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Abstract—We discuss the security of quantum key dis-
tribution protocols based on entanglement swapping against
collective attacks. Therefore, we apply a generic version of a
collective attack strategy on the most general entanglement
swapping scenario used for key distribution. Further, we
focus on basis transformations, which are the most common
operations performed by the legitimate parties to secure the
communication. In this context, we show that the angles,
which describe these basis transformations can be optimized
compared to an application of the Hadamard operation. As
a main result, we show that the adversary’s information is
reduced to a new minimum of about 0.45, which is about 10%
lower than in other protocols.

Keywords-quantum key distribution; entanglement swapping;
security analysis; optimal basis transformations.

I. I NTRODUCTION

Quantum key distribution (QKD) is an important applica-
tion of quantum mechanics and QKD protocols have been
studied at length in theory and in practical implementations
[1], [2], [3], [4], [5], [6], [7], [8]. Most of these protocols
focus on prepare and measure schemes where single qubits
are in transit between the communication parties Alice and
Bob. The security of these prototcols has been discussed
in depth an security proofs have been given for example
in [9], [10], [11]. In addition to these prepare and measure
protocols, several protocols based on the phenomenon of
entanglement swapping have been introduced [12], [13],
[14], [15], [16]. In these protocols, entanglement swapping
is used to obtain correlated measurement results between the
legitimate communication parties, Alice and Bob. In other
words, each party performs a Bell state measurement and
due to entanglement swapping their results are correlated
and further on used to establish a secret key.

Entanglement swapping has been introduced by Bennett
et al. [17], Zukowski et al. [18] as well as Yurke and
Stolen [19], respectively. It provides the unique possibility
to generate entanglement from particles that never interacted
in the past. In detail, Alice and Bob share two Bell states
of the form |Φ+〉12 and |Φ+〉34 such that afterwards Alice
is in possession of qubits 1 and 3 and Bob of qubits 2 and
4 (cf. Figure 1). Then Alice performs a complete Bell state
measurement on the two qubits in her possession, which

results in

|Φ+〉12 ⊗ |Φ+〉34 =
1

2

(

|Φ+〉|Φ+〉+ |Φ−〉|Φ−〉

+|Ψ+〉|Ψ+〉+ |Ψ−〉|Ψ−〉
)

1324

(1)

After the measurement, the qubits 2 and 4 at Bob’s side
collapse into a Bell state although they originated at com-
pletely different sources. Moreover, the state of Bob’s qubits
depends on Alice’s measurement result. As presented in
eq. (1) Bob always obtains the same result as Alice when
performing a Bell state measurement on his qubits.

The security of QKD protocols based on entanglement
swapping has been discussed on the surface so far. It has
only been shown that these protocols are secure against
intercept-resend attacks and basic collective attacks (cf. for
example [12], [13], [15]). Therefore, we analyze a general
version of a collective attack where the adversary tries to
simulate the correlations between Alice and Bob [20]. A
basic technique to secure these protocols is to use a basis
transformation, usually a Hadamard operation, similar to the
prepare and measure schemes mentioned above, to make it
easier to detect an adversary. Hence, we analyze the security
with respect to a general basis transformation about an angle
θA applied by Alice and a transformation about an angle
θB applied by Bob. In the course of that, we are going to
identify, which values forθA andθB are optimal such that
an adversary has only a minimum amount of information on
the secret key.

In the next section, we are going to shortly review the
simulation attack, a generic collective attack strategy where
an adversary applies a six-qubit state to eavesdrop Bob’s
measurement result. A detailed discussion of this attack
strategy can be found in [20]. In Section III, we discuss
the security of entanglement swapping based QKD protocols
agains the simulation attack. Here, we are focussing on the
application of one and two basis transformations and define
the optimal angles for these transformations. At the end, we
summarize the results and give a short outlook on our next
steps into this topic.

II. T HE SIMULATION ATTACK STRATEGY

In entanglement swapping based QKD protocols like [12],
[13], [14], [15], [16] Alice and Bob rest their security check
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Figure 1. Illustration of a standard setup for an entanglement swapping
based QKD protocol using a basis transformationTx.

onto the correlations between their respective measurement
results coming from the entanglement swapping (cf. eq. (1)).
If these correlations are violated, Alice and Bob have to
assume that an eavesdropper is present. Hence, a general
version of a collective attack has the following basic idea:
the adversary Eve tries to find a multi-qubit state, which
preserves the correlation between the two legitimate parties.
Further, she introduces additional qubits to distinguish be-
tween Alice’s and Bob’s respective measurement results. If
she is able to find such a state Eve stays undetected during
her intervention and is able to obtain a certain amount of
information about the key. In a previous article [20], we
already described such a collective attack calledsimulation
attack for a specific protocol [16]. The generalization is
straight forward as described in the following paragraphs.It
has been pointed out in detail in [20] that Eve uses 4 qubits
to simulate the correlations between Alice and Bob and
she introduces additional systems, i.e.,|ϕi〉, to distinguish
between Alice’s different measurement results. This leadsto
the state

|δ〉 =
1

2

(

|Φ+〉|Φ+〉|ϕ1〉+ |Φ−〉|Φ−〉|ϕ2〉

|Ψ+〉|Ψ+〉|ϕ3〉+ |Ψ−〉|Ψ−〉|ϕ4〉
)

PRQSTU

(2)

which is a more general version than described in [20]. This
state preserves the correlation of Alice’s and Bob’s measure-
ment results coming from the entanglement swapping (cf. eq.
(1)). To be able to eavesdrop Alice’s and Bob’s measurement
results Eve has to choose the auxiliary systems|ϕi〉 such that

〈ϕi|ϕj〉 = 0 i, j ∈ {1, ..., 4} i 6= j (3)

This allows her to perfectly distinguish between Alice’s and
Bob’s respective measurement results and thus gives her full
information about the classical raw key generated out of
them.

In detail, Eve distributes qubitsP , Q, R andS between
Alice and Bob such that Alice is in possession of qubitsP
andR and Bob is in possession of qubitsQ andS. When
Alice performs a Bell state measurement on qubitsP and
R the state of qubitsQ andS collapses into the same Bell
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Figure 2. Alice’s and Bob’s Shannon entropyH and the according average
error probability〈Pe〉 if either Alice or Bob applies a basis transformation.

state, which Alice obtained from her measurement (compare
eq. (1) and eq. (2)). Hence, Eve stays undetected when Alice
and Bob compare some of their results in public to check
for eavesdroppers. The auxiliary system|ϕi〉 remains at
Eve’s side and its state is completely determined by Alice’s
measurement result. Therefore, Eve has full information
on Alice’s and Bob’s measurement results and is able to
perfectly eavesdrop the classical raw key.

There are different ways for Eve to distribute the state
|δ〉P−U between Alice and Bob. One possibility is that
Eve is in possession of Alice’s and Bob’s source and
generates|δ〉P−U instead of Bell states. This is a rather
strong assumption because the sources are usually located
at Alice’s or Bob’s laboratory, which should be a secure
place. Nevertheless, Eve’s second possibility is to intercept
the qubits 2 and 3 flying from Alice to Bob and vice versa
and to perform entanglement swapping to distribute the state
|δ〉. This is a straight forward method as already described
in [20].

We want to stress that the state|δ〉 is generic for all
protocols where 2 qubits are exchanged between Alice and
Bob during one round of key generation as, for example,
the QKD protocols presented by Song [15], Li et al. [16]
or Cabello [12]. As already pointed out in [20], the state
|δ〉 can also be used for different initial Bell states. For
protocols with a higher number of qubits the state|δ〉 has
to be extended accordingly.

III. SECURITY AGAINST COLLECTIVE ATTACKS

In the following paragraphs we discuss Eve’s intervention
on an entanglement swapping QKD protocol performing a
simulation attack, i.e., using the state|δ〉P−U . To detect
Eve’s presence either Alice or Bob or both parties apply
a basis transformations as depicted in Figure 1.

A. General Basis Transformations

Similar to the prepare and measure schemes mentioned in
the introduction most of the protocols based on entanglement
swapping apply basis transformations to make it easier to
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detect the presence of an eavesdropper. The basis transfor-
mation most commonly used in this case is the Hadamard
operation, i.e., a transformation from theZ- into the X-
basis. In general, a basis transformation from theZ-Basis
into the X-basis can be described as a combination of
rotation operations, i.e.,

T
(

θ, φ
)

= eiφRz

(

φ
)

Rx

(

θ
)

Rz

(

φ
)

(4)

whereRx andRz are the rotation operations about theX-
andZ-axis, respectively. For reasons of simplicity we take
φ = π/2 in our further discussions and therefore denote the
transformation is described solely by the angleθ, i.e., Tθ.
From eq. (4) we can directly see that the Hadamard operation
equalsTθ for θ = π/2. To keep the security analysis as
generic as possible we discuss a setup where a general basis
transformation about an angleθA is applied by Alice and a
transformation about an angleθB is applied by Bob (cf.
Figure 1).

For our further discussions we will assume that Alice
and Bob prepared the initial states|Φ+〉12 and |Φ+〉34 as
described above to make calculations easier. As already
described in [20] if Alice and Bob chooseθA = θB = 0, i.e.,
they perform no transformation, the protocol is completely
insecure. Hence, we will focus on the scenarios where either
TθA or TθB or both transformations are applied. For all
scenarios we assume that Alice appliesTθA on qubit 1 and
Bob appliesTθB on qubit 4.

B. Application of a Single Transformation

For the first scenario where only Alice applies the basis
transformation the overall state of the system after Eve’s
distribution of the state|δ〉P−U can simply be described as

|δ′〉 = T
(1)
θA

|δ〉1QR4TU (5)

where the superscript ”(1)” indicates thatTθA is applied on
qubit 1. When Eve sends qubitsR andQ to Alice and Bob,
respectively, the state after Alice’s Bell state measurement
on qubits 1 andR is

cos
θA
2

|Φ−〉Q4|ϕ2〉TU + sin
θA
2

|Ψ+〉Q4|ϕ3〉TU (6)

assuming Alice obtained|Φ+〉1R (for Alice’s other three
possible results the state changes accordingly). This leads
to the assumption that in this case Bob’s transformation
back into theZ-basis does not re-establish the correlations
between Alice and Bob properly. Performing the calculations
we see that Bob’s operationTθA brings qubitsQ, 4, T and
U into the form

cos2
θA
2

|Φ+〉Q4|ϕ2〉TU + sin2
θA
2

|Φ+〉Q4|ϕ3〉TU

−
sin θA

2
|Ψ−〉Q4|ϕ2〉TU +

sin θA
2

|Ψ−〉Q4|ϕ3〉TU

(7)

When Bob performs a Bell state measurement we can
directly see from this expression that Bob obtains either the
correlated result|Φ+〉Q4 with probability

(

cos2
θA
2

)2

+

(

sin2
θA
2

)2

=
3 + cos(2θA)

4
(8)

or an error, i.e., the state|Ψ−〉Q4, otherwise. Hence, Eve
introduces an error with probability(sin2 θA)/2, which
yields an expected error probability

〈Pe〉 =
sin2 θA

4
(9)

Nevertheless, as long as the results are correlated Eve obtains
from her Bell state measurement on qubitsT andU the state
|ϕ2〉TU with probability (1+cos(θA))

2/(3+cos(2θA)) and
knows that Bob obtained|Φ+〉Q4. Consequently, we obtain
the expected collision probability

〈Pc〉 =
1

8

(

7 + cos(2θA)
)

. (10)

This directly leads to the Shannon entropy

H =
1

2
h
(

cos2
θA
2

)

(11)

where h(x) = −x log2 x − (1 − x) log2(1 − x) is the
binary entropy. Looking at〈Pe〉 andH in Figure 2 we see
that the optimal angle for a single basis transformation is
π/2, i.e., the Hadamard operation. If only Bob applies the
basis transformation the claculations run analogous to this
scenario and therefore provide the same results.

C. Application of Combined Transformations

When both Alice and Bob apply their basis transformation
the overall state changes to

|δ′〉 = T
(1)
θA

T
(4)
θB

|δ〉1QR4TU (12)

and after Alice’s Bell state measurement on qubits 1 andR
and Bob’s application ofTθB on qubit Q the state of the
remaining qubits is

cos2
θA − θB

2
|Φ+〉Q4|ϕ1〉TU

+sin2
θA − θB

2
|Φ+〉Q4|ϕ4〉TU

−
sin

(

θA − θB
)

2
|Ψ−〉Q4

(

|ϕ1〉TU − |ϕ4〉TU

)

(13)

Consequently, Bob obtains a correlated result with probabil-
ity (3+cos(2θA−2θB))/4 and following the argumentation
from scenario described in Section III-B above this yields
an average error probability (cf. Figure 3 for a plot of this
function)

〈Pe〉 =
1

16

(

3− cos 2θA − 2 cos2 θA cos 2θB

)

(14)

When the results are correlated Eve obtains either|ϕ1〉TU

or |ϕ4〉TU , as it is easy to see from eq. (13). Hence, Eve’s
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Figure 3. Eve’s expected error probability〈Pe〉 if both parties apply a
basis transformation with the respective anglesθA andθB .

information on the Alice’s and Bob’s result is lower com-
pared to the first scenario, i.e., Alice’s and Bob’s Shannon
entropy is higher:

H =
1

4
h
(

cos2
θA
2

)

+
1

4
h
(

cos2
θB
2

)

+
1

8
h
(

cos2
θA + θB

2

)

+
1

8
h
(

cos2
θA − θB

2

)

(15)

This is due to the fact that it is more difficult for Eve to react
on two separate basis transformations with different angles
θA andθB and is easy to see from the plot of the Shannon
entropyH in Figure 4.

IV. RESULTS

For the scenarios where either Alice or Bob applies a
basis transformation at random, the optimal value forθA and
θB , respectively, isπ/2. Therefore, the Hadamard operation
is the optimal choice in this scenario for protocols using
only one basis transformation, as it is already known from
literature [13], [20]. In this case the average error probability
as well as the Shannon entropy are maximal at〈Pe〉 = 0.25
andH = 0.5 (cf. Figure 2). Further, Eve’s information on
the bits of the secret key is given by the mutual information

IAE = 1−H = 1−
1

2
=

1

2
(16)

which means that Eve has 0.5 bits of information on every
bit of the secret key. Using error correction and privacy
amplification Eve’s information can be brought below 1 bit
of the whole secret key as long as the error rate is below
∼ 11% [11]. This is more or less the standard threshold
value for the prepare and measure QKD protocols.

A combined application of the Hadamard operation by
both parties would indicate at a first glance that the security
is further increased. But when we look at Figure 4 we see
that a random application of the Hadamard operation by both
Alice and Bob gives the same result as the application on just
one side. This is due to the fact that in case both parties apply
the Hadamard operation at the same time the operations
cancel out each other. But as we can further see from Figure
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Figure 4. Alice’s and Bob’s Shannon entropyH if both parties apply a
basis transformation with the respective anglesθA andθB .

4, the Shannon entropy for a combined application of basis
transformations is much higher for some regions. In detail,
the maximum of the function plotted in Figure 4 is

H ∼ 0.55 and thus IAE ∼ 0.45 (17)

for θA = π/4 and θB = π/2 or vice versa. Hence, if just
one of the parties applies a Hadadmard operation and the
other one a transformation about an angle ofπ/4 Eve’s
mutual information is about 10% lower. At the same time
we see from Figure 3 that for these two values ofθA and
θB the error probability is still maximal with〈Pe〉 = 0.25.
This means Alice and Bob are able to further reduce Eve’s
information about the raw key by the combined application
of two basis transformations, one aboutθ = π/2 and the
other aboutθ = π/4.

V. CONCLUSION AND FURTHER RESEARCH

In this article, we discussed the optimality of basis trans-
formations to secure entanglement swapping based QKD
prototcols. Starting from a generic entanglement swapping
scenario we used a collective attack strategy to analyse
the amount of information an adversary is able to obtain.
We showed that in case only one party applies a basis
transformation the operationTθ reduces to the Hadamard
operation, i.e., the angleθ = π/2 allows a maximal mutual
information of IAE = 0.5. Whereas, if both parties apply
a transformation the optimal choice for the anglesθA and
θB describing the basis transformations isθA = π/4 and
θB = π/2. This decreases the mutual information of an
adversary further toIAE ∼ 0.45.

The next questions arising directly from these results are
how, if at all, the results change if basis transformations
from theZ- into theY -basis are applied. A first inspection
shows that such basis transformations can not be plugged
in direclty into this framework. Besides the transformation
from theZ- into theY - basis we are going to insepct the
effects of the simpler rotation operations on the results.
Since basis transformations can be described in terms of
rotation operations it could be easier to apply rotation
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operations in this framework. Due to the similar nature of
basis transformations and rotation operations we assume that
the results will be the same as presented here.

To keep the setting as general as possible the main goal
is to allow Alice and Bob to use arbitrary unitary operations
instead of just basis transformations to secure the protocol.
This should make it even more difficult for Eve to gain
information about the raw key.
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