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Abstract—In this article, we discuss the effects of noise in a
quantum channel on the security of quantum key distribution
protocols based on entanglement swapping. Therefore, we look
at two different models of quantum noise, the depolarization
channel and the decoherence channel. Based on these models,
we examine at first the effects on entanglement swapping and
further the implications on the security parameters in quantum
cryptography. We are able to show that a fidelity of at least 0.9428
is necessary to guarantee the security of the protocol. Addition-
ally, we take the exponential decrease of entanglement overthe
distance between the communication parties into account. Using
the photonic channel with coherence lengths from 10 km to 50 km
as a reference model, we find that in this scenario the maximum
length of a quantum channel for secure communication based on
entanglement swapping lies between 1.19 km and 6.12 km.

Keywords—quantum key distribution; entanglement swapping;
noisy channels; security analysis.

I. I NTRODUCTION

Quantum key distribution (QKD) is an important appli-
cation of quantum mechanics and QKD protocols have been
studied at length in theory and in practical implementations [1],
[2], [3], [4], [5], [6], [7], [8]. Most of these protocols focus
on prepare and measure schemes, where single qubits are in
transit between the communication parties Alice and Bob. The
security of these protocols has been discussed in depth and
security proofs have been given for example in [9], [10], [11].
In addition to these prepare and measure protocols, several
protocols based on the phenomenon of entanglement swapping
have been introduced [12], [13], [14], [15], [16]. In these
protocols, entanglement swapping is used to obtain correlated
measurement results between the legitimate communication
parties, Alice and Bob. In other words, each party performs
a Bell state measurement and due to entanglement swapping
their results are correlated and further on used to establish a
secret key.

Entanglement swapping has been introduced by Bennett
et al. [17], Zukowski et al. [18] as well as Yurke and Stolen
[19], respectively. It provides the unique possibility to generate
entanglement from particles that never interacted in the past.
In detail, Alice and Bob share two Bell states of the form
|Φ+〉12 and|Φ+〉34 such that afterwards Alice is in possession
of qubits 1 and 3 and Bob of qubits 2 and 4 (cf. (2) in Figure

1). The overall state can now be written as

|Φ+〉12 ⊗ |Φ+〉34 =
1

2

(

|Φ+〉|Φ+〉+ |Φ−〉|Φ−〉

+|Ψ+〉|Ψ+〉+ |Ψ−〉|Ψ−〉
)

1324

(1)

Then, Alice performs a complete Bell state measurement
on the two qubits 1 and 3 in her possession, and at the
same time the qubits 2 and 4 at Bob’s side collapse into
a Bell state although they originated at completely different
sources. Moreover, the state of Bob’s qubits depends on Alice’s
measurement result (cf. (4) in Figure 1). As presented in eq.(1)
Bob always obtains the same result as Alice when performing
a Bell state measurement on his qubits.

The effects of noise on entangled states have already been
discussed in detail in literature. It has been pointed out that
the fidelity is reduced due to the noise in a quantum channel
and entanglement purification methods have been developed
to overcome this problem [20], [21], [22], [23]. In principle,
entanglement purification can be used to bring a tempered en-
tangled state arbitrarily close to a pure stated given the required
resources. This is one of the reasons why the security of QKD
protocols based on entanglement swapping has been discussed
on the surface so far. They have only been analyzed using pure
states in an idealistic environment (loss-free quantum channels,
perfect devices, etc.) not considering the noise in a real-
world environment. In this article, we are going to look at the
security of QKD protocols based on entanglement swapping in
a noisy environment. Using thedepolarizing channel as well
as thedephasing channel as reference models, the effect of the
natural noise on entanglement swapping is described. Further,
threshold values on the fidelity of the entanglement of the
initial states are given, below which a secure communication
is possible. Additionally, we look at the impact of the distance
between Alice and Bob on the fidelity of entanglement and
also estimate threshold values for the security of entanglement
swapping QKD protocols in connection with the length of a
quantum channel.

In the following section, we are going to shortly review
the two most common noisy channel models, the depolarizing
channel and the dephasing channel. In Section III, the effect of
the noisy channels on entanglement swapping are described.
In detail, the probabilities for uncorrelated results coming
from entanglement swapping are computed. In the following
Sections IV and V, we discuss the effects of noise on the
security parameters and the maximal channel length for secure
communication using these models. Here, we are relating the
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fidelity of the initial states as well as the length of the quantum
channel to upper bounds coming from current QKD protocols.
In the end, we summarize the results and give a short outlook
on the next steps into this topic.

II. N OISY CHANNEL MODELS

In a classical communication, the only type of errors that
occur are bit flip errors, i.e., a change from 0 to 1 and
vice versa. Since qubits are more sophisticated systems than
classical bits, two major types of errors can occur: bit flip
and phase flip errors. Further, any linear combination of these
two errors is possible. A bit flip and phase flip of a qubit
is described by the Pauli operationsσx andσz , respectively.
Consequently, if both errors occur at the same time this can
be described by the Pauli operationσy .

A very common way to characterize a noisy quantum
channel is to use thedepolarizing channel [24], [25]. This
model takes both bit flip and phase flip errors on the qubit
in transit into account and is therefore described by the
application of all three Pauli operationsσx, σy andσz . If the
qubit transmitted over the noisy channel is part of an entangled
state, the whole system is affected by the noisy channel. In case
of a Bell state, e.g.,|Φ+〉, the system of the two qubits after
the effect of the depolarizing channel can be described by a
Werner state [26]

WF = F|Φ+〉〈Φ+|

+
1− F
3

(

|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|
) (2)

with fidelity 〈Φ+|WF |Φ+〉 = F . A more common way to look
at the Werner state is to describe it in connection with white
noise, i.e.,

ρ = (1− p)|Φ+〉〈Φ+|+ p
1

4
(3)

wherep is the error probability. In this case the fidelity can
be easily computed as F= 1− 3p/4.

A more specialized model for a noisy quantum channel
is the phase damping or also calleddephasing channel [27].
This is a phase scrambling and energy preserving mechanism
described by the two operators

√

1 + e−p

2
1 and

√

1− e−p

2
σz (4)

with p again the probability that an error is introduced by the
quantum channel. Looking at the scenario where one qubit of
the Bell state|Φ+〉 is transmitted over the noisy channel, the
resulting state can be described as

χ =
1 + e−p

2
|Φ+〉〈Φ+|+ 1− e−p

2
|Φ−〉〈Φ−| (5)

III. E NTANGLEMENT SWAPPING IN A NOISY
ENVIRONMENT

As a consequence of the transmission of qubits over a noisy
channel the operations on those qubits are affected, too. Inthe
protocols we are dealing with in this article the most interesting
operation is entanglement swapping. Following eq. (1) and
Figure 1 we assume Alice prepares the Bell state|Φ+〉〈Φ+|12
and Bob prepares|Φ+〉〈Φ+|34 in their respective laboratories.

Alice Bob

|Φ+〉|Φ+〉

1

2

3

4

(1)

Alice Bob

(2)

Alice Bob

(3)

Alice Bob

3

1

4

2

|Ψ+〉 |Ψ+〉

(4)

Fig. 1. Illustration of a standard setup for an entanglementswapping based
QKD protocol.

They send qubits 2 and 3 to the other party over a depolarizing
channel such that the overall system is described byρ ⊗ ρ.
After Alice’s Bell state measurement on qubits 1 and 3 in her
possession the system of qubits 2 and 4 is (assuming Alice
obtains|Φ+〉〈Φ+|13)

ρ24 =
4− 6p+ 3p2

4
|Φ+〉〈Φ+|24

+
2p− p2

4

(

|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|
)

24

(6)

which is again a Werner state (cf. eq. (2) above). Comparing
this equation with eq. (1) describing entanglement swapping
with pure states we directly see that Alice and Bob obtain
correlated results only with probability

Pcorr =
4− 6p+ 3p2

4
(7)

and Bob’s measurement yields an arbitrary state not correlated
to Alice’s measurement with probability

Perr =
6p− 3p2

4
(8)

For QKD protocols based on entanglement swapping this
means that an error is detected during the communication
between Alice and Bob. Considering Figure 2 we see that
performing entanglement swapping over a noisy channel gives
reasonable results, i.e., it is more likely to obtain correlated
results than uncorrelated, only ifPerr < Pcorr. The maximum
error probability to achieve that is(3 −

√
3)/3, which is the

point wherePerr = Pcorr, corresponding to a fidelity of the
initial states of at leastF = 0.683. This value indicates a lower
bound on the initial states to make entanglement swapping
possible.

Taking at a dephasing channel instead of a depolarizing
channel into account, we obtain a different error rate. If Alice
and Bob again prepare the states|Φ+〉〈Φ+|12 and|Φ+〉〈Φ+|34,
the overall system after they sent their qubits over the quantum
channel is described byχ ⊗ χ. Alice performs a Bell state
measurement on qubits 1 and 3 in her possession, which leads
to the state (assuming again that Alice’s result is|Φ+〉〈Φ+|13)

χ24 =
1 + e−2p

2
|Φ+〉〈Φ+|24

+
1− e−2p

2
|Φ−〉〈Φ−|24

(9)
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Fig. 2. The probabilitiesPcorr (dashed line) andPerr (solid line) from
entanglement swapping in a depolarizing channel.

Analogous to the depolarizing channel, Alice and Bob obtain
correlated results only with probability

Pcorr =
1 + e−2p

2
(10)

and they obtain different results with probability

Perr =
1− e−2p

2
(11)

In contrary to the depolarizing channel, we see from Fig-
ure 3 thatPcorr and Perr never intersect, i.e., it is always
Perr < Pcorr. This is a huge advantage, since the maximum
probability that Alice and Bob obtain uncorrelated resultsis
Perr = 0.4323 for p = 1, which is much smaller compared to
the the error probability for the depolarizing channel defined
in eq. (8) above. Nevertheless, this leads to almost the same
minimal fidelity F= 0.6839 compared to the required fidelity
in the depolarizing channel described above, indicating that
the dephasing channel has a much higher error tolerance.

IV. EFFECTS ONSECURITY PARAMETERS

To guarantee perfect security in quantum cryptography all
noise – introduced naturally or by an adversary – is treated
as it is caused by an eavesdropper. In particular, this leads
to the rather paranoid but very useful assumption that Eve is
able to exchange the noisy channel between Alice and Bob by
a perfect quantum channel, i.e., a lossless channel where the
polarization and phase are preserved. Hence, Eve can use the
error Alice and Bob expect to come from their noisy channel to
disguise her eavesdropping attempt. Additionally, in a realistic
environment errors can also occur from the physical apparatus
itself, affecting, e.g., the detector efficiency [28]. Since we are
dealing with a theoretical model of the noisy quantum channel
in this article, we are excluding the physical apparatus from
our discussions limiting ourselves solely to errors comingfrom
the noisy channel.

The first direct consequence for Alice and Bob when
using noisy channels is that they can not allow an error rate
larger than the error usually introduced by an adversary. For
example, as it is described in most of the protocols based on
entanglement swapping [12], [13], [14], [15], [16], the error
rate due to Eve’s intervention is 25%. If the natural error
caused by a noisy channel is equal or larger than 25%, Alice
and Bob will not detect Eve’s presence. From eq. (8) we
know that in case of a depolarizing channel Alice and Bob
expect an error ratePerr = 3(2 − p2)/4 from entanglement

Pcorr

Perr

F
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Fig. 3. The probabilitiesPcorr (dashed line) andPerr (solid line) from
entanglement swapping in a dephasing channel.

swapping such thatp < 0.1835. This means, for a fidelity of
the initial states F> 0.8624 the natural error introduced by the
depolarizing channel is always smaller than 25%, i.e., the error
introduced by Eve. Similarly, due to the higher error tolerance
of the dephasing channel Alice and Bob can handle a higher
error probability compared to the depolarizing channel (cf. eq.
(11) and eq. (8)). In this casep < 0.3466 and, accordingly, the
fidelity of the initial states has to satisfy F> 0.8535 such that
the natural error introduced by dephasing is always smaller
than 25%.

As discussed in detail in the following paragraphs, Eve
has the opportunity to attack only a fraction of all qubits in
transit between Alice and Bob. This reduces the error rate
coming from her intervention but leaves Eve also with a
smaller amount of information about the sifted key. To react
on this threat, Alice and Bob perform error correction (EC)
and privacy amplification (PA). A basic idea on how these
two building blocks of quantum cryptography work and which
methods are involved therein is given in [29] and [30]. We just
want to stress that using these two primitives Eve’s information
about the key can be reduced to an arbitrary small amount.
Furthermore, as pointed out in [31], to successfully perform
error correction and privacy amplification based on one-way
classical communication the error rate is bounded above by

PEC =
1− 1√

2

2
≃ 0.1465 (12)

to be achievable [28]. Since the error correction still leaks some
information to an adversary, privacy amplification is applied
to the key to lower Eve’s information to an arbitrary small
amount. For a maximum error rate ofPPA ≃ 0.11 Eve’s
information can be reduced to at most one bit of the whole
key (cf. [11], [32]). Therefore, in the following paragraphs,
we define lower bounds on the fidelity of the initial states to
achieve these two thresholdsPEC andPPA.

Considering entanglement swapping in a noisy channel, we
obtain the corresponding lower boundspEC and FEC for an
error ratePerr ≃ 0.1465 using eq. (8) from above (cf. also
Figure 2)

pEC ≃ 0.1029 FEC ≃ 0.9228. (13)

Hence, the fidelity of the initial states has to be over 92% to
make one-way error correction feasible. The final boundspPA
and FPA to achieve a maximum error rate of≃ 0.11 and thus
secure communication are then

pPA ≃ 0.0762 FPA ≃ 0.9428, (14)
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Fig. 4. Correlation between the fidelity F and the lengthl of a noisy quantum
channel.

i.e., the fidelity has to be an additional 2% higher compared to
eq. (13) to achieve the maximal tolerable error rate of≃ 11%.

Analogous to the computations above, the threshold values
for the dephasing channel can be computed. By inserting into
eq. (11) above we obtain

pEC ≃ 0.1733 FEC ≃ 0.9204. (15)

In this case, the error probabilityPEC can be almost twice as
high compared to the depolarizing channel resulting in almost
the same fidelity for the initial states. Furthermore, the final
boundspPA and FPA are then

pPA ≃ 0.1242 FPA ≃ 0.9415. (16)

Again, the fidelity of the initial states is almost the same com-
pared to the depolarizing channel, whereas the error probability
can be almost twice as high.

V. EFFECTS ON THECHANNEL LENGTH

In a realistic environment we also have to take into account
that the fidelity F of the entanglement decreases exponentially
with the length l of the channel. Modeling our quantum
channel as aphotonic channel [33] it has been shown in [34]
that the fidelity is given by

F ≃
∣

∣

∣

∣

1 + e−l/2lc

2

∣

∣

∣

∣

2

(17)

wherelc is the coherence length of an optical fiber. Therefore,
we see from Figure 4 that the fidelity of the initial state is
below 0.68 for a channel longer than 8.64 km and a coherence
length lc = 10 km, which means that entanglement swapping
is no longer possible at this distance. For a higher coherence
length, the maximum distance is increased accordingly to
25.91 km withlc = 30 km or 43.19 km withlc = 50 km. The
decrease of the fidelity of entanglement has a huge impact on
the security of quantum cryptography based on entanglement
swapping as discussed above. In Figure 4, we used three
different values for the coherence lengthlc: 10 km, 30 km
and 50 km. As we can directly see from Figure 4, a higher
coherence length results in a smaller decrease of the fidelity.
As shown in Section III, using a depolarization channel Alice
and Bob need a fidelity of at least FEC = 0.9228 to perform
error correction and a fidelity FPA = 0.9428 to reduce the error
rate to 0.11. Furthermore, when using a dephasing channel the
respective fidelities do not differ very much from these result,
i.e., FEC = 0.9204 and FPA = 0.9415.

TABLE I. COMPARISON OF MINIMAL FIDELITY AND MAXIMAL

CHANNEL LENGTH IN THE DEPOLARIZING AND DEPHASING CHANNEL.

Channel Coherence Length

Depolarizing lc = 10 km lc = 30 km lc = 50 km

FEC ≃ 0.9228 1.64 km 4.92 km 8.20 km
FPA ≃ 0.9428 1.19 km 3.59 km 5.98 km

Dephasing lc = 10 km lc = 30 km lc = 50 km

FEC ≃ 0.9204 1.69 km 5.08 km 8.47 km
FPA ≃ 0.9415 1.22 km 3.67 km 6.12 km

Combining our results from the previous section with eq.
(17) we can directly see that in a quantum channel with
coherence lengthlc = 10 km FEC limits the length of
the quantum channel to 1.64 km when using a depolarizing
channel. Moreover, to guarantee a fidelity FPA, the length of
the channel has to be at most 1.19 km (cf. Table I). Taking
a higher coherence length oflc = 30 km, the distance over
which error correction is still possible increases to 4.92 km
and the distance for secure communication increases to 3.59
km. In the third scenario where we takelc = 50 km, we still
get the fidelity FEC at a distance of 8.20 km and the fidelity
FPA at a distance of 5.98 km. Using the dephasing channel the
maximal distances do not differ very much from these values
(cf. Table I).

These distances are still very low and of minor practical
value for quantum communication since, for example, physical
implementations of prepare and measure QKD protocols work
over larger distances [5], [6], [7], [8]. Hence, Alice and Bob
have to increase the fidelity of their entangled states before
they can perform entanglement swapping, i.e., start the actual
protocol. As already pointed out above, this is achieved using
entanglement purification and nested purification protocols
[20], [21], [22], [23]. Nevertheless, the fidelity can only be
brought to its maximum in theory, since too many resources
would be required. Hence, there will always be a certain error
coming from entanglement swapping, which Alice and Bob
have to deal with.

VI. CONCLUSION

In this article, we discussed the effect of noise on the
security parameters of QKD protocols based on entanglement
swapping. Therefore, we used two reference models for a
noisy channel, the depolarizing channel and the more specific
dephasing channel. Taking these two models into account,
we showed that the fidelity of the initial states of a QKD
protocol has to be at least F≃ 0.68 to obtain reasonable
results from entanglement swapping. Regarding the security
of QKD protocols, we looked at two threshold values often
referred to in literature:PEC , which describes the maximum
error rate to make one-way classical error correction possible,
and PPA, which denotes the maximum error rate such that
privacy amplification can be used to reduce the information of
an adversary to a minimum. Based on these threshold values
the minimal fidelity of the initial states was computed. Here,
we showed that a minimal fidelity F≃ 0.9428 is required to
obtain a maximum error rate of 0.11 in a depolarizing channel.
Accordingly, in a dephasing channel the fidelity is slightly
lower with F≃ 0.9415 (cf. also Table I).
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Additionally, we discussed the exponential decrease of the
fidelity when transmitted through a noisy channel. In this case,
we looked in detail at the photonic channel as reference model
and calculated the maximum length of a channel to achieve
the minimal fidelities described above. For different coherence
lengths of 10 km, 30 km, and 50 km we obtained maximum
distances between 1.19 km and 6.12 km for a fidelity F≃ 0.94.

As pointed out, these values are rather low compared
to physical implementations of prepare and measure QKD
protocols. Hence, one of our next steps is to refine the model
for the decrease of entanglement over distance to a more prac-
tical scenario. Further, we want to investigate entanglement
purification protocols in context with entanglement swapping
based QKD protocols and their respective impacts on the
security.
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R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold,
T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe,
E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe,A. J.
Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew,
Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Wa-
lenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden,
and A. Zeilinger, “The SECOQC Quantum Key Distribution Network
in Vienna,” New Journal of Physics, vol. 11, no. 7, p. 075001, 2009.

[9] N. Lütkenhaus, “Security Against Eavesdropping Attacks in Quantum
Cryptography,”Phys. Rev. A, vol. 54, no. 1, pp. 97–111, 1996.

[10] ——, “Security Against Individual Attacks for Realistic Quantum Key
Distribution,” Phys. Rev. A, vol. 61, no. 5, p. 052304, 2000.

[11] P. Shor and J. Preskill, “Simple Proof of Security of theBB84 Quantum
Key Distribution Protocol,”Phys. Rev. Lett., vol. 85, no. 2, pp. 441–444,
2000.

[12] A. Cabello, “Quantum Key Distribution without Alternative Measure-
ments,”Phys. Rev. A, vol. 61, no. 5, p. 052312, 2000.

[13] ——, “Reply to ”Comment on ”Quantum Key Distribution without
Alternative Measurements””,”Phys. Rev. A, vol. 63, no. 3, p. 036302,
2001.

[14] ——, “Multiparty Key Distribution and Secret Sharing Based on
Entanglement Swapping,”quant-ph/0009025 v1, 2000.

[15] D. Song, “Secure Key Distribution by Swapping Quantum Entangle-
ment,” Phys. Rev. A, vol. 69, no. 3, p. 034301, 2004.

[16] C. Li, Z. Wang, C.-F. Wu, H.-S. Song, and L. Zhou, “Certain Quantum
Key Distribution achieved by using Bell States,”International Journal
of Quantum Information, vol. 4, no. 6, pp. 899–906, 2006.

[17] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K.
Wootters, “Teleporting an Unknown Quantum State via Dual Classical
and EPR Channels,”Phys. Rev. Lett., vol. 70, no. 13, pp. 1895–1899,
1993.

[18] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “”Event-
Ready-Detectors” Bell State Measurement via EntanglementSwap-
ping,” Phys. Rev. Lett., vol. 71, no. 26, pp. 4287–4290, 1993.

[19] B. Yurke and D. Stolen, “Einstein-Podolsky-Rosen Effects from Inde-
pendent Particle Sources,”Phys. Rev. Lett., vol. 68, no. 9, pp. 1251–
1254, 1992.

[20] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin,
and W. K. Wootters, “Purification of Noisy Entanglement and Faithful
Teleportation via Noisy Channels,”Phys. Rev. Lett., vol. 76, no. 5, pp.
722–725, 1996.

[21] D. Deutsch, A. Ekert, R. Josza, C. Machiavello, S. Popescu, and
A. Sanpera, “Quantum Privacy Amplification and the Securityof
Quantum Cryptography over Noisy Channels,”Phys. Rev. Lett., vol. 77,
no. 13, pp. 2818–2821, 1996.

[22] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters,
“Mixed-state Entanglement and Quantum Error Correction,”Phys. Rev.
A, vol. 54, no. 5, pp. 3824–3851, 1996.

[23] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum Repeaters
Based on Entanglement Purification,”Phys. Rev. A, vol. 59, no. 1, pp.
169–181, 1999.

[24] C. H. Bennett, C. A. Fuchs, and J. A. Smolin, “Entanglement-
Enhanced Classical Communication on a Noisy Quantum Channel,”
quant-ph/9611006 v1, 1996.

[25] D. G. Fischer, M. Mack, M. A. Cirone, and M. Freyberger, “Enhanced
Estimation of a Noisy Quantum Channel Using Entanglement,”Phys.
Rev. A, vol. 64, no. 2, p. 022309, 2001.

[26] R. F. Werner, “Quantum States with Einstein-Podolsky-Rosen Correla-
tions Admitting a Hidden-Variable Model,”Phys. Rev. A, vol. 40, no. 8,
p. 4277, 1989.

[27] I. Devetak and P. Shor, “The Capacity of a Quantum Channel for
Simultaneous Transmission of Classical and Quantum Information,”
Comm. Math. Phys, vol. 256, no. 2, pp. 287–303, 2005.

[28] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duˇsek,
N. Lütkenhaus, and M. Peev, “The Security of Practical Quantum Key
Distribution,” Rev. Mod. Phys., vol. 81, no. 3, pp. 1301–1350, 2009.

[29] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, andJ. Smolin,
“Experimental Quantum Cryptography,”J. Crypt., vol. 5, no. 1, pp.
3–28, 1992.

[30] B. Huttner and A. Ekert, “Information Gain in Quantum Eavesdrop-
ping,” J. Mod. Opt., vol. 41, no. 12, pp. 2455–2466, 1994.

[31] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptog-
raphy,” Rev. Mod. Phys., vol. 74, no. 1, p. 145, 2002.

[32] B. Kraus, N. Gisin, and R. Renner, “Lower and Upper Bounds on the
Secret-Key Rate for Quantum Key Distribution Protocols Using One-
Way Classical Communication,”Phys. Rev. Lett., vol. 95, no. 8, p.
080501, 2005.

[33] S. J. van Enk, J. I. Cirac, and P. Zoller, “Photonic Channels for Quantum
Communication,”Science, vol. 279, no. 5348, pp. 205–208, 1998.

[34] D. Bouwmeester, A. Ekert, and A. Zeilinger,The Physics of Quantum
Information: Quantum Cryptography, Quantum Teleportation, Quantum
Computation, 3rd ed. Springer, 2001.

27Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-303-2

ICQNM 2013 : The Seventh International Conference on Quantum, Nano and Micro Technologies


