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Abstract—In this paper, a designed and implemented 
algorithm, named Octopus is applied for solving the Travelling 
Salesman Problem (TSP). In general, the Octopus algorithm 
can be used as both a method of finding good solutions of the 
optimization problem and a way to get starting points for other 
meta-heuristic algorithms used in problem solving, for instance 
Tabu Search (TS). Octopus takes into account multiple 
solutions gathered by the meta-heuristic algorithms and 
combines them to obtain new ones. The results of simulation 
experiments show that Octopus may be considered as very 
promising.  

Keywords-algorithm; TSP; Tabu Search; experimentation 
system; simulation. 

I.  INTRODUCTION  

TSP is one of the most popular optimization problems. 
The problem consists in finding a path between points (e.g., 
cities on the map) with known location. The path (route) has 
to allow for visiting all points as fast as possible or using the 
shortest possible route. In practice, when the best route 
between dozens or hundreds of points should be found then 
one can realize that it is a real NP-hard problem 
(nondeterministic polynomial) [1]. 

 Many authors have tried to solve this problem using 
different approaches, e.g., Branch and Bound [2], but such 
methods can provide solution in reasonable time only to 
small instances of the problem, namely, a few locations, 
only. Another way to find the solution is using heuristic 
algorithms. These algorithms can provide solutions, which 
are close to optimal ones but the process of finding them is 
much quicker than for exact methods. There are many types 
of heuristics which can be used. It is worth to mention such 
algorithms as Parallel Evolutionary [3], Artificial Bee 
Colony (ABC) [4], Ant Colony Optimization (ACO) [5][6], 
Tabu Search (TS) [7]-[9].  

We are interested in algorithms which have some 
starting solutions and then they try to construct improved 
solutions by slightly changing them and checking, i.e. 
optimizing them. Such a process is then repeated multiple 
times until getting the best or satisfying solution. Local 
search algorithms are great in finding good solutions in very 
short time, but they have one disadvantage. They tend to get 
stuck in local minimum. It usually happens when we cannot 
find any way to change our current solution so that it gets 
better in next iterations. 

The Octopus algorithm proposed in this paper deals with 
the problem of getting stuck in local minimum areas with 
local search algorithms. The proposed approach allows 
combining multiple different algorithms, anticipating that 
they can give better results when used together while 
working in parallel environments [10]. The algorithm 
requires activities on three stages: (i) taking many good 
solutions from local search algorithms (starting from 
different random solutions); (ii ) combining these solutions 
and generating new starting points, which keep some 
information about good solutions; (iii ) running algorithms 
again from the new starting points.  

The rest of the paper is organized as follows. In Section 
II, the mathematical model of the considered TSP problem 
is formulated, and we provide the justification why TSP was 
chosen for investigation concerning the proposed Octopus 
algorithm. In Section III, the implementation of Tabu 
Search which was taken as meta-heuristic algorithm for 
testing a new algorithm is briefly described, as well as the 
core of the paper – the Octopus algorithm is presented in 
detail. The presentation of research has been contained in 
Section IV. Investigation concentrates on properties of the 
proposed algorithm, and its advantages in comparison with 
known algorithms to solving the considered TSP problem. 
The conclusion and plans for the future work to improving 
Octopus algorithm appear in the last Section V.  

II. PROBLEM FORMULATION 

The considered TSP problem can be formulated as 
follows. 

Given:  
• A graph G = (V; E), where V = {1, 2, …, n} is a 

vertex set of points and E = {{i, j}: i ≠ j, i, j ϵ V} is 
an edges set (e.g., paths between cities). 

• A nonnegative cost (distance) matrix C = [ci, j] 
defined on E. 

To find 
• A route π = (π(1), π(2),…,π(n)) ϵ Π, which is 

represented as permutation of vertices [3] that 
passes through each point exactly once, and returns 
to the starting point on a G. 

Such that 
• The optimal solution (π*) minimizes the cost 

(fitness) of the route defined as the arithmetic sum 
of all paths between points, which belong to π.  
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In this paper, only the symmetric version of TSP is 
considered as it is a more common usage, but the proposed 
algorithm can also work for the asymmetric version. 

There are three main reasons why the above problem 
was selected for testing the performance of Octopus 
algorithm. 

• Every permutation of nodes in this problem is a 
feasible solution. That allows us to mix solutions 
easier. In many optimization problems it is hard to 
even find a random permutation, as most of 
possible permutations are not feasible. 

• The local search algorithms work very well and 
fast in this problem. It is due to the fact that it is 
easy to find a value of a fitness function for 
neighbor solutions. 

• There are many local search metaheuristic 
algorithms invented for solving TSP, so the new 
algorithm may become helpful to combine them. 

The proposed algorithm should also work for any other 
problem, which fulfills the first reason. 

III.  OCTOPUS ALGORITHM 

In the first subsection, the collaborating algorithm Tabu 
Search (TS) is briefly presented. The next subsections 
describe three stages of the performance of the Octopus 
algorithm. 

A. Tabu Search for Testing 

For testing the Octopus algorithm, the implemented 
version of TS algorithm was taken. The pseudocode for TS 
[11] is presented in Figure 1. 

     ⌂ produce an initial solution π; 
     π* ← π; 
     initiate tabu list T; 
     while termination criterion is not satisfied do 
                   get all neighbors N(s) according to π and T; 
                   find the best solution π

b
’ in N(s); 

                   π* ← πb
’; 

                   update T; 
                       if fit(π) ≤ fit(π*) then 
                       π* ← π’; 
                       end if 
     end while 
     return π* 

Figure 1. Pseudocode of the implemented Tabu Search. 

The neighborhood is generated as all possible swaps of 
two elements of permutation. The tabu list is saving two 
indices of permutation, which were swapped in the previous 
iteration. Tabu list size is fixed, e.g., could be set to 100. 
The termination criterion is taken as the number of 
iterations, which is a parameter of the algorithm. The initial 
solution is treated as another TS parameter. 

B. The First Stage – Local Search 

The first stage of the algorithm is gathering solutions. 
The exemplary metaheuristic TS algorithm is running N 

times starting from random permutations, with the same 
number of iterations in each run. Several performances of TS 
could run in separate threads as they do not need to exchange 
information between each other. To obtain satisfying results, 
the minimum of N is fixed as N=50, thus different solutions 
must be collected. It can be noticed that the obtained 
permutations are similar to each other in a way the distances 
to each other [12], are smaller than distances to permutations 
chosen at random.  

C. The Second Stage – Combining Solutions 

After Octopus gathered permutations P={π1, π2,…, πN}, 
by performing in the previous stage, it makes changes in the 
introduced matrix called Order Matrix (OM). The matrix 
OM is created taking into account all permutations. An 
element of OM denoted as ai,j is equal to 1 if π-1(i) < π-1(j), 
and is equal to 0, otherwise. Then, all matrices are combined 
together by summing them and creating the matrix S 
expressed by (1). 

         S = A1 + A2 +…+ AN                                  (1) 

D. The Third Stage – New Starting Points 

To get the new start points, the procedure shown in 
Figure 2 is proposed. 

     ⌂ produce an initial permutation 
     π ← {1};   
     while π ≠ n d 
              ⌂ Repeated until permutation has all elements 
              i* ← 0; 
              v* ← -∞; 
              for all i ϵ {2, 3,…, n} do 
                   if i ϵ π then  
                   continue; 
                   end if 
                   for all Possible insert positions p do 
                                ⌂ p = 0 is inserted between all elements, 
                                          ⌂ p = 1 is after first, etc. 
                         Calculate v = V (π, i, p); 
                         if  v > v* then 
                                  v* ← v; 
                                  p* ← p; 
                                  i* ← i; 
                         end if 
                   end for 
              end for 
              insert i* into π at p* position; 
      end while 
      return π 

Figure 2. Pseudocode of the implemented Tabu Search. 

The introduced formula to calculate the inserted value is 
expressed by (2). 
 

V(π, i, p) = Σηp,k  ( Si,η(k) - Sη(k),i )         (2) 
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where:  
• The summation in (2) goes from k=0 to the 

absolute value of p;  
• The coefficient ηp,k  introduced in (2) is equal to -1 

if p < k or is equal to +1, otherwise.  
This formula is proposed to select such inserts which are 

most common among the permutations calculated in the first 
stage. That means, e. g., if node 6 is always after 5 in the 
obtained solutions, then putting 6 after 5 in permutation 
would have very high insert value. 

After such new solution π is obtained, the OM of this 
solution is subtracted from S and the procedure is repeated 
to find the next solution (based on the new matrix S). 

Unfortunately, the proposed approach allows us to 
obtain about M=0.2*N reasonable solutions. When we try to 
generate more permutations than M, the produced 
permutations become more and more random, and do not 
have the desirable features that can be observed in the first 
permutations. After we obtain M new permutations, we run 
our local search algorithms on them to obtain new, better 
solutions. We can repeat these stages all over, but we must 
remember that the number of processed permutations may 
decrease by 80% with each third stage of Octopus. 

IV.  RESEARCH 

The main goal of the research was to check whether the 
Octopus algorithm can give good solutions to the considered 
TSP, and to observe if the features of good solutions are 
remembered in the new permutations when using the 
proposed approach. 

The simulation experiments have been made taking into 
account five instances from TSPLib., namely kroA100, 
kroB100, kroC100, kroA200, kroB200 [13]. The first three 
instances concern TSP with 100 nodes (points), and the next 
two instances concern TSP with 200 nodes (points). 

A. Testing TS 

Firstly, Tabu Search algorithm was tested for random 
permutations generated as start points, to show that the 
implementation can give promising results. TS was run with 
different number of iterations.  

The results obtained for kro100A test instance are 
presented in Figure 3. It may be observed that the 
implemented TS algorithm produced good solutions for not 
a big number of iterations and that the first 200 iterations 
were crucial.  

Table 1 shows the results obtained by TS with 1000 
iterations in comparison to the best known solutions for the 
considered instances. Also, it can be seen that the solutions 
found by TS are worse only approximately 10 % in average 
than the best solutions listed in TSPLib. This can justify the 
fact that the algorithm works properly and can give 
satisfactory results. 

 
 

 

Figure 3. TS algorithm for kroA100 instance. 

TABLE I.  COST FUNCTION FOR SOLUTIONS OF TSP 

Test instance TS result Best known 

kroA100 23405 21282 

kroB100 24240 22141 

kroC100 22733 29749 

kroA200 35456 29368 

kroB200 35311 29437 

B. Testing Octopus 

Next, we checked if the new start points obtained when 
Octopus is utilized can ensure better solutions than these 
obtained when random start points are taken into account. A 
single simulation experiment consisted of six steps. Each 
experiment was conducted using following the procedure:  

Step 1. The number of 100 permutations was chosen at 
random.  

Step 2. TS was applied for each of them for 5000 iterations 
(in case of problems with 200 nodes) or 1000 iterations (in 
case of problems with 100 nodes).  

Step 3. Octopus algorithm was run the first time on the 
obtained solutions by TS and 20 new start points were 
created.  

Step 4. TS was run again using these 20 solutions (start 
points) for the same number of iterations. 

Step 5. The second run of Octopus algorithm was performed 
and finally four solutions were taken. 

Step 6. TS algorithm was performed once more using these 
four solutions. 

 

 

 

83Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems



In Figure 4, the exemplary results of solving TSP for 
instance kroB200 with two runs of Octopus are shown. 

 

 
Figure 4. Octopus – runs with 5000 iterations for kroB200. 

In Figure 5, the results for the same case are presented 
but with the first 100 iterations of TS removed in order to 
increase readability. 
 

 
Figure 5.  Octopus – runs with 5000 iterations (first 100 removed in each 

run) for kroB200. 

C. Testing TS with Octopus 

The aim of this complex experiment was the comparison 
of results obtained in solving TSP for the considered 
instances with a sequence of 3 runs: 

Run 0: Using the standard version of TS with start points 
generated randomly. 

Run I. Using TS with the first run of Octopus (with new 
start points). 

Run II. Using TS with the second run of Octopus (with 
additional start points).  

Table II presents the results obtained for five instances. 
In columns show the average values of the fitness function 
(denoted as Avg) for the start points in successive runs. 
 

TABLE II.   AVERAGED FITNESS VALUES OF START POINTS 

Test 
instance 

Avg (0) Avg (I) Avg (II) 

kroA100 170657 101347 86391 

kroB100 170696 89900 78432 

kroC100 169766 104592 89334 

kroA200 340429 205334 178054 

kroB200 334684 198752 171779 

 
We can see that the first run of Octopus gave much 

better start points than random ones for all considered 
instances. We define Profit as the percentage decrease in the 
fitness function, as expressed by (3). 

Profit (x+1) ={[Avg (x) – Avg (x+1)] / Avg (x)}*100 %.  (3) 

where x = 0, 1. In Table III, the values of the obtained Profit 
are specified. The Profit from the first run of Octopus was 
of more than 40 % and may be considered relatively large. It 
indicates that Octopus can be used to find new starting 
points based on some already known solutions. The second 
run of Octopus was not so effective, giving a modest 
increase in quality of 13.7 %, which is almost three times 
less than the first run of Octopus. 

TABLE III.   PROFIT GIVEN BY OCTOPUS 

Test instance Profit (I) Profit (II) 

kroA100 40.6 % 14.8 % 

kroB100 47.1 % 12.8 % 

kroC100 38.2 % 14.4 % 

kroA200 39.7 % 13.1 % 

kroB200 40.7 % 13.6 % 

mean 41.3 % 13.7 % 

 
Table IV presents the results obtained for all instances 

after Run (0) and Run (I) with Octopus. The notation Min 
(x) represents the best solution of TSP. 

TABLE IV.   SOLUTIONS MADE WITH OCTOPUS RUNS 

Test 
Instance 

Min 
(0) 

Avg 
(0) 

Min 
(I) 

Avg 
(I) 

kroA100 25690 31177 24538 28517 

kroB100 26617 31780 26090 28724 

kroC100 26829 30659 25472 30378 

kroA200 38882 44300 37508 42185 

kroB200 38499 43888 38232 41199 

 
The analysis of the results presented in Table IV 

confirms that using Octopus can improve the process of 
finding the solution to TSP with the implemented TS. 

84Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems



V. CONCLUSION AND FUTURE WORK 

Based on the results of experiments, we can say that the 
proposed Octopus algorithm seems to be promising. The 
basic idea of this algorithm is to combine solutions in order 
to create new ones, by keeping the good features of the old 
ones. The new start points that are created by Octopus 
possess some features of the old permutations. Using 
Octopus gives a chance to avoid being stuck in local 
minimum areas. 

However, the proposed approach is not perfect. The 
drawback is that, with each step of the algorithm, we reduce 
the number of processed solutions by 80%. Moreover, we 
are starting from random points, and we cannot be sure if 
after using Octopus algorithm we would not try to check 
some permutations multiple times, which would be a waste 
of processing power. 

In our further work, we plan: 
• To apply Octopus algorithm for solving 

optimization problems other than TSP. 
• To use Octopus in collaboration with other local 

search algorithms. 
• To improve getting more reasonable start points 

from a single run. 
• To consider possibility of implementing Octopus 

on GPU (Graphics Processing Unit) threads, as 
well as using MPI (Message Passing Library).  

• To implement an experimentation system along 
with the rules described in [14]. 
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