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Abstract—Quantum networks are communication networks
in which adjacent nodes enjoy perfectly secure channels
thanks to quantum key distribution (QKD). Drawing end-
to-end security from QKD-supported point-to-point security
can be done by virtue of multipath transmission. This concept
buys security at the cost of strongly connected networks and
perfect routing. Particularly the latter is hard to ensure, since
congestions or (passive) eavesdropping may cause QKD key-
buffers to run empty, thus enforcing local re-routing of packets.
Hence, the adversary may use eavesdropping not to extract
information, but to redirect the information flow towards a
relay-node that he controls. Such attacks can readily invalidate
the stringent requirements of multipath transmission protocols
and thus defeat any formal arguments for perfect secrecy.
Moreover, this form of ”indirect eavesdropping” seems to be
unconsidered in the literature so far. We investigate whether
or not unconditional security in a quantum network with non-
reliable routing is possible. Using Markov-chains, we derive
various sufficient criteria for retaining perfect secrecy under
imperfect packet relay. In particular, we explicitly do not
assume trusted relay or quantum repeaters available.

Keywords-Quantum Cryptography, Markov-Chain, Secure
Routing, Information-Theoretic Security

I. INTRODUCTION

Quantum key distribution (QKD) [1] is renowned for

providing unconditional security over direct channels with

no intermediate nodes. Securing an entire network by means

of QKD calls for additional measures, as up to now, the

technology is still limited to point-to-point security. Cre-

ating end-to-end security has been subject of independent

research, culminating in multipath transmission regimes. The

latter can provide unconditional end-to-end security from

perfectly protected links, which is exactly what QKD can

do. However, most results in this area hinge on two major

ingredients: sufficient graph connectivity and the sender

having the routing under full control. Since the requirements

for multipath transmission are stringent and therefore easily

invalidated, a passively eavesdropping adversary may cause

QKD key-buffers to run empty and thus enforce re-routing

of packets over a set of nodes under his control. Since

QKD can only protect links but not nodes, he can use

eavesdropping on a link to redirect and extract information

from another node. We call this indirect eavesdropping. Even

without the adversary becoming active, local congestions

may as well cause deviations from the intended routing, and

consequently destroy the protection of the secret message.

Our contribution in this paper is investigating the extent to

which quantum networks are resilient to such incidents.

Organization of the paper: We consider networks em-

ploying QKD for point-to-point- and multipath routing for

end-to-end security, referred to as quantum networks. For

convenience of the reader, we briefly review the use of

QKD with multipath transmission in Section III. In Section

IV, we introduce a Markov-chain model for the path that

a data packet takes from the sender to the receiver, with a

particular focus to multipath transmission. Conditions under

which a random routing regime can yield perfect secrecy

are derived in Section V, with an example supporting the

practicability of our results in Section VI. Final remarks are

given in Section VII.

II. RELATED WORK

Most closely related to our work are the results in [2],

who provide a stochastic routing algorithm along with prob-

abilistic measures of secrecy in a randomly compromised

network. We improve on this by taking an existing routing

regime and giving conditions under which it can provide

perfect secrecy under random compromission. Motivated by

the physical distance limitations of practical QKD imple-

mentations (cf. [3], [4], [5] to name a few) in spite of the the-

oretical possibility of unlimited distance QKD transmission

[6], multipath transmission over disjoint channels remains a

theoretical necessity for perfect end-to-end security [7]. In

particular, [8], [9], [10], [11] and references therein form

the basis for our work, where our goal is investigating

a hidden assumption within these results: what happens

if the routing is random rather than fully controllable?

Implementations of multipath transmission within the TCP

protocol are currently under standardization, and many other

protocols like stream control transmission protocol (SCTP

[12]) as well facilitate concurrent transmission. Similarly

as for a recently proposed extension of SSL by QKD

[13], [14], one could imagine QKD being integrated in

such protocols. Load-balancing, local congestions and most

importantly (adversarial) eavesdropping can all cause re-

routing of packets and therefore make otherwise disjoint
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routes intersecting. Our work is an explicit account for

security under such random distortions. To the best of our

knowledge, such indirect eavesdropping attacks have not yet

been considered elsewhere in the literature.

III. QKD-BASED MULTIPATH TRANSMISSION

Our adversary model will be a computationally un-

bounded passive threshold adversary Eve. That is, given a

network G = (V,E), with a sender s and receiver r (both

in V ), the adversary can compromise up to k ≤ |V \ {s, r}|
nodes in G (thanks to QKD, an activity on any of the

links would be detected anyway). Moreover, Eve knows all

relevant protocol specification and the network topology, but

sticks to the protocol in a merely passive attempt to extract

secret content flowing over the network.

For a string M ∈ {0, 1}
∗
, let |M | be its length (in bits),

and let H be the Shannon-entropy. We will use the following

security model (similarly to the model given in [7]):

Definition III.1. Let ε > 0, and let Π be a message

transmission protocol. Suppose that for conveyance of a

message M ∈ {0, 1}
∗
, the packets C1, . . . , Cn ∈ {0, 1}

∗

are transmitted over the network (constituting the pro-

tocol’s transcript). The adversary’s view on the trans-

mission of M is adv(M) ⊆ {C1, . . . , Cn}. We call a

protocol ε-secure, if H(M |adv(M)) ∈ {0, H(M)} and

Pr[H(M |adv(M)) = 0] ≤ ε, i.e., the adversary can disclose

M with a chance of at most ε. We call the protocol Π
efficient, if the size of the transcript, i.e.,

∑n
i=1 |Ci|, is poly-

nomial in the size of the message M , the size of underlying

network (in terms of nodes), and log 1
ε

. A protocol that is

ε-secure for any ε > 0 is said to enjoy perfect secrecy.

It is easy to see that if a protocol is ε-secure with ε <
2−|M|, then simply guessing the message is more likely than

breaking the protocol itself.

Multipath transmission pursues a simple idea: having t
paths from s to r that are node-disjoint, the sender can

transmit a message m by first putting it through a (t′, t)-
secret sharing (Shamir’s for instance), giving the shares

s1, . . . , st and sending each share over its own (distinct) path

to r. The adversary is successful if and only if he catches

at least t′ shares. Obviously, the scheme is unconditionally

secure if t′ > k (where k is the adversary’s threshold), but

in addition, we require full knowledge of the topology, and

assured delivery over the chosen disjoint paths. The general

interplay between network connectivity and unconditional

security has been studied extensively, and our goal in the

next section is finding out whether or not unconditional

security can be retained if the paths are not fully under

the sender’s control (i.e., what happens if the adversary

indirectly fiddles with the routing).

IV. A MARKOV-CHAIN ROUTING MODEL

Assume a quantum network modeled as a graph G =
(V,E) with |V | nodes and nb(v) denoting the set of v’s

neighbors. Formally, we put nb(v) := {u ∈ V |(v, u) ∈ E}.

For each v ∈ V , it is trivial to (empirically) estimate the

probability distribution supported on nb(v), indicating the

chances for a packet to leave towards the j-th neighbor. If

the transition from u to v is denoted as u→ v, then this

(local) distribution comprises the probabilities Pr[u→ vi]
where vi ∈ nb(u). The whole process can be considered

as a Markov chain, with the transition matrix P describing

the hops along which a data packet travels. In other words,

the ”chain” is the list of intermediate nodes that a packet

comes across, with the state of the chain being the node

that currently hosts the message before forwarding it. As

outlined in Section III, it is reasonable to assume a multi-

path transmission regime in the absence of infinitely long

quantum channels. Hence, we will look at an ensemble of

t independently traveling packets with corresponding trajec-

tories (traces) starting off the nodes v1, v2, . . . , vt. Without

loss of generality, and to ease notation in the sequel, call

the starting nodes 1, 2, . . . , t, with the sender’s node being

number ”0”, having the neighborhood nb(0) = {1, 2, . . . , t}.

The receiver’s node has number r. So, |V | = r + 1 and

V = {0, 1, 2, . . . , r}.

To simplify technicalities, let us assume a synchronous

forwarding regime, i.e., the nodes simultaneously forward

their packets at fixed times. Despite this assumption appear-

ing restrictive, it does in no way affect the validity of the

obtained results, as will become evident soon. In particular,

the derived formulas equally perfectly apply to a setting in

which nodes independently forward their data.

Let the distribution πi(n, v) : N× V →[0, 1] describe the

chance that the i-th trajectory (i = 1, 2, . . . , t) is within

node v at time n ∈ N. The whole distribution is denoted as

πi(n), and the whole ensemble of t trajectories is denoted

as π(n) = (π1(n), . . . , πt(n)). The particular state of the

i-th trajectory at time n is written as Xi(n). Consider an

arbitrary but fixed trajectory i in the following. It is well

known from the theory of Markov chains that the state of

the i-th chain is governed by πi(n) = Pn ·pi(0), where P is

the transition matrix. Our chain has only a single absorbing

state, which is the receiver’s state r (the receiver will surely

not pass on his message any further). Furthermore, it can be

assumed irreducible, because if it were not, then there would

be at least two nodes u, v in the network whose chance of

getting a packet from u to v is zero, so they could never

communicate.

We write HjA for the time (measured in hops) that it takes

a trajectory to get from j to a set of A ⊆ V target nodes,

HjA = min {n ≥ 0 : Xi(n) ∈ A|X(0) = j} .

The probability hjA of the chain ever reaching A from j is

therefore hjA = Pr[HjA < ∞], and the family (hjA; j ∈ V )
is the smallest non-negative solution of the equation system

hjA =
∑

i∈V

pjihiA, (1)
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where hjA = 1 for all j ∈ A and pji is the probability of

passing from node j onwards to node i (see [15, p.123] for

details). Writing down this system for, say n = 5 equations

with A = {1, 3}, we get (after some minor algebra),

−p21 − p23 = (p22 − 1)h2A + p24h4A

−p41 − p43 = p42h2A + (p44 − 1)h4A,

where we additionally substituted hrA = 0, as r is the only

absorbing state of our chains. Let us write (in a slight abuse

of notation) P−R,−C to denote the matrix P with all rows

in R and all columns in C deleted. Similarly, we use the

notation PR,C to denote the matrix P only with the rows in

R and columns in C retained. To ease notation, let us put

Q := P−r,−r, i.e., Q is P without the r-th row and column.

If I is the identity matrix, and 1 is the vector of all 1’s, then

the above equation system takes the compact form

−Q−A,A · 1 = (Q−A,−A − I)hA, (2)

where hA is the family (h1A, h2A, . . . , hrA), excluding

hrA = 0 and hjA = 1 for all j ∈ A. In order to have

the values hj for j 6= r and j /∈ A well-defined, we ought

to show that (Q−A,−A − I) is invertible. This is our first

Lemma IV.1. Let P be a stochastic matrix of an irreducible

Markov-chain with the state space V and exactly one

absorbing state r ∈ V . Select any set of states A ⊂ V
with r ∈ A, and let Q = P−A,−A be the submatrix of P
that describes transitions between states outside of A. Then

Q− I is invertible.

Proof: Partition the state set V into V1 = A and V2 =
V \ A, then r ∈ V1 and Q describes transitions within V2.

For each v ∈ V2, write πV2
(n, v) for the chance of the chain

being in state v after n steps. From the theory of Markov-

chains, we know that the vector πV2
(n) = (πV2

(n, v))v∈V2

is given by πV2
(n) = QnπV2

(0). As the chain is irreducible,

we will eventually reach r from any state in V2, and since r
is absorbing, this means that Qn → 0 as n→∞. Now, put

(Q− I)x = 0. Then Qx = x and on iterating Qnx = x. As

n→∞, Qnx = x→ 0, so Q− I is invertible.

Lemma IV.1 helps constructing a formula giving us the

chance that exactly l trajectories pass through a given area

A ⊆ V that is under the adversary’s control. We can

solve the system (2) for any given set A and see whether

it is passed with certainty. Similarly as for the binomial

distribution, we can ask for the probability of a subset of l
trajectories hitting A within finite time, with the remaining

ones never reaching A. The probability we are after is the

sum over all subsets of size l. Formally, we have

Proposition IV.2. Let a graph G = (V,E) be given, and

assume a random walk of t trajectories starting at nodes

1, 2, . . . , t. For a given A ⊆ V , the chance of l trajectories

passing through A is given by

p(A, l) =
∑

M ⊆ [1 : t]

|M| = l





∏

i∈M

hiA

∏

i∈([1:t]\M)

(1− hiA)



 ,

where the vector hk = (hiA)i∈V is calculated as described

above (i.e., put hrA = 0, hjA = 1 for all j ∈ A, and

calculate the remaining probabilities by solving (2)). Here,

[1 : t] is a shorthand notation for the set {1, 2, . . . , t}.

V. PERFECT SECRECY UNDER RANDOM ROUTING

According to Proposition IV.2, the adversary will not learn

anything unless he conquers some set A that is passed by

sufficiently many, say l, trajectories. Consequently, his best

strategy is attacking the set with maximum likelihood of

seeing sufficiently many trajectories. It follows that the most

vulnerable subset of nodes in the network is

A∗ = argmax
A⊆V

Pr[l trajectories traverse A] = argmax
A⊆V

p(A, l).

(3)

The following result is an immediate consequence of the

above discussion:

Theorem V.1. A network with a routing regime described

by a transition matrix P can provide perfect secrecy if and

only if for some integer l ≥ 1, we have p(A, l) < 1 for all

A ⊆ V that the adversary can compromise.

Despite this maximum likelihood optimization problem

being sound, it is yet infeasible to evaluate as the number of

subsets to test is exponential (in the adversary’s threshold).

We shall therefore set out to find sufficient criteria that are

easier to test.

For a 1-passive adversary, we have the following criterion:

Theorem V.2. Let t = |nb(s)| ≥ 1 count the sender s’s

neighbors. If, for each v ∈ V , we have
∑t

i=1 hiv < t,
then the network provides perfect secrecy against a 1-passive

adversary.

Proof: Put the secret message through a (t, t)-secret

sharing and let each share take its own individual path

through the network (i.e., do a random walk according to

the transition matrix P ). With the random indicator variable

Ii,j :=

{

1, if hij > 0
0, otherwise,

the number of trajectories passing through a node v ∈ V
is given by Nv :=

∑t
i=1 Ii,v , and its expected value is

E(Nv) = E(
∑t

i=1 Ii,v) =
∑t

i=1 hiv . The assertion now

directly follows from Markov’s inequality, since

Pr[Nv ≥ t] ≤
E(Nv)

t
<

t

t
= 1,

which holds for all v ∈ V . The network thus provides perfect

secrecy by Theorem V.1.
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Theorem V.3. Let G = (V,E) be a graph, and let the

sender and receiver be s, r ∈ V . Let the adversary be k-

passive, i.e., up to k nodes in G can be compromised. For

perfect secrecy, it is necessary that |nb(s)| > k. In that case,

with V ∗ := V \ {s, r}, if

∀i ∈ nb(s) : hij ≤
1

ek
∀j ∈ V ∗ \ {i} ,

then the network provides perfect secrecy.

Proof: Without loss of generality, assume s’s neighbors

to be the nodes {1, 2, . . . , t}, and put the secret message m
through a (t, t)-secret-sharing scheme, transmitting the i-
th share over the i-th neighbor of s (the remaining path of

each is individual and determined by the network’s transition

matrix P ). Observe that the adversary will not learn anything

unless he gathers all t shares.

If t ≤ k, then the adversary can ”cut off” s from the rest

of the network, thus reading all information conveyed by s,

and perfect secrecy is impossible by Theorem V.1.

Assume t > k henceforth, so there exists at least one

honest neighbor of s in every attack scenario. Let A ⊆ V
with A = {j1, . . . , jk} be a set of compromised nodes. The

(mutually dependent) events T ji
l for i = 1, 2, . . . , k occur

when the trajectory starting off the node l reaches node ji.
For each (starting node) l = 1, 2, . . . , t, we have

Pr
[

T ji
l

]

= hlji ≤ max {hlv|v ∈ V \ {l, s, r}} ≤
1

ek
, (4)

where the last inequality follows from our hypothesis. Since

Pr
[

T ji
l

]

≤ 1
e·k , then Lovász local lemma (symmetric ver-

sion) implies

Pr

[

k
⋂

ν=1

T jν
i

]

> 0. (5)

In other words, the l-th trajectory has a positive chance

of evading the set {j1, . . . , jk}. Since inequality (4) holds

independently of the particular ji’s, (5) is true for all these

sets. If condition (4) holds for all l = 1, 2, . . . , t, then in

every attack scenario there is at least one trajectory with

a positive chance of not passing through the compromised

area in the graph. So, for every A ⊂ V with |A| ≤ k, it

holds that p(A, t) < 1 and the network can provide perfect

security.

Efficiency

Regarding the bandwidth demand, we require the overall

network traffic (bit complexity) and round complexity to

be polynomial in log 1
ε

for any chosen ε > 0. Assume

the network satisfies the condition for perfect secrecy in

Theorem V.1.

Fix some ε > 0. We will prove the following transmission

regime to enjoy efficient bit- and round-complexity, i.e.,

polynomial efforts in log 1
ε

. Let the secret message trans-

mitted from s to r be m:

1) put m through a (n, n)-secret sharing, giving the

shares s1, . . . , sn (the number n will be determined

below).

2) for i = 1, 2, . . . , n do the following: put the i-th share

si through a (t, t)-secret sharing, where t = |nb(s)|,
and transmit the j-th share of si over the j-th neighbor

of s.

Obviously, the attacker will not learn anything unless he

gets all the information flowing over the network (due to

the (n, n)- and (t, t)-sharings). Our task is proving n to

be polynomial in log 1
ε

and the size of the network. For

the proof, define an indicator variable for each round i =
1, 2, . . . , n via

Ii =

{

1, if the share si was disclosed;

0, otherwise,

so that Ii measures the adversary’s success (in a binary scale)

in the i-th round. By our hypothesis, Theorem V.1 implies

Pr[Ii = 1] < 1 for all rounds i and all sets of nodes that the

adversary could have conquered (recall that the adversary is

k-passive). Put ρ := maxi=1,2,...,n Pr[Ii = 1], then ρ < 1.

Since 0 ≤ Ii ≤ 1 for all i, the first moment E(Ii) exists

and Ii’s deviation from its mean is bounded by −1 ≤ Ii −
E(Ii) ≤ 1 for all i. Define S :=

∑n
i=1 Ii, then since E(Ii) ≤

ρ, we get E(S) =
∑n

i=1 E(Ii) ≤ nρ. Moreover, S−E(S) ≥
S − nρ ≥ τ for some τ to be fixed later. Application of a

variant of Hoeffding’s inequality (with relaxed independence

constraints; see [16]) gives

Pr[S − nρ ≥ τ ] ≤ Pr[S − E(S) ≥ τ ] ≤ exp

(

−
τ2

2n

)

Since 1
n
S ≥ mini Ii, we can choose τ to satisfy τ

n
≤

mini Ii − ρ ≤ 1
n
S − ρ. So we can continue the chain of

inequalities on the left-side as

Pr
[

min
i

Ii − ρ ≥
τ

n

]

≤ Pr[S − nρ ≥ τ ] ≤ exp

(

−
τ2

2n

)

,

and by taking δ := τ
n

we conclude that

p := Pr
[

min
i

Ii ≥ ρ+ δ
]

≤ exp

(

−
nδ2

2

)

for all δ ≥ 0. By construction, the adversary is successful

if and only if Ii = 1 for all rounds i = 1, 2, . . . , n, or

equivalently, mini Ii = 1. Choosing δ := 1 − ρ > 0, the

number n of rounds until Pr[mini Ii ≥ ρ+ δ = 1] < ε is

achieved comes to n ∈ O
(

log 1
ε

)

. The bit-complexity is

n·t·|m|, where |m| is the length of the message, and as such

in O
(

|m| · |nb(s)| · log 1
ε

)

, i.e., polynomial in the network

size and log 1
ε

. Summarizing the discussion, we have proved

Theorem V.4. If a given network provides perfect secrecy

according to Theorems V.1, V.2 or V.3, then there is an

efficient protocol achieving this.
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1 2 3

4 5 6

7 8

Figure 1. Example multipath transmission from 1 to 8

VI. APPLICATION TO QUANTUM NETWORKS

It is important to emphasize that Theorems V.1, V.2 and

V.3 should not directly be applied to the communication

network at hand. Instead, we are interested in estimating the

harm that any deviation from a prescribed routing strategy

causes. Going back to multipath transmission, our goal is

using the results from the previous section to classify a

given network as (in)secure under the assumption of random

detours that a packet takes upon local congestions or empty

local quantum-key-buffers.

We illustrate the application of Theorem V.3 using a

simple example, which we hope demonstrates the general

line of reasoning. Take the network shown in Figure 1, with

each link secured by means of QKD. Alice (node 1) per-

forms a multipath communication over three disjoint chan-

nels ρ1 = (1→ 2→ 3→ 8), ρ2 = (1→ 5→ 6→ 8), ρ3 =
(1→ 4→ 7→ 8) (shown bold) to Bob’s node 8. Assume

that each node does the packet forwarding reliably, up

to some chance of α for the packet to deflect from the

prescribed route. Thus, assuming stochastic independence

for the sake of simplicity, with probability 1−αlength(ρi)−2,

the packet will travel over ρi as desired. Notice that any

path is accessible from any other, and that an adversary will

surely not waste resources by attacking anywhere else than

on the chosen paths. Hence, we can create an abstract model

for such a multipath transmission by restricting the focus on

whether the packets travel as desired (likelihood determined

by the reliability of routing, i.e., the probability of the packet

not deviating from its prescribed route), or whether they

take detours (should happen with a small chance only) that

could yield to intersecting paths and disclosure of the secret

message.

For the analysis of a general network G = (V,E) under

a multipath transmission scenario, we therefore consider the

auxiliary graph G′ = (V ′, E′): let ρ1, . . . , ρt be paths in G,

then each of these becomes a node in G′, which is connected

to the sender and receiver, so put V ′ := {ρ1, . . . , ρt}∪{s, r}.

Attacking elsewhere than on the paths ρ1, . . . , ρt is less

paying for the adversary than compromising the paths

themselves, so we may safely disregard any nodes in the

network that are not on a chosen path. Also, assume that a

packet can jump from any path to any other, so the nodes

ρ1, . . . , ρt form a clique. Finally, each path ρi is connected

ρ1

ρ2

ρ3 rs

Figure 2. Auxiliary graph G′ describing state transitions

to the receiver r in a one-way manner, as the receiver

is absorbing and will not pass anything further. Similarly,

the sender is (one-way-)connected to all his chosen paths,

though these transitions are of no further interest, since

an accidental jump from a path back to the sender can

trivially be corrected by the sender putting the packet back

on its correct path. The set of edges therefore comes to

E′ = {ρ1, . . . , ρt}
2
∪ {(ρi, r), (s, ρi)|i = 1, 2, . . . , t}. The

resulting transition graph for the example is depicted in

Figure 2, with arrows indicating possible state transitions.

The topology of the auxiliary graph G′, excluding the

transitions from s to each ρi (for obvious reasons) defines

the Markov-chain on which we can invoke the results

from Section V. For the analysis, it remains to specify the

following likelihoods:

• Pr[ρi→ r]: with the parameter α as above, this is

Pr[ρi→ r] = 1−αlength(ρi)−2. Notice that several events

of node failure are not necessarily independent, and

correlations among these must be considered in a more

accurate (perhaps more realistic) model.

• Pr[ρi→ ρj ]: this quantity depends on the particular

chances of jumping from a node on ρi to any node on

ρj , and must be worked out individually for the network

at hand. For the sake of simplicity and illustration,

we assume an equal likelihood of jumping on any

other path once ρi is left. For the example, we take

Pr[ρi→ ρj ] =
1

t−1 (1− Pr[ρi→ r]).

Since the jumps from the sender to each of his chosen paths

are uninteresting, we do not need to model the corresponding

transition probabilities, nor must these appear in the transi-

tion matrix of the Markov-chain. These links are merely

included to have G′ consistent with our criteria, and are

therefore shown dashed.

With α = 0.01, we end up finding the transition matrix:

P =









ρ1 ρ2 ρ3 r

ρ1 0 0.01 0.01 0.98
ρ2 0.01 0 0.01 0.98
ρ3 0.01 0.01 0 0.98
r 0 0 0 1









Now, we can use Theorem V.3 on this matrix to see that the

network is indeed secure against a 2-passive adversary: with

V ∗ = {1, 2, 3} and by solving (2) for A = {1} , {2} , {3},

we find hij = 1
99 < 1

2e ≈ 0.184, for each i, j ∈ V ∗, j 6= j.

It follows that the network remains secure even under
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much less reliable routing. Indeed, we can tolerate up to

α ≈ 0.155, i.e., a more than 15% chance of the packets

becoming re-routed via indirect eavesdropping or congestion

control. Finally, Theorem V.4 tells that resilience against

such incidents can be retained efficiently.

VII. CONCLUSION

We have obtained simple criteria for protection against

passive adversaries. Carrying over our results for active

(Byzantine) adversaries, one needs a slightly different trans-

mission technique. In fact, (k, n)-secret sharing is resilient

against an active adversary compromising up to ⌊(n−k)/2⌋
shares [17]. Future work will include refining and adapting

our criteria for Byzantine adversaries, as well as inves-

tigating transmission efficiency (notice that the proof of

Theorem V.4 no longer holds for active adversaries. Still,

QKD enhanced multipath routing can indeed bring perfect

secrecy to future networks, even without much change to

the existing routing regimes apart from using QKD. More

detailed examples are subject to ongoing research in the

context of a project where this framework is going to be

tested empirically. We will report on this in future papers.

Our results are only indirectly dependent on the quantum

nature of the network, as the attack targets the multipath

transmission regime only by exploiting general QKD prop-

erties. These are, moreover, independent of the particular

QKD-implementation, and equally well apply to discrete or

continuous quantum information encodings. In general, any

successful denial-of-service attack, regardless of whether on

a conventional or quantum line, can be used for indirect

eavesdropping in the described form, as soon as secure

multipath transmission is used.

This work is an explicit account for an adversary who

turns the QKD eavesdropping detection against the network.

If end-to-end security is set up by means of multipath trans-

mission, then ”disconnecting” (by eavesdropping) otherwise

adjacent nodes may enforce local re-routing of packets and

in turn direct the information flow right into the adversary’s

hands. We presented various sufficient criteria for this kind

of ”indirect eavesdropping attacks” to be repealable. In

general, our criteria can be used to decide whether or not

a network retains perfect secrecy under randomly compro-

mised nodes and routes.
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