
Publishing and Retrieval System for Traffic Court Cases

Wei Kit Shiu
School of Computer Science and Engineering

Nanyang Technological University
Singapore

Email: shiu0003@e.ntu.edu.sg

Chai Kiat Yeo
School of Computer Science and Engineering

Nanyang Technological University
Singapore

Email: asckyeo@ntu.edu.sg

Abstract—This paper details the design and development of a
web-based publishing and retrieval system for traffic court
cases. This proof-of-concept is meant to complement and in time
to come, replace, existing manual processes of doing legal
research for traffic court cases. Currently, legal staff have to
manually browse through practitioners’ library and motor
accident guide books to look at precedents for the assessment of
damages in personal injuries and fatal accidents. The system
automatically extracts key information of the court cases to
allow retrieving of relevant court cases from a search query
term by professionals such as judges, lawyers, insurers, as well
as the public for their research and references.

Keywords-traffic court cases; intelligent document retrieval
system; natural language processing; automated text extraction.

I. INTRODUCTION
With the general improvement in road safety over the

years, the number of accidents resulting in injuries has
dropped slightly [1]. Nevertheless, it still amounts to more
than 7000 cases per year in Singapore, a dense city state with
5.8 million population and 9.5 million motor vehicles. This
naturally leads to a huge number of traffic accident cases
reaching the courts as well as claims for injuries suffered and
deaths during the accidents.

Accident victims will naturally seek compensation for
injuries incurred. However, depending on how co-operative
the offender is, the process to seek compensation may be
difficult. The situation may involve an investigation by the
related insurers and may even escalate into legal cases to be
settled in the courts. This can be a long and expensive process
in which compensations that are eventually awarded may not
even be sufficient to cover the legal expenses of the disputes.

 Typically, if the claim is heard before the courts, it will
involve a detailed re-accounting of the accident as well as
medical reports of the injuries incurred by the plaintiffs. The
judge will then consider all details together with relevant past
cases to decide on a quantum of the damages to be awarded to
the plaintiff [2] [3].

Every year, there are up to 12,000 accident claims that are
heard in the courts and they are important precedents for the
judges to use for future references. Since 2001, a book named
“Practitioners’ Library Assessment of Damages: Personal
Injuries and Fatal Accidents”, commonly known as the Blue

Book has been published with the 3rd edition launched in Feb
2017 [4]. It is written by judges and serves as a reference for
judges, lawyers and insurers when it comes to assessing the
amount of damages that the court may award in cases
involving personal injuries and death. It also gives road users
an idea of the damage awards in an accident. The Blue Book
is also used by practitioners and members of the insurance
industry to negotiate and expedite the settlement of accident
cases without escalating the case to the courts. The Blue Book
is almost 800 pages and referencing it is a tedious task, let
alone revising it to keep it as up-to-date as possible.

Another book, the Motor Accident Guide [5], written in
simple English and illustrated by dozens of diagrams picked
from past court cases serve to provide readers, especially
layman, an idea of where they stand should they take an
accident claim to court. The guide aims to keep a lid on claims
arising from motor accidents. Similar to the Blue Book, the
readers will have to go through the entire guide to look for the
scenario that is most applicable to his/her case.

The motivation of this proof-of-concept (POC) is therefore
to introduce digitalization of court documents and facilitate
the search for precedent motor accident cases. The project will
facilitate judges to publish past cases efficiently and in a
timely manner and also enable others concerned to efficiently
retrieve and review information of the past cases without the
need to laboriously go through the physical Blue Book.

The rest of the paper is organized as follows: Section II
details the design and development of the system. Section III
shows the outputs from the system and discussion on its
performance. Section IV concludes this paper.

II. SYSTEM DESIGN AND DEVELOPMENT
The project is divided into two main parts namely Case

Publishing System and Case Retrieval System. The former
requires the uploading of pdf versions of case documents as
well as conversion of pdf to text for further processing. It also
entails the extraction of key information such as plaintiff’s
name, age, gender, date of assessment, injuries, claims and
amount awarded. The extracted information is also stored and
serves as search engine index to provide results to the search
queries. The Case Retrieval System involves retrieving of the
relevant case documents based on the queries made to the
system. Figure 1 shows the use case diagram for the system.

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-771-9

ICONS 2020 : The Fifteenth International Conference on Systems

Figure 1. Use case diagram of the system.

The overall system comprises the Case Publishing
System and the Case Retrieval System. The former allows the
judges to upload past cases into the database and to edit or
update published cases. The latter allows all concerned,
namely, judges, lawyers and the public to access the databse
and search for precedents matching the search terms entered
such as the type of injuries, the award quantum.

A. Database
PyMySQL [6] is used to implement the system’s database

and the tools used to manage the database are Cross-Platform
Apache, MariaDB, PHP and Perl (XAMPP) Control Panel [7]
and phpMyAdmin [8]. The database is designed such that
“cases” table holds a one-to-many relationship with the
“injuries” table. Each case in the “cases” table is associated
with one or more injury/claim in the “injuries” table. Each
injury/claim in the “injuries” table uses its foreign key
“case_ID” to identify its case mapping in the “cases” table.
This design thus prevents data duplication.

B. Implementation
The system is fully written using Python.
PDF to text conversion: This function allows the

uploaded PDF file to be converted to text format so that
further processing can be done. A third-party library named
“pdfminer.six” [9] is used here as it gives the best
performance. It takes in an argument called [pdfname] where
[pdfname] is the directory of the PDF file that is being
uploaded and returns the text after the conversion is done.
Many other libraries such as “PyPDF2” [10] have been used
but the results are unsatisfactory as the converted text are

either concatenated wrongly or there are missing text.
However, “pffminer.six” is also not perfect and manual
checking on the converted has to be performed. This is a big
problem in the digitisation of past court cases and a one-off
exercise will thus be needed to convert all the hard copies into
digital form. Note that Natural Language Toolkit (NLTK)
[11] is used to tokenize the converted text into sentences
which are then parsed for the various extraction algorithms.

1) Extraction of plaintiff’s name: Heuristic rule is
applied in extracting the plaintiff’s name after an analysis of
the sample court cases on hand. The plaintiff’s name will
always appear at the top of every page in the document, in the
form of “[Plaintiff Name] v [Defendant name]” and it is
similar throughout all the cases. Therefore, the approach to
this algorithm is to use regular expressions to extract the
name. The re.search function takes [text] as a huge string and
returns any substring that matches the pattern
[r'(?P<PName>\b.*)\sv\s.*\b'], a regular expression created
to match the format of the name given in the court document.
Subsequently, symbolic group name PName is used to extract
only the plaintiff’s name. The code segment for the extraction
is given in Figure 2.

We have explored the use of NLTK and pyenchant [9] for
the plaintiff’s name extraction. The algorithm is as follows:
The converted text is tokenized into sentences and the
sentences are parsed to extract those that contain the word
“victim” or “plaintiff”. The continuous name chunks are
extracted using Name Entity Recognition with Regular
Expressions and checked against those in the dictionary

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-771-9

ICONS 2020 : The Fifteenth International Conference on Systems

library. Name chunks with at least one word that is not a valid
English word will be treated as a valid name but the result is
not as good as the heuristic described above. Moreover, it is
vulnerable to other word chunks that contain non-English
words like national identity number and company name.

2) Extraction of plaintiff’s age: The algorithm starts by
tokenising the converted text into sentences. Next, it filters
and extracts the sentences that contain keywords like
“plaintiff” or “victim” and key phrases like “years old”, “at
the time”, “accident happens”, “when” etc. The reason of
such key phrases is to improve the accuracy of extracting the
plaintiff’s age from neighbouring context. For example, “the
plaintiff was 72 years old at the time of hearing”. After
obtaining the sentences that contain the keyword and key
phrases, re.findall function is used to extract all the age
numbers. The maximum of all the age numbers extracted will
be set as the plaintiff’s age at the time of assessment. An issue
with this method is that the court documents may sometimes
contain the age of more than one person. This will
significantly increase the chances of extracting a wrong age
number. Therefore, to reduce the odds of extracting a wrong
age, a layer of filter is added to priortize the age number
extracted from sentences that contain keywords like
“plaintiff” or “victim” over others.

import re

#Algorithm starts here---
PlaintiffName = ""
#variable name [text] contains the text
converted from PDF
SearchPlaintiffName =
re.search(r'(?P<PName>\b.*)\sv\s.*\b',text
)
if(SearchPlaintiffName):
 PlaintiffName =
str(SearchPlaintiffName.group('PName'))

Figure 2. Code segment for extraction of plaintiff’s name.

3) Extraction of plaintiff’s gender:The main approach
here is to identify the number of he/his and she/her pronouns
that appears near to the keyword “plaintiff” or “victim”
throughout the entire document. The higher count will be
taken as the plaintiff’s gender. First the converted text is
tokenised into sentences. Next, for every sentence that
contains the keyword “plaintiff” or “victim”, the algorithm
will count the number of times he/his and she/her appears.
Finally, the gender with the higher count frequency will be
taken as the plaintiff’s gender.

4) Extraction of date of assessment: After analysing the
cases on hand, it was found that the latest date shown in the
traffic court cases is always the date of assessment.
Therefore, the approach is to use re.findall function to extract
every single date string that appears in the document and
subsequently, extract the latest date out of all the date strings

obtained. As the dates are extracted in the string format, an
additional step is required to convert the date strings to
numerical form so that the algorithm is able to compare every
single date and recognise the latest date.

5) Extraction of injuries, claims and amount awarded: It
is observed that every traffic court cases will have a section
at the end of the document called “Conclusion”. In the
section, the injuries, claims and amount awarded will be
listed out as a summary as shown in Figure 3. Therefore, the
approach is to create two lists that store injuries/claims and
amount awarded respectively, which is also shown in Figure
3. To implement the algorithm, a bag of words is created with
all the relevant injuries/claims stored in it. With the help of
the bag of words, the algorithm can identify and store the
injuries/claims into the list “injuries_claims” while re.findall
function is used to identify and store the amount awarded into
the list “probable_award_amounts_main”.

6) Case Retrieval: This function receives an input from
the user and queries the database for matching results. User
can searcj for traffic accident information by entering either
the name of an injury or the name of a traffic accident claim.
This function also allows substring search. For example, if
the user enters “hand”, cases that involved “left hand”
injuries or “right hand” injuries will also be retrieved.

Figure 3. Illustration of the Conclusion section of the case summary.

III. RESULTS AND DISCUSSION
The capabilities of the system are evaluated against the

requirements specified. Functional testing is adopted to
examine the functions of the system to ensure that it performs
as required. Four available traffic court cases are used as test
dataset [12] – [15] and they are all past judgements made by
the Supreme Court of Singapore. Unfortunately, only four
cases are made available online.

Table I shows the test results. Basically, extraction of
plaintiff’s name, age, gender and date of assessments works
well for the 4 test dataset with the exception of the extraction
of injuries, claims and amount awarded. This extraction is the
most challenging as it requires much more sophisticated
natural language processing techniques such as topic
modelling to extract the different types of injuries and the

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-771-9

ICONS 2020 : The Fifteenth International Conference on Systems

medical terms. The simple technique adopted in this POC
proves to be inadequate to address the entire spectrum of
possible injuries.

TABLE I. SYSTEM TEST RESULTS

Functionality Test Accuracy
Extraction of plaintiff’s name 100%
Extraction of plaintiff’s age 100%
Extraction of plaintiff’ gender 100%
Extraction of date of assessment 100%
Extraction of injuries, claims and amount awarded 25%

Figure 4 shows the key information extracted from the test

case in [15] while Figure 5 shows the retrieval results when a
user types in the search term ‘fracture’.

This POC has set the trail in the digitalization of the legal
domain. It is very useful in facilitating the search for precedent
court cases of traffic injuries and the amount of damages
awarded to reduce expensive law suits and court time. It also
shows that automation of text extraction from voluminous
case files is feasible. The premise for this POC is that the court
cases have already been digitized and exist in pdf form. This
is not the case as most, if not all, case documents exist in hard
copies and have to be manually digitized and checked before
being published in a system like the proposed system. Only
then can accurate extraction of critical information be
performed and retrieval of case documents be accurate.

A qualitative comparison is made against existing related
work such as [16], [17] and [18]. Wyner et. al. [16] detail the
use of text mining to automatically profile and extract
arguments from legal cases and shows how context-free
grammar can be used to extract arguments, and how
ontologies and NLP can identify complex information such as
case factors and participant roles. The approach applies
linguistic analysis and stereotypical pattern of reasoning
called argument schemes to identify argument sentences and
semantically relevant sentences from a legal corpus. The
arguments in the legal corpus need to be first analysed and
represented in XML format for later mining. Compared to our
POC, we do not need manual labelling of the legal documents.
We extract precise entities such as injuries, plaintiff’s details
and damage awards while [16]’s extraction is very coarse-
grained in the form of sentences of arguments. [16] also does
not lend itself to retrieve cases based on search queries.

 Wagh [17] merely proposes a study to group legal
documents based on the contents using unsupervised text
mining techniques. It only describes what the authors intend
to do with no actual design and implementation. Andrew and
Tannier [18] use a combination of both statistical and rule
based techniques to enable journalists to automatically
identify and annotate entities such as names of people,
organizations, role and functions of people in legal
documents. They also try to explore the relationship between
these entities. The statistical method used is Conditional
Random Fields while document and language specific regular
expressions are used for the rule based technique. It is focused
on extraction of specific entities from the documents but do
not include the more complicated entities such as injuries,
damages awarded and age. It also does not support search and

retrieval of precedent cases based on input query terms unlike
our POC.

In summary, in comparison with existing work, our POC
supports more precise and fine-grained extraction of
plaintiff’s details, injuries and damage awards based on the
search string input thereby greatly facilitates users of the
system to easily extract and compare precedent cases closest
to their query of interest. Another merit of our POC is we do
not require labelled dataset.

There are however limitations in this POC which need to
be addressed before a fully functional system can be deployed
as it relies heavily on heuristic algorithms for the unstructured
text mining. Much more sophisticated natural language
processing techniques, namely, topic modelling using Latent
Dirichlet Allocation (LDA) is needed not just to extract the
injuries but also in the extraction of other plaintiff’s details.
The test cases used here are considered simple as they only
involve a single plaintiff and a single defendant. Hence,
extraction of plaintiff’s details is very accurate as shown in
Table I, which will not be the case for multiple plaintiffs.
Another challenge is when the search query comprises a long
sentence instead of a single word. In this case, the key words
have to be extracted from the search string as well. Moreover,
there is a lack of readily available court cases, preferably in
the hundreds, to adequately stress test the POC.

IV. CONCLUSION
A POC for a web-based publishing and retrieval system

for traffic court cases has been successfully developed. The
system automatically extracts key information of the court
cases to allow retrieving of relevant cases from a search query
term by professionals such as judges, lawyers, insurers and the
public. Such a system not only renders the legal research
process for traffic court cases to be much more efficient but
also relieves the judges of the laborious manual compilation
and update of the Practitioners’ Library Assessment of
Damages (the Blue Book). Judges can publish past cases
much more efficiently and keep the publication up to date
compared to the manually compiled Blue Book which is
published once after a few years.

A limitation of the POC is the adoption of heuristics in the
text mining. Future work shall involve the introduction of
topic modeling in NLP processing to handle the extraction of
plaintiff’s details and injuries for more complex cases than
those shown in this paper as well as use of deep learning.

ACKNOWLEDGMENT
This work is supported in part by NTU Grant no.

M4081329.020.

REFERENCES
[1] Public Affairs Department Singapore Police Force. Annual

Road Traffic Sitatuon 2018, Singapore, 2019.
[2] State Courts Practice Directions, Section 40. Singapore: State

Courts.
[3] Supreme Court of Judicature Act, Chapter 322, Section 80,

Order 37. Singapore, 2014 edition.

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-771-9

ICONS 2020 : The Fifteenth International Conference on Systems

[4] C. Chan et al., Practitioners' Library Assessment of Damages:
Personal Injuries and Fatal Accidents, 3rd ed., LexisNexis, Feb
2017.

[5] States Court, Motor Accident Guide, Tusitala (RLS) Pte Ltd,
Feb 2017.

[6] I. Naoki, PyMySQL. 2017. [Online]. Available from:
https://pypi.python.org/pypi/PyMySQL. [retrieved: Dec
2019].

[7] Apache Friends, XAMPP,. [Online]. Available from:
https://www.apachefriends.org/index.html. [retrieved: Dec
2019].

[8] Software Freedom Conservancy, phpMyAdmin. [Online].
Available from: https://www.phpmyadmin.net/. [retrieved:
Dec 2019].

[9] Y. Shinyama, pdfminer.six, 2014. [Online]. Available from:
https://pypi.python.org/pypi/pdfminer.six/20140915. M.
Fenniak, PyPDF2. 2011. [Online]. Available from:,
https://pypi.python.org/pypi/PyPDF2. [retrieved: Dec 2019].

[10] M. Fenniak, PyPDF2. 2011. Available from:
https://pypi.python.org/pypi/PyPDF2. [retrieved: Dec 2019].

[11] S. Bird, E. Loper and E. Klein, Natural Language Toolkit.
2014. Available from: https://www.nltk.org/. [retrieved: Dec
2019].

[12] K. Ramesh, High Court Judgement: Lee Mui Yeng v Ng Tong
Yoo. 2016. [Online]. Available from:
https://www.supremecourt.gov.sg/docs/default-
source/module-document/judgement/-2016-sghc-46-pdf.pdf.
[retrieved: Dec 2019].

[13] K. C. Pang, High Court Judgement: Tan Hun Boon v Rui Feng
Travel Pte Ltd and another. 2017. [Online]. Available from :
https://www.supremecourt.gov.sg/docs/default-
source/module-document/judgement/judgment-s662-2014-v2-
pdf.pdf. [retrieved: Dec 2019].

[14] J. Y. Lee, Supreme Court Judgement: Ng Hua Bak v Eu Kok
Thai. 2016. [Online]. Available from:
https://www.supremecourt.gov.sg/docs/default-
source/module-document/judgement/s1351-14-ad43-15-
sghcr-12-by-jaylee-2nov2016-pdf.pdf. [retrieved: Dec 2019].

[15] C. Seow, High Court Judgement: Mullaichelvan s/o Perumal v
Lee Heng Kah. 2013. [Online]. Available from:
https://www.supremecourt.gov.sg/docs/default-
source/module-document/judgement/2013-sghcr-3.pdf
[retrieved: Dec 2019].

[16] A. Wyner, R. Mochales-Palau, M. F. Moens, D. Milward,
Approaches to Text Mining Arguments from Legal Cases. In:
E. Francesconi, S. Montemagni, W. Peters, D. Tiscornia (eds)
Semantic Processing of Legal Texts. Lecture Notes in
Computer Science, vol 6036. Springer, Berlin, Heidelberg,
2010.

[17] R. S. Wagh, Knowledge Discovery from Legal Documents
Dataset using Text Mining Techniques, International Journal
of Computer Applications 66(23):32-34, 2013.

[18] J. J. Andrew and X. Tannier, Automatic Extraction of Entities
and Relation from Legal Documents, Proceedings of the
Seventh Named Entities Workshop, Melbourne, pp. 1-8, Jul
2018.

Figure 4. Extraction of key data from Test Case in [15].

Figure 5. Case retrieval results for the search term ‘fracture’.

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-771-9

ICONS 2020 : The Fifteenth International Conference on Systems

