation will gradually 
push the algorithm to the global maximum as the number of 
generated solutions tends to infinity. 
c) Result caching: Due to random choice, it might 
occur that an algorithm generates the same solution multiple 
times. For that reason, all previously generated solutions 
and their respective accuracy are stored, and can be used to 
substitute the training process when such case occurs. Since 
this does not count as a generated solution, the MCTS can 
generate overall better results within a given solutions limit. 

D. Limitation 

Due to its nature, MCTS is significantly harder to 
execute in parallel than Random Search or Grid Search. Due 
to the fact that next set of hyper-parameters is known only 
after training the network on previous sets, the execution 
has to be done sequentially. Only during the expansion 
phase several sets of hyper-parameters to test are known in 
advance and the order of their testing does not matter. 
Alternatively, the algorithm could be modified to test 
several promising nodes of the tree at once - however, this 
hypothetical method is beyond the scope of this paper and 
poses several questions about potentially redundant work. 

V. EXPERIMENTATION SYSTEM 

The main goal of the research was checking whether the 
proposed method of exploring hyper-parameter space is 
useful while solving the classification task. In addition, the 
results of comparative research aimed in comparison of the 
accuracy of known algorithms and the accuracy of a new 
algorithm based on Monte Carlo tree search are presented. 

A. Experiment Design 

In order to conduct research, the Python application has 
been created. Its components have been written with usage 
of Keras, TensorFlow and Scikit libraries [13][20]. 

The classification of the MNIST dataset [14] has been 
chosen as the task to train the network on. It is a popular set 
of handwritten letters and digits represented as bitmap. It 
was chosen with regards to its size of around 60 000 
samples. A Multilayer Perceptron classifier was trained, and 
several parameters of the training process and network’s 
structure were chosen as the hyper-parameter space to 

compare the search algorithms. Table I presents the hyper-
parameters and their values used in experiments. 

TABLE I.  HYPERPARAMETERS 

Hyper-parameter Possible Values 

Learning rate 0.1,    0.01,    0.001 

Activation function tanh,    relu,    sigmoid 

Hidden layer units 1,      30,      100,     800 

First dropout  0.1,    0.25,     0.7,     0.9 

Second dropout 0.1,      0.3,        0.5,      0.9 

 
Three search algorithms, Random Search, Grid Search, 

and our own, were tested at finding the best set of hyper-
parameters in as few guesses as possible. 

B. Results 

The obtained results of the number of sixteen 
experiments, conducted on Multilayer Perceptron, are 
shown: in Figure 1, produced by Grid Search, in Figure 2, 
produced by Random Search, and in Figure 3, produced by 
our Monte Carlo Tree Search.  

 

Figure 1. Results of the experiment with Grid Search. 

 

Figure 2. Results of the experiment with Random Search. 
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Figure 3. Results of the experiment with Monte Carlo Tree Search. 

C. Comments 

As shown in Figure 1 and Figure 2, the known search 
algorithms are susceptible to a sudden spike of precision due 
to accidental finding of a good solution. Contrary, as it can 
be observed in Figure 3, our Monte Carlo Tree Search 
algorithm is able to make small incremental changes from 
session to session. 

VI.  CONCLUSION 

The presented approach to exploring hyper-parameters 
space, in particular the proposed Monte Carlo Tree Search 
algorithm can be considered as an interesting alternative for 
the off-shelf solutions. Its computational overhead is 
significantly higher than in the case of Grid Search or 
Random Search but negligible compared to the typical task 
of training artificial neural networks. 

In the near future, we plan to conduct more research 
using the proposed approach on Convolutional Neural 
Network and Support Vector Machine. Also, we are in the 
process of some improvement consisting in implementation 
of the multistage experimentation system along with the 
rules described in [21]. 
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