ICONS 2019 : The Fourteenth International Conference on Systems

Octopus Algorithm asa New Support in Solving TSP

Marek Sosnicki, lwona Pozniak-Koszalka, Leszek disz, Andrzej Kasprzak

Dept. of Systems and Computer Networks
Wroclaw University of Science and Technology

Wroclaw,

Poland

e-mail: {marek.sosnicki, iwona.pozniak-koszalkazek.koszalka, andrzej.kasprzak}@pwr.edu.pl

Abstract—In this paper, a designed and implemented
algorithm, named Octopusis applied for solving the Travelling
Salesman Problem (TSP). In general, the Octopus algorithm
can be used as both a method of finding good solutions of the
optimization problem and a way to get starting points for other
meta-heuristic algorithms used in problem solving, for instance
Tabu Search (TS). Octopus takes into account multiple
solutions gathered by the meta-heuristic algorithms and
combines them to obtain new ones. The results of simulation
experiments show that Octopus may be considered as very
promising.

Keywords-algorithm; TSP; Tabu Search; experimentation
system; simulation.

l. INTRODUCTION

TSP is one of the most popular optimization protdem
The problem consists in finding a path between tsdje.g.,
cities on the map) with known location. The patiue) has
to allow for visiting all points as fast as possillr using the
shortest possible route. In practice, when the Ileste
between dozens or hundreds of points should bedfthen
one can realize that it is a realP-hard problem
(nondeterministic polynomia[1].

Many authors have tried to solve this problem gsin
different approaches, e.g., Branch and Bound [@{,dnch
methods can provide solution in reasonable time dal
small instances of the problem, namely, a few iooat
only. Another way to find the solution is using htic
algorithms. These algorithms can provide solutiomisich
are close to optimal ones but the process of fmdem is
much quicker than for exact methods. There are mgrgs
of heuristics which can be used. It is worth to timmsuch
algorithms as Parallel Evolutionary [3], ArtificiaBee
Colony (ABC) [4], Ant Colony Optimization (ACO) [f],
Tabu Search (TS) [7]-[9].

The Octopus algorithm proposed in this paper dedls
the problem of getting stuck in local minimum arewsith
local search algorithms. The proposed approachwallo
combining multiple different algorithms, anticipagi that
they can give better results when used togetherdewhi
working in parallel environments [10]. The algonth
requires activities on three stages: taking many good
solutions from local search algorithms (startingondr
different random solutions)ji] combining these solutions
and generating new starting points, which keep some
information about good solutionsijii§ running algorithms
again from the new starting points.

The rest of the paper is organized as follows. énti&n
I, the mathematical model of the considered TSéblem
is formulated, and we provide the justification wh$P was
chosen for investigation concerning the proposetbs
algorithm. In Section Ill, the implementation of Bla
Search which was taken as meta-heuristic algorifom
testing a new algorithm is briefly described, adlwe the
core of the paper — the Octopus algorithm is presem
detail. The presentation of research has been ioedtan
Section IV. Investigation concentrates on propsrté the
proposed algorithm, and its advantages in companigith
known algorithms to solving the considered TSP [enwb
The conclusion and plans for the future work to riayng
Octopus algorithm appear in the last Section V.

Il. PROBLEM FORMULATION

The considered TSP problem can be formulated as
follows.

Given:

e Agraph G = (V; E), where V ={1, 2, ..., n}is a
vertex set of points and E = {{i, j}:#],i,j € V}is
an edges set (e.g., paths between cities).

* A nonnegative cost (distance) matrix C 5 i
defined on E.

We are interested in algorithms which have some

starting solutions and then they try to construsprioved

solutions by slightly changing them and checking. i
optimizing them. Such a process is then repeatekipteu

times until getting the best or satisfying solutidrocal

search algorithms are great in finding good sohgim very

short time, but they have one disadvantage. Thay te get
stuck in local minimum. It usually happens whenaga@not

find any way to change our current solution so ihaets

better in next iterations.

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

Tofind

e A route 1 = (n(1), n(2),...:m(n)) € II, which is
represented as permutation of vertices [3] that
passes through each point exactly once, and returns
to the starting point on a G.

Such that

e The optimal solution #*) minimizes the cost
(fitness) of the route defined as the arithmetimsu
of all paths between points, which belongrto

81

ICONS 2019 : The Fourteenth International Conference on Systems

In this paper, only the symmetric version of TSP istimes starting from random permutations, with tlane
considered as it is a more common usage, but tygoped number of iterations in each run. Several perfoicearof TS
algorithm can also work for the asymmetric version. could run in separate threads as they do not meexichange

There are three main reasons why the above problemformation between each other. To obtain satigfy@sults,
was selected for testing the performance of Octoputhe minimum of N is fixed as N=50, thus differentutions
algorithm. must be collected. It can be noticed that the abthi

» Every permutation of nodes in this problem is apermutations are similar to each other in a waydist&ances

feasible solution. That allows us to mix solutionsto each other [12], are smaller than distance®tmptations
easier. In many optimization problems it is hard tochosen at random.

even find a random permutation, as most of
possible permutations are not feasible. _

« The local search algorithms work very well and ~ After Octopus gathered permutations R&frz,..., mn},

fast in this problem. It is due to the fact thatsit Py performing in the previous stage, it makes ckarig the
easy to find a value of a fitness function for introduced matrix called Order Matrix (OM). The mat

neighbor solutions. OM is created taking into_account all perlmutaticim

- There are many local search metaheuristic€lément of OM denoted ag & equal to 1 ift (i) < m"(j),
algorithms invented for solving TSP, so the newand is equal to 0, otherwise. Then, all matricescambined
algorithm may become helpful to combine them. together by summing them and creating the matrix S

The proposed algorithm should also work for anyeoth €xpressed by (1).
problem, which fulfills the first reason.

C. The Second Stage — Combining Solutions

S=A+A2+...+AN (1)
lll. OCTOPUS ALGORITHM _ . _

In the first subsection, the collaborating algaritifabu D. The Third Stage — NeV_V Starting Points)
Search (TS) is briefly presented. The next subsesti __T0 getthe new start points, the procedure shown in
describe three stages of the performance of thepDst Figure 2 is proposed.
algorithm. ¢ produce an initial permutation
A. Tabu Search for Testing n—{1}

For testing the Octopus algorithm, the implemented Whilem#nd _ _
version of TS algorithm was taken. The pseudocodd § o Repeated until permutation has all elements
[11] is presented in Figure 1. T 0;

§ «— -o0;

o produce an initial solution; forallie{2,3,...,n} do

T — T, ifi e xthen

initiate tabu list T; continue;

while termination criterion is not satisfietb end if

get all neighbors N(s) according and T; for all Possible insert positiomsdo
find thbe best solutiah in N(s); o p = 0 is inserted between all elements,
T o p =1 is after first, etc.
update T; Calculate= V (m, i, p);
if fit(x) < fit(z*) then if v>V* then
T — T, V- V;
end if pE- p;
end while i
return o* end if
Figure 1. Pseudocode of the implemented Tabu Search end for
end for

The neighborhood is generated as all possible swhps insert* into z atp* position;
two elements of permutation. The tabu list is sgviwo end while
indices of permutation, which were swapped in thevious returnz

iteration. Tabu list size is fixed, e.g., could $&t to 100.
The termination criterion is taken as the number of
iterations, which is a parameter of the algoritfe initial
solution is treated as another TS parameter.

Figure 2. Pseudocode of the implemented Tabu Search

The introduced formula to calculate the inserteldievas
expressed by (2).
B. The First Stage — Local Search

The first stage of the algorithm is gathering sohs. V(m, i, p) = Znpk (S -Syw.i) 2)
The exemplary metaheuristic TS algorithm is runnig

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5 82

ICONS 2019 : The Fourteenth International Conference on Systems

where: i
e The summation in (2) goes frork=0 to the G
absolute value gs; -
» The coefficientn, introduced in (2) is equab -1
if p <koris equal to +1, otherwise. i
This formula is proposed to select such insertxivhie i

most common among the permutations calculatedeitiitst
stage. That means, e. g., if node 6 is always &fter the
obtained solutions, then putting 6 after 5 in peatian
would have very high insert value.
After such new solutiom is obtained, the OM of this
solution is subtracted from S and the procedurepsated
to find the next solution (based on the new madix
Unfortunately, the proposed approach allows us tc
obtain about M=0.2N reasonable solutions. When we try to
generate more permutations than M, the produce . 18 o W 4 O 9o B A S
permutations become more and more random, and to n No of iterations
have the desirable features that can be observékifirst
permutations. After we obtain M new permutations, nn
our local search algorithms on them to obtain nbetter

X
i
—-

Fitness value

=
=] pa
T =L

=
o
T

=1
S

Figure 3. TS algorithm for kroA100 instance.

SO|uti0nS. We can repeat these Stages a." OVeNVbuhUSt TABLE |. COST FUNCTION FOR SOLUTIONS OFSP
remember that the number of processed permutatians _

decrease by 80% with each third stage of Octopus. Test instance TSresuilt Best known

N kroA100 23405 21282

_ - RESEARCH kroB100 24240 22141

The main goal of the_research was to check vyhdethaer KroC100 22733 29749

Octopus algorithm can give good solutions to thesatered
kroA200 35456 29368

TSP, and to observe if the features of good saistiare
remembered in the new permutations when using the kroB200 35311 29437
proposed approach. .
The simulation experiments have been made takitag in B- Testing Octopus
account five instances from TSPLib., namely kroA100 Next, we checked if the new start points obtaindwumv
kroB100, kroC100, kroA200, kroB200 [13]. The fitstee Octopus is utilized can ensure better solutions ttheese
instances concern TSP with 100 nodes (points)flemdiext obtained when random start points are taken intowat. A
two instances concern TSP with 200 nodes (points). single simulation experiment consisted of six stepach
. experiment was conducted using following the proced

A. Testing TS

Firstly, Tabu Search algorithm was tested for ramdo
permutations generated as start points, to show ttiea
implementation can give promising results. TS waswith Step 2. TS was applied for each of them for 5000 iteration
different number of iterations. (in case of problems with 200 nodes) or 1000 itenst (in

The results obtained for krolOOA test instance argase of problems with 100 nodes).
presented in Figure 3. It may be observed that the)))
implemented TS algorithm produced good solutionsnft ~ Step 3. Octopus algorithm was run the first time on the
a big number of iterations and that the first 2@9ations ~ Obtained solutions by TS and 20 new start pointsewe
were crucial. created.

_Table 1 shows the results obtained by TS with 100&ep 4. TS was run again using these 20 solutions (start
iterations in comparison to the best known soluitor the ints) for the same number of iterations.

considered instances. Also, it can be seen thasdhgions)

found by TS are worse only approximately 10 % ierage ~ Step 5. The second run of Octopus algorithm was performed
than the best solutions listed in TSPLib. This amify the and finally four solutions were taken.

fact that the algorithm works properly and can givegen g Ts algorithm was performed once more using these
satisfactory results. four solutions.

Step 1. The number of 100 permutations was chosen at
random.

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5 83

ICONS 2019 : The Fourteenth International Conference on Systems

In Figure 4, the exemplary results of solving TSP f
instance kroB200 with two runs of Octopus are shown

5
iR

—&—average
minimum

2.5

Fitness value

_ 9 L
| | Q2
i |

o

|
iy, " Ay \‘
- ‘L“—'“Ef—c—-»@—ﬁr;_.—&xf

&
0.5 e SR e —— ’GQLF e o

5000 10000
Mo of iterations

Figure 4. Octopus — runs with 5000 iterations f@B8200.

15000

In Figure 5, the results for the same case areepted
but with the first 100 iterations of TS removeddrder to
increase readability.

4
AL
= —&—average
8 i
| minimum
|
7.5
|
711
i
o T
6.5 My
3007
> .
@ 8y
@ &
= ! i
gl) |
\-_‘I\ (‘b f‘l
5 Sfih] A
- Ty Vs
=g w\ﬂ K
45 S =
%““t{-)—_v__t.,’ "'“‘:}—eq___é.’__‘_{
4t 3}
3.5 3 = i
0 5000 10000 15000
No of iterations
Figure 5. Octopus — runs with 5000 iterations(fir00 removed in each

run) for kroB200.
C. Testing TS with Octopus

The aim of this complex experiment was the comparis
of results obtained in solving TSP for the consder
instances with a sequence of 3 runs:

Run 0: Using the standard version of TS with start points
generated randomly.

Run |. Using TS with the first run of Octopus (with new
start points).

Run I1. Using TS with the second run of Octopus (with
additional start points).

Table Il presents the results obtained for fivaanses.
In columns show the average values of the fitnasstion
(denoted as Avg) for the start points in successives.

TABLE Il. AVERAGED FITNESS VALUES OF START POINTS

in;;toe Avg (0) Avg (1) Avg (1)

kroALO0 | 170657 101347 86301
kroB100 | 170696 89900 78432
kroC100 | 169766 104592 89334
kroA200 | 340429 205334 178054
kroB200 | 334684 198752 171779

We can see that the first run of Octopus gave much
better start points than random ones for all casid
instances. We define Profit as the percentage dseri@ the
fithess function, as expressed by (3).

Profit (x+1) ={[Avg (X) — Avg (x+1)] / Avg (X)}100 %. (3)

where x = 0, 1. In Table I, the values of theaibéed Profit
are specified. The Profit from the first run of Qgtis was
of more than 40 % and may be considered relatieege. It
indicates that Octopus can be used to find newtirstar
points based on some already known solutions. €hersl
run of Octopus was not so effective, giving a modes
increase in quality of 13.7 %, which is almost éhtenes
less than the first run of Octopus.

TABLE Ill. PROFIT GIVEN BY OCTOPUS

Test instance Profit (1) Profit (11)
kroA100 40.6 % 14.8 %
kroB100 47.1 % 12.8 %
kroC100 38.2% 14.4%
kroA200 39.7 % 13.1%
kroB200 40.7 % 13.6 %
mean 41.3 % 13.7 %

Table IV presents the results obtained for allanses
after Run (0) and Run (I) with Octopus. The notatMin
(x) represents the best solution of TSP.

TABLE IV. SOLUTIONS MADE WITH OCTOPUS RUNS

Test Min Avg Min Avg

Instance 0) 0) () ()

kroA100 | 25690 | 31177| 24538 28517
kroB100 | 26617 | 31780 2609 28724
kroC100 | 26829| 30659 25472 30378
kroA200 | 38882 | 44300 37508 42185
kroB200 | 38499 | 43888 38232 41199

The analysis of the results presented in Table IV

confirms that using Octopus can improve the proaass

finding the solution to TSP with the implemented TS

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

84

ICONS 2019 : The Fourteenth International Conference on Systems

V. CONCLUSION AND FUTURE WORK
Based on the results of experiments, we can sayttiba

proposed Octopus algorithm seems to be promisimg T [4]

basic idea of this algorithm is to combine solusion order
to create new ones, by keeping the good featuréiseobld
ones. The new start points that are created by pDsto

possess some features of the old permutations. gUsin
Octopus gives a chance to avoid being stuck inlloca

minimum areas.

However, the proposed approach is not perfect. Thes;

drawback is that, with each step of the algoritiam@,reduce
the number of processed solutions by 80%. Moreower,
are starting from random points, and we cannoture &
after using Octopus algorithm we would not try toeck
some permutations multiple times, which would beaste
of processing power.

In our further work, we plan:

e To apply Octopus algorithm for

optimization problems other than TSP.

solving

* To use Octopus in collaboration with other local]

search algorithms.

 To improve getting more reasonable start points

from a single run.

[3] Ww. Bozejko and M. Wodecki, “Parallel Evolutionaryigarithm for
the Traveling Salesman Problem”, Journal of Nunaérignalysis,

Industrial and Applied Mathematics, 2 (3-4), 200@, 129-137.

N. Pathak and S. P. Tiwasi, “Traveling Salesmarbero Using Bee
Colony with SPV,” International Journal of Soft Cpuating and
Engineering (IJSCE), vol. 2, July 2012, pp. 410-414

K. Baranowski, L. Koszalka, I. Pozniak-Koszalkadah Kasprzak,
“Ant Colony Optimization Algorithm for Solving thérovider —
Modified Travelling Salesman Problem” Proc. of AGS
conference, April 2014, Springer, Lectures Notes Gomputer
Science, pp. 493-502.

P. Jarecki, P. Kopec, |. Pozniak-Koszalka, L. Készaand A.
Kasprzak, “Comparison of Algorithms for Finding B&oute in An
Area With Obstacles,” Proc. of International Coefere on Systems
Engineering (ICSEng), Las Vegas, USA, August 2@b7,163-168.

Y. He, Y. Qiu, G. Liu, and K. Lei, “A Parallel Adéige Tabu Search
Approach for Traveling Salesman Problem,” ProclEEE Internat.
Conference on Natural Language Processing and Kunel
Engineering, November 2005, pp. 796-801.

[8] Y-F. Lim, P-Y. Hong, R. Raml, and R. Khalid, “An proved Tabu
Search for Solving Symmetric Traveling Salesmarblras,” Proc.
of IEEE Colloquium on Humanistic Science and Engiiregy
(CHUSER), December 2011, pp. 851-854.

E. Osaba and F. Daz, “ Comparison of Memetic Athoniand Tabu
Search Algorithm for the Traveling Salesman ProbleRroc. of
Federated Conference on Computer Science and lafm
Systems. (FedCSIS), September 2012, pp. 131-136.

(5]

(7]

* To consider possibility of implementing Octopus [10] W. Yen and D. McLean, “Combining Heuristics for @pizing A

on GPU (Graphics Processing Unit) threads, as

well as using MPI (Message Passing Library).

e To implement an experimentation system alon

with the rules described in [14].

ACKNOWLEDGMENT
This work was supported by the statutory fundshef t

Department of Systems and Computer Networks under

grant no. 0401/0132/18, Faculty of Electronics, Waw
University of Science and Technology, Wroclaw, Rdla

REFERENCES

[1] K. llavarasi and J. K. Suresh, “ Variants of Trhawg Salesman
Problem: A Survey,” Proc. of International Confezen on
Information, Communication and Embedded SystemsiCES),
February 2014, pp. 1-7, IEEE, doi:10.1109/ICICE$400338550.

R. Grymin and S. Jagiello, “Fast Branch and BoutgbAthm for the
Traveling Salesman Problem,” Proc. of IFIP confeeean Computer
Information Systems and Industrial Management, 2pp6206-217.

(2]

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

Neural Net Solution to The Traveling Salesman Rnoll Proc. of
International Joint Conference on Neural NetworkkCKNN), June
1990, pp. 259-264.

g[11] Y-W. Zhong, C. Wu, L-S. Li, and Z. Y. Ning, “The &ty of

Neighborhood Structures of Tabu Search Algorithm Toaveling
Salesman Problem,” Proc. to 4th International Camfee on Natural
Computation (ICNC), October 2008, p. 491.

[12] A. B. Rathod, “A Comparative Study on Distance Meag
Approaches for Permutation Representations,” Prot. [EEE
International Conference on Advances in Electrodiosnmunication
and Computer Technology (ICAECCT), December 2018, 351-
256.

[13] TSPLibrary [Online]. Available from: http://comojft.uni-
heidelberg.de/software/TSPLIB95 [retrieved: Decen#ity 8].

[14] M. Hudziak, |. Pozniak-Koszalka, L Koszalka, and Kasprzak,
“Multiagent Pathfinding in the Crowded Environmenwith
Obstacles,” Journal of Intelligent and Fuzzy Syst&®(2), 2017, pp.
1561-1573.

85

