
Octopus Algorithm as a New Support in Solving TSP

Marek Sosnicki, Iwona Pozniak-Koszalka, Leszek Koszalka, Andrzej Kasprzak
Dept. of Systems and Computer Networks

Wroclaw University of Science and Technology
Wroclaw, Poland

e-mail: {marek.sosnicki, iwona.pozniak-koszalka, leszek.koszalka, andrzej.kasprzak}@pwr.edu.pl

Abstract—In this paper, a designed and implemented
algorithm, named Octopus is applied for solving the Travelling
Salesman Problem (TSP). In general, the Octopus algorithm
can be used as both a method of finding good solutions of the
optimization problem and a way to get starting points for other
meta-heuristic algorithms used in problem solving, for instance
Tabu Search (TS). Octopus takes into account multiple
solutions gathered by the meta-heuristic algorithms and
combines them to obtain new ones. The results of simulation
experiments show that Octopus may be considered as very
promising.

Keywords-algorithm; TSP; Tabu Search; experimentation
system; simulation.

I. INTRODUCTION

TSP is one of the most popular optimization problems.
The problem consists in finding a path between points (e.g.,
cities on the map) with known location. The path (route) has
to allow for visiting all points as fast as possible or using the
shortest possible route. In practice, when the best route
between dozens or hundreds of points should be found then
one can realize that it is a real NP-hard problem
(nondeterministic polynomial) [1].

 Many authors have tried to solve this problem using
different approaches, e.g., Branch and Bound [2], but such
methods can provide solution in reasonable time only to
small instances of the problem, namely, a few locations,
only. Another way to find the solution is using heuristic
algorithms. These algorithms can provide solutions, which
are close to optimal ones but the process of finding them is
much quicker than for exact methods. There are many types
of heuristics which can be used. It is worth to mention such
algorithms as Parallel Evolutionary [3], Artificial Bee
Colony (ABC) [4], Ant Colony Optimization (ACO) [5][6],
Tabu Search (TS) [7]-[9].

We are interested in algorithms which have some
starting solutions and then they try to construct improved
solutions by slightly changing them and checking, i.e.
optimizing them. Such a process is then repeated multiple
times until getting the best or satisfying solution. Local
search algorithms are great in finding good solutions in very
short time, but they have one disadvantage. They tend to get
stuck in local minimum. It usually happens when we cannot
find any way to change our current solution so that it gets
better in next iterations.

The Octopus algorithm proposed in this paper deals with
the problem of getting stuck in local minimum areas with
local search algorithms. The proposed approach allows
combining multiple different algorithms, anticipating that
they can give better results when used together while
working in parallel environments [10]. The algorithm
requires activities on three stages: (i) taking many good
solutions from local search algorithms (starting from
different random solutions); (ii) combining these solutions
and generating new starting points, which keep some
information about good solutions; (iii) running algorithms
again from the new starting points.

The rest of the paper is organized as follows. In Section
II, the mathematical model of the considered TSP problem
is formulated, and we provide the justification why TSP was
chosen for investigation concerning the proposed Octopus
algorithm. In Section III, the implementation of Tabu
Search which was taken as meta-heuristic algorithm for
testing a new algorithm is briefly described, as well as the
core of the paper – the Octopus algorithm is presented in
detail. The presentation of research has been contained in
Section IV. Investigation concentrates on properties of the
proposed algorithm, and its advantages in comparison with
known algorithms to solving the considered TSP problem.
The conclusion and plans for the future work to improving
Octopus algorithm appear in the last Section V.

II. PROBLEM FORMULATION

The considered TSP problem can be formulated as
follows.

Given:
• A graph G = (V; E), where V = {1, 2, …, n} is a

vertex set of points and E = {{i, j}: i ≠ j, i, j ϵ V} is
an edges set (e.g., paths between cities).

• A nonnegative cost (distance) matrix C = [ci, j]
defined on E.

To find
• A route π = (π(1), π(2),…,π(n)) ϵ Π, which is

represented as permutation of vertices [3] that
passes through each point exactly once, and returns
to the starting point on a G.

Such that
• The optimal solution (π*) minimizes the cost

(fitness) of the route defined as the arithmetic sum
of all paths between points, which belong to π.

81Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

In this paper, only the symmetric version of TSP is
considered as it is a more common usage, but the proposed
algorithm can also work for the asymmetric version.

There are three main reasons why the above problem
was selected for testing the performance of Octopus
algorithm.

• Every permutation of nodes in this problem is a
feasible solution. That allows us to mix solutions
easier. In many optimization problems it is hard to
even find a random permutation, as most of
possible permutations are not feasible.

• The local search algorithms work very well and
fast in this problem. It is due to the fact that it is
easy to find a value of a fitness function for
neighbor solutions.

• There are many local search metaheuristic
algorithms invented for solving TSP, so the new
algorithm may become helpful to combine them.

The proposed algorithm should also work for any other
problem, which fulfills the first reason.

III. OCTOPUS ALGORITHM

In the first subsection, the collaborating algorithm Tabu
Search (TS) is briefly presented. The next subsections
describe three stages of the performance of the Octopus
algorithm.

A. Tabu Search for Testing

For testing the Octopus algorithm, the implemented
version of TS algorithm was taken. The pseudocode for TS
[11] is presented in Figure 1.

 ⌂ produce an initial solution π;
 π* ← π;
 initiate tabu list T;
 while termination criterion is not satisfied do
 get all neighbors N(s) according to π and T;
 find the best solution π

b
’ in N(s);

 π* ← πb
’;

 update T;
 if fit(π) ≤ fit(π*) then
 π* ← π’;
 end if
 end while
 return π*

Figure 1. Pseudocode of the implemented Tabu Search.

The neighborhood is generated as all possible swaps of
two elements of permutation. The tabu list is saving two
indices of permutation, which were swapped in the previous
iteration. Tabu list size is fixed, e.g., could be set to 100.
The termination criterion is taken as the number of
iterations, which is a parameter of the algorithm. The initial
solution is treated as another TS parameter.

B. The First Stage – Local Search

The first stage of the algorithm is gathering solutions.
The exemplary metaheuristic TS algorithm is running N

times starting from random permutations, with the same
number of iterations in each run. Several performances of TS
could run in separate threads as they do not need to exchange
information between each other. To obtain satisfying results,
the minimum of N is fixed as N=50, thus different solutions
must be collected. It can be noticed that the obtained
permutations are similar to each other in a way the distances
to each other [12], are smaller than distances to permutations
chosen at random.

C. The Second Stage – Combining Solutions

After Octopus gathered permutations P={π1, π2,…, πN},
by performing in the previous stage, it makes changes in the
introduced matrix called Order Matrix (OM). The matrix
OM is created taking into account all permutations. An
element of OM denoted as ai,j is equal to 1 if π-1(i) < π-1(j),
and is equal to 0, otherwise. Then, all matrices are combined
together by summing them and creating the matrix S
expressed by (1).

 S = A1 + A2 +…+ AN (1)

D. The Third Stage – New Starting Points

To get the new start points, the procedure shown in
Figure 2 is proposed.

 ⌂ produce an initial permutation
 π ← {1};
 while π ≠ n d
 ⌂ Repeated until permutation has all elements
 i* ← 0;
 v* ← -∞;
 for all i ϵ {2, 3,…, n} do
 if i ϵ π then
 continue;
 end if
 for all Possible insert positions p do
 ⌂ p = 0 is inserted between all elements,
 ⌂ p = 1 is after first, etc.
 Calculate v = V (π, i, p);
 if v > v* then
 v* ← v;
 p* ← p;
 i* ← i;
 end if
 end for
 end for
 insert i* into π at p* position;
 end while
 return π

Figure 2. Pseudocode of the implemented Tabu Search.

The introduced formula to calculate the inserted value is
expressed by (2).

V(π, i, p) = Σηp,k (Si,η(k) - Sη(k),i) (2)

82Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

where:
• The summation in (2) goes from k=0 to the

absolute value of p;
• The coefficient ηp,k introduced in (2) is equal to -1

if p < k or is equal to +1, otherwise.
This formula is proposed to select such inserts which are

most common among the permutations calculated in the first
stage. That means, e. g., if node 6 is always after 5 in the
obtained solutions, then putting 6 after 5 in permutation
would have very high insert value.

After such new solution π is obtained, the OM of this
solution is subtracted from S and the procedure is repeated
to find the next solution (based on the new matrix S).

Unfortunately, the proposed approach allows us to
obtain about M=0.2*N reasonable solutions. When we try to
generate more permutations than M, the produced
permutations become more and more random, and do not
have the desirable features that can be observed in the first
permutations. After we obtain M new permutations, we run
our local search algorithms on them to obtain new, better
solutions. We can repeat these stages all over, but we must
remember that the number of processed permutations may
decrease by 80% with each third stage of Octopus.

IV. RESEARCH

The main goal of the research was to check whether the
Octopus algorithm can give good solutions to the considered
TSP, and to observe if the features of good solutions are
remembered in the new permutations when using the
proposed approach.

The simulation experiments have been made taking into
account five instances from TSPLib., namely kroA100,
kroB100, kroC100, kroA200, kroB200 [13]. The first three
instances concern TSP with 100 nodes (points), and the next
two instances concern TSP with 200 nodes (points).

A. Testing TS

Firstly, Tabu Search algorithm was tested for random
permutations generated as start points, to show that the
implementation can give promising results. TS was run with
different number of iterations.

The results obtained for kro100A test instance are
presented in Figure 3. It may be observed that the
implemented TS algorithm produced good solutions for not
a big number of iterations and that the first 200 iterations
were crucial.

Table 1 shows the results obtained by TS with 1000
iterations in comparison to the best known solutions for the
considered instances. Also, it can be seen that the solutions
found by TS are worse only approximately 10 % in average
than the best solutions listed in TSPLib. This can justify the
fact that the algorithm works properly and can give
satisfactory results.

Figure 3. TS algorithm for kroA100 instance.

TABLE I. COST FUNCTION FOR SOLUTIONS OF TSP

Test instance TS result Best known

kroA100 23405 21282

kroB100 24240 22141

kroC100 22733 29749

kroA200 35456 29368

kroB200 35311 29437

B. Testing Octopus

Next, we checked if the new start points obtained when
Octopus is utilized can ensure better solutions than these
obtained when random start points are taken into account. A
single simulation experiment consisted of six steps. Each
experiment was conducted using following the procedure:

Step 1. The number of 100 permutations was chosen at
random.

Step 2. TS was applied for each of them for 5000 iterations
(in case of problems with 200 nodes) or 1000 iterations (in
case of problems with 100 nodes).

Step 3. Octopus algorithm was run the first time on the
obtained solutions by TS and 20 new start points were
created.

Step 4. TS was run again using these 20 solutions (start
points) for the same number of iterations.

Step 5. The second run of Octopus algorithm was performed
and finally four solutions were taken.

Step 6. TS algorithm was performed once more using these
four solutions.

83Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

In Figure 4, the exemplary results of solving TSP for
instance kroB200 with two runs of Octopus are shown.

Figure 4. Octopus – runs with 5000 iterations for kroB200.

In Figure 5, the results for the same case are presented
but with the first 100 iterations of TS removed in order to
increase readability.

Figure 5. Octopus – runs with 5000 iterations (first 100 removed in each

run) for kroB200.

C. Testing TS with Octopus

The aim of this complex experiment was the comparison
of results obtained in solving TSP for the considered
instances with a sequence of 3 runs:

Run 0: Using the standard version of TS with start points
generated randomly.

Run I. Using TS with the first run of Octopus (with new
start points).

Run II. Using TS with the second run of Octopus (with
additional start points).

Table II presents the results obtained for five instances.
In columns show the average values of the fitness function
(denoted as Avg) for the start points in successive runs.

TABLE II. AVERAGED FITNESS VALUES OF START POINTS

Test
instance

Avg (0) Avg (I) Avg (II)

kroA100 170657 101347 86391

kroB100 170696 89900 78432

kroC100 169766 104592 89334

kroA200 340429 205334 178054

kroB200 334684 198752 171779

We can see that the first run of Octopus gave much

better start points than random ones for all considered
instances. We define Profit as the percentage decrease in the
fitness function, as expressed by (3).

Profit (x+1) ={[Avg (x) – Avg (x+1)] / Avg (x)}*100 %. (3)

where x = 0, 1. In Table III, the values of the obtained Profit
are specified. The Profit from the first run of Octopus was
of more than 40 % and may be considered relatively large. It
indicates that Octopus can be used to find new starting
points based on some already known solutions. The second
run of Octopus was not so effective, giving a modest
increase in quality of 13.7 %, which is almost three times
less than the first run of Octopus.

TABLE III. PROFIT GIVEN BY OCTOPUS

Test instance Profit (I) Profit (II)

kroA100 40.6 % 14.8 %

kroB100 47.1 % 12.8 %

kroC100 38.2 % 14.4 %

kroA200 39.7 % 13.1 %

kroB200 40.7 % 13.6 %

mean 41.3 % 13.7 %

Table IV presents the results obtained for all instances

after Run (0) and Run (I) with Octopus. The notation Min
(x) represents the best solution of TSP.

TABLE IV. SOLUTIONS MADE WITH OCTOPUS RUNS

Test
Instance

Min
(0)

Avg
(0)

Min
(I)

Avg
(I)

kroA100 25690 31177 24538 28517

kroB100 26617 31780 26090 28724

kroC100 26829 30659 25472 30378

kroA200 38882 44300 37508 42185

kroB200 38499 43888 38232 41199

The analysis of the results presented in Table IV

confirms that using Octopus can improve the process of
finding the solution to TSP with the implemented TS.

84Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

V. CONCLUSION AND FUTURE WORK

Based on the results of experiments, we can say that the
proposed Octopus algorithm seems to be promising. The
basic idea of this algorithm is to combine solutions in order
to create new ones, by keeping the good features of the old
ones. The new start points that are created by Octopus
possess some features of the old permutations. Using
Octopus gives a chance to avoid being stuck in local
minimum areas.

However, the proposed approach is not perfect. The
drawback is that, with each step of the algorithm, we reduce
the number of processed solutions by 80%. Moreover, we
are starting from random points, and we cannot be sure if
after using Octopus algorithm we would not try to check
some permutations multiple times, which would be a waste
of processing power.

In our further work, we plan:
• To apply Octopus algorithm for solving

optimization problems other than TSP.
• To use Octopus in collaboration with other local

search algorithms.
• To improve getting more reasonable start points

from a single run.
• To consider possibility of implementing Octopus

on GPU (Graphics Processing Unit) threads, as
well as using MPI (Message Passing Library).

• To implement an experimentation system along
with the rules described in [14].

ACKNOWLEDGMENT

This work was supported by the statutory funds of the
Department of Systems and Computer Networks under
grant no. 0401/0132/18, Faculty of Electronics, Wroclaw
University of Science and Technology, Wroclaw, Poland.

REFERENCES
[1] K. Ilavarasi and J. K. Suresh, “ Variants of Traveling Salesman

Problem: A Survey,” Proc. of International Conference on
Information, Communication and Embedded Systems (ICICES),
February 2014, pp. 1-7, IEEE, doi:10.1109/ICICES 2014.70338550.

[2] R. Grymin and S. Jagiello, “Fast Branch and Bound Algorithm for the
Traveling Salesman Problem,” Proc. of IFIP conference on Computer
Information Systems and Industrial Management, 2016, pp. 206-217.

[3] W. Bozejko and M. Wodecki, “Parallel Evolutionary Algorithm for
the Traveling Salesman Problem”, Journal of Numerical Analysis,
Industrial and Applied Mathematics, 2 (3-4), 2007, pp. 129-137.

[4] N. Pathak and S. P. Tiwasi, “Traveling Salesman Problem Using Bee
Colony with SPV,” International Journal of Soft Computing and
Engineering (IJSCE), vol. 2, July 2012, pp. 410-414.

[5] K. Baranowski, L. Koszalka, I. Pozniak-Koszalka, and A. Kasprzak,
“Ant Colony Optimization Algorithm for Solving the Provider –
Modified Travelling Salesman Problem” Proc. of ACIIDS
conference, April 2014, Springer, Lectures Notes in Computer
Science, pp. 493-502.

[6] P. Jarecki, P. Kopec, I. Pozniak-Koszalka, L. Koszalka, and A.
Kasprzak, “Comparison of Algorithms for Finding Best Route in An
Area With Obstacles,” Proc. of International Conference on Systems
Engineering (ICSEng), Las Vegas, USA, August 2017, pp. 163-168.

[7] Y. He, Y. Qiu, G. Liu, and K. Lei, “A Parallel Adaptive Tabu Search
Approach for Traveling Salesman Problem,” Proc. of IEEE Internat.
Conference on Natural Language Processing and Knowledge
Engineering, November 2005, pp. 796-801.

[8] Y-F. Lim, P-Y. Hong, R. Raml, and R. Khalid, “An Improved Tabu
Search for Solving Symmetric Traveling Salesman Problems,” Proc.
of IEEE Colloquium on Humanistic Science and Engineering
(CHUSER), December 2011, pp. 851-854.

[9] E. Osaba and F. Daz, “ Comparison of Memetic Algorithm and Tabu
Search Algorithm for the Traveling Salesman Problem,” Proc. of
Federated Conference on Computer Science and Information
Systems. (FedCSIS), September 2012, pp. 131-136.

[10] W. Yen and D. McLean, “Combining Heuristics for Optimizing A
Neural Net Solution to The Traveling Salesman Problem,” Proc. of
International Joint Conference on Neural Networks (IJCNN), June
1990, pp. 259-264.

[11] Y-W. Zhong, C. Wu, L-S. Li, and Z. Y. Ning, “The Study of
Neighborhood Structures of Tabu Search Algorithm for Traveling
Salesman Problem,” Proc. to 4th International Conference on Natural
Computation (ICNC), October 2008, p. 491.

[12] A. B. Rathod, “A Comparative Study on Distance Measuring
Approaches for Permutation Representations,” Proc. of IEEE
International Conference on Advances in Electronics Communication
and Computer Technology (ICAECCT), December 2016, pp. 251-
256.

[13] TSPLibrary [Online]. Available from: http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95 [retrieved: December 2018].

[14] M. Hudziak, I. Pozniak-Koszalka, L Koszalka, and A. Kasprzak,
“Multiagent Pathfinding in the Crowded Environment with
Obstacles,” Journal of Intelligent and Fuzzy Systems 32(2), 2017, pp.
1561-1573.

85Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

