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Abstract—Cryptographic devices, e.g., Hardware Security Mod-
ules (HSMs) are crucial to the trustworthiness of computer
applications that provide critical services such as digital signature
systems. Random numbers are used to strengthen the security of
HSMs. Due to the problem of deterministic and thus predictable
random sources and the complexity to derive true coincidence
with computer systems, quantum mechanical effects can be
exploited to derive perfect randomness. In this paper, we present
an approach to increase the security of HSMs by using 50:50
splitters under combined input scenarios to derive true random
numbers based on quantum mechanics.
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I. INTRODUCTION

1) Motivation: According to our conducted research in
quantum optics, the generation of quantum random numbers
with Beam Splitters (BS) relying on the physical effects
of light quanta is particularly underdeveloped in terms of
practical applications. Such practical applications include the
computation of random numbers for cryptographic protocols
and Hardware Security Modules (HSMs) [1]. HSMs that rely
on cryptographic protocols to engineer secure systems [2]
can be used to derive cryptographic key material and store
private data or master keys [3] in protected hardware devices,
e.g., PCI (Peripheral Component Interconnect) devices that are
optimized for cryptographic operations [4]. Therefore, such
cryptographic devices are integrated into complex practical
applications, e.g., to create qualified electronic signatures [5]
which means that electronic documents are signed digitally.
Such documents are legally valid, for instance. Other industrial
applications are implemented in data centers [3] and partic-
ularly in the banking sector [1] (e.g., for mobile payment
solutions) where the key management for database encryption
solutions [6] are installed.

2) Problem statement: HSMs for the above mentioned
industrial applications are often certified against either (1) FIPS
(Federal Information Processing Standard) 140-2 [7] (newer
Version: FIPS 140-3 [8]) or (2) Common Criteria [9]-[11],
e.g., EAL4+ (Evaluation Assurance Level) [11] which was
also codified in the ISO/IEC (International Organization for
Standardization / International Electrotechnical Commission)
15408 standard [12]-[14]. Such certifications of software-
intensive products are used to validate the realized security
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functions (e.g., SFR - Security Functional Requirements of
the Common Criteria) [10] and moreover to assure (SAR -
Security Assurance Requirements of the Common Criteria)
[11] the compliance of the selected product against the claimed
security functions. That means that a particular minimum-
level of security (e.g., EAL4+) for those integrated devices
is assured.

Such certifications often require Deterministic Random Bit
Generators (DRBGs) in accordance with NIST (National In-
stitute of Standards and Technology) SP (Special Publication)
800-90A [15] or alternatively demand pseudo-random data
(seed) as inputs to obtain random numbers. Feasible sources to
derive seeds are the 1) system clock [10], 2) system registers
[10], 3) date [10], 4) time [10], or 5) external events [15] but
the aforementioned computational sources do not provide true
randomness [16], unfortunately.

However, the use of true sources of randomness (i.e.,
True Random Number Generators - TRNGs) are increasingly
required to seed deterministic random number generators and
thus to increase the entropy [7][15]. Alternatively, physical
sources can be used to obtain real random numbers (e.g.,
deriving it from noise) rather than by means of deterministic
algorithms. As a result, developers must demonstrate that their
used entropy sources provide a sufficient level of randomness.

Industrially relevant examples of such practical applica-
tions include 1) to increase the security of cryptographic
protocols, or 2) to strengthen the device-internal cryptographic
materialmanagement (e.g., for FIPS 140-2 or FIPS 140-3) of
HSMs under real circumstances. Such HSMs derive random
numbers from predictable algorithms and therefore those ob-
tained random numbers do not rely on real coincidence.

In contrast, quantum random numbers are obtained from
the fundamental principles of quantum mechanics which
means that such random numbers are derived from the perfect
randomness of quantum mechanical effects [17]. Therefore,
such random number generators produce random data that are
unpredictable. Quantum random number generators have been
recently tested for 71-day non-stop long-term applications [18].

3) Our proposed solution: To overcome the limitations of
imperfect random numbers in terms of cryptographic devices,
we propose a solution to generate quantum mechanical random
numbers that are derived from several input configurations
under defined scenarios for 50:50 Beam Splitters. In order
to assess reasonable input configurations to obtain practically
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applicable random data outputs, we consider the following
input configurations (a¢ and a;, Figure 1) for our BS:
e |0) and |1) (quantum vacuum state on do and single-
photon on a1)
|1) and |1)
|0) and |a) (coherent state on d1)
|a) and |3) (two Weak Coherent States - WCS)
|0) and (|0) + |1)) (superposition on @1)
([0) + [1)) and |1)
|1) and |a)
4+ (la)|8) + |B) |a)) (Entangled Coherent State - ECS)
|3) and 3; (|8) 4+ |—f3)) (Coherent Superposition State -
CSS)
We, therefore, get random outputs behind the BS under the
above mentioned defined input scenarios.

4) The benefit: Quantum random number generators [16],
which derive real randomness with BS under defined input
scenarios, can be used as physical sources to obtain perfect
random numbers. As a result, it is possible to increase the
security of HSMs and particularly the randomness of the key
material inside of the HSM or of cryptographic protocols.
That means that we are able to overcome the limitations of
predictable random sources for current solutions because the
underlying randomness is based on the intrinsic effects of true
randomness derived from quantum mechanics.

This paper is organized as follows. After the introduction
in Section I (see above), we discuss the BS (cf., II-A) and
present 9 examples (cf., II-B) for the aforementioned input
and related output states in Section II. Section III concludes
our paper.

II. BS AND EXAMPLES

A. Beam Splitter

Below, we describe the Beam Splitter - a semi-permeable
mirror - quantum mechanically. To obtain true randomness,
we choose a semi-permeable BS where the incident light
is transmitted with a 50% probability and thus 50% of the
incident light is reflected (denoted by 50:50). Alternatively, one
can choose arbitrary configurations of the BS. However, only
the 50:50 configuration derives true randomness [19]. Such a
device is constructed so that it has 2 input modes (ag, a1) and
2 output modes (aq, asz) (Figure 1).

The quantum mechanics of BS can be found in [20]-
[24]. The most important relation is given by Heisenberg’s
uncertainty relation:

[a;,0f] =65, ata=n, aat =1+n . (1)
a™ is the creation operator and & the annihilation operator for
photons. 7 is called particle operator. The matrix equation for
a BS can be written as

() - D(8) - #(2) @

Tis a unitary matrix where TT+ = 1 holds. For a 50 : 50
BS the following relations can be deduced (we choose, e.g.,
phase i = exp(im/2) for reflection: Go = tag + ra; and Gz =
7"&0 + t&l)Z

. . = R 1 . R

= i) af = i+t -

. . = R 1 .

aar: %(a;—kza;),af: —z(za;—ka;{) . 3)
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Figure 1. BS: Quantum mechanical description,  and ¢ are reflection and
transmission coefficients, respectively; see text. In principle r and ¢ can be
different for the front and back of the BS.

The examples below are given in order to demonstrate the
mode of operation of a BS with genuine quantum input states
and output states which are appropriate for Quantum Random
Numbers (QRN) [16]. Such output states have the following
structure: (|n)2]0)3+]0)2|n)3) or (|a)2]|0)5+|0)2|a)s) where
|n) are Fock states and |a) are coherent states which are each
entangled to the vacuum |0). Hence, coincidences must not
appear in the output modes.

B. Examples

1) One Photon in input 1: |0)p|1)1: Now, in this first
example the input state is [0)g|1); = a;]0)0|0);. We recall
that in quantum optics (e.g., [20]) a photon can be created
from vacuum by means of the creation operator: a*|0) = |1).
Generally, for n photons, at|n) = +/n+1|n + 1) and
aln) = y/nln — 1) holds. |n) are the Fock states of light.

Experimentally, a single photon state (denoted by |1)) can
be generated by Parametric Down-Conversion (PDC) using
non-linear crystals. That means that two photons are created
simultaneously, where one of those photons is used for the
BS-experiment. The other one is registered in terms of syn-
chronization purposes of the created photon pair. It is important
to note that the process of PDC occurs with low probability
s.t. random numbers generated by this means will show low
yield [20]-[24]. To overcome this limitation, weak coherent
states are able to be used for the generation of approximately
single photon states (cf., case 2 below).

Using (3), one gets behind the BS:

1

=55 ﬁ(idﬁ +a3)[0)2]0)s =
1
V2

This is an important result of a balanced BS. It means
that a single input photon in mode 1 together with a vacuum
input in mode 0 is equally transmitted and reflected with
probability % An important method of generating quantum
random numbers [16] relies on this method. This result is
exactly what is expected. It explains also that there are no
coincidences. If one measures the photon in output port 2(3)

10)o|1)1

(i[1)2[0)3 4+ [0)2[1)3) . (4)
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no photon is measured in output 3(2). One can say as well
that the photon is entangled with the vacuum behind the BS.
Conversely one can say: If there are in fact no coincidences,
then we have a genuine single photon source. Obviously,
the BS is a ”passive” element which neither creates nor
annihilates photons.

The density operator po3 of the output states behind the
BS is:

P23 = %(i\1>2|0>3+\0>2\1>3)(—i2<1|3<0|+2<0\3<1\):

= SAID10)s 2 (115001 + [0)2[1)s 2(0]5(1] +
£ al1al0)s 2(0]5{1 — i00lD)s 2150 . )

This density operator contains the full information of
coherence. It includes all off-diagonal elements. If only one
output is measured (e.g., output 2) one has to apply the partial
trace over output 3:

p2 =Trspes = Z 3(n|pas|n)s =
n=0

_ %(|o>22<0|+|1>22<1\) (©6)

and analog p3 = 3(|0)3 3(0[+|1)3 3(1|). Equation (6) describes
a statistical mixture. After performing the measurement, no
off-diagonal terms exist, which would imply coherence. The
output states appear with 50% probability each and there are
no coincidences. Measuring the particle number for output
2, one keeps the following result: fia, = Tro(pena) =
%(2<0|ﬁ2|0>2 + 2<1|’fl2|1>2) = %(0 + 1) = % This result
signifies the mean particle number in output 2. Similar results
are obtained for output 3.

2) Coherent state |« in input 1: |0)g|a)1: The coherent

state [20]-[24]

o) =

o—lal? /22

nO

= e—\a|2/2[|o>+a|1>+ +..] O

E|2>

is similar to a classical state. Depending on |a|? (which
represents the mean number of photons), a coherent state can
contain a high number of photons. Hence, it is rather contrary
to the highly non-classical single-photon state considered in
the first example. Experimentally, a coherent state can be
created by a laser beam. « is a complex number and |a|? is
the mean photon number. Coherent states are solutions of the
eigen-value equatlon d|a) = a|a). The displacement operator
D(a) = e*@ =27a applied on a vacuum state |0) is able to
generate a coherent state |o): D(«)|0) = |«). In our example,
we have in input mode 1 a coherent state and in input mode
0 a vacuum state: |0)g|a); = D1(«)|0)0|0); . Using (3), one
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obtains:

10)olav)1

L BS_,  upliad+al)— o5 (—iaa+as) |0)2]0)5 =

_ <f>a2 ( 2)an
3

)3 ®)
The appropriate density operators are:

s ‘£> |ﬂ> <£‘|
P23 \/§ 2 \/5 32 ﬂ 3
= Tr3(pas) =
16 e

ﬁ>2 2<72| (&)

Equation (8) can be interpreted as follows: Similar to the
classical picture in each output 2 or 3, exactly half of the

photons % are reflected or transmitted by means of the
balanced BS. The phase shift i = e!"/2 of the reflected wave
appears automatically. There is no entanglement with respect
to coherent states. The result is a product state, as can be seen
in (8).

Three important remarks:

a) For o = 0 the coherent state |«) achieves the vacuum
state |0), but, e.g., for « = 1 the 1-photon-state |1) is not
obtained: |« = 1) # |1). | = 1) and |1) are entirely different
states.

b) %(zm |0)3 +1]0)2|1)3) from (4) can be obtained in no
way from |L% > \\%)g of (8) because the first expression is
an entangled state (no coincidences are possible) and the last
one is a product state. The attempt to call a weak classical
field a quantum field is misleadmg and absolutely incorrect.
However, for |a]? < 1 (a ~ 1—0 i.e., weak coherent state) the
coherent state can be used very well for generating quantum
numbers [25] by considering (8) and (7):

Chal=)s ~ [0)]0)s +

NGl
[ 2

t 5 [i[1)2]0)3 + 10)2[1)s] + ... (10)
As aresult, it can be seenzthat mostly vacuum states are arising,
but (with probability ‘(’Tl) the same entangled state as in (4)
appears. Because parametric down-conversion (cf., (4) from
Example 1) is a very rare event, the method presented here
could be superior.

¢) The mean particle number in output mode 2 is

<ﬁ|

. a 1o N 16"
= T'ro(Ngpa) = 2<ﬁ|a§ra2|ﬁ>2 = §|Oé|2 . an

The same is valid for output 3.

3) Input |1)0|1)1 : Experimentally, such an input can be
possible if the 2 photons simultaneously produced by means
of parametric down-conversion are injected in the two input
modes.

Photon |1)¢ has two possibilities: either being transmitted
or being reflected. The same applies for photon |1);. One
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obtains:
Doll)1 = agaf[0)l0)s ==
1, n
— 5(@2 +iaz)(iay +az)|0)2(0)s =
- %(d;a;+d§d3)l0> 10)3 =
- £(|2>2\o>3+|0>2|2>3) (12)

This equation means entanglement of two photons with vac-
uum. There are either 2 photons in output 2 or 2 photons
in output 3. There are neither coincidences using a balanced
BS. But, contrary to a single photon process discussed in
example 1, here the appearance of no coincidences is a matter
of an interference effect between 2 possibilities of reflection
or transmission at the BS.

Thus, we have no coincidences. This is indicated by (12)
as well. This fact is experimentally tested in the so-called
Hong-Ou-Mandel experiment [26]. A quantum random number
generator based on this effect is described in [27].

Completely analog, the density operators po3, p2 and pPs
can be composed using (12). For example, one gets

5002500+ [2)2202])

pr =
R 1

P3 §(|O>3 3(0[ +12)3 3(2])

N9 T’I'(’flgﬁg) =1 , N3 = T?"(’ﬁ,g[)g) =1 (13)

This shows that the two single input photons can be used
in order to generate quantum random numbers. This is an
additional possibility besides the first case where only one
single photon impinges the BS.

4) Input |a)o|B)1: We discuss a case where two different
coherent states |«) and |3) are taken as input states [28]:

[)olB)1 = Di(a)Do(B)00)ol —=BF— |7)2]6)s =
= |7€>out )
v = ﬁ(aﬂﬂ)a 5:ﬁ(z’a+5)~ (14)

The density operators and mean photon numbers are, therefore,

pas = [V)our(¥] = [7)2(y| @ 16)3(6] = po @ p3 ,
1
iy = Tr(p 2n2) = §(|a\2 +181%) =

Again, for random numbers at the output, we have to require
weak coherent input states:
o, 187 <1, —
= |Y)out & |00>23 + (7[10)23 + §{01)23) (16)
5) Input |O> |0>1—|—|1) ): Here, and in the next section,

a superposition state (|O> +11)) is combined with a vacuum

state |0) and a one- photon state |1), respectively. First, we
consider the combination of vacuum with superposition state.
The output clearly produces random numbers:

0o =00 + 1)) = (1 +at)|00)or 55
1100025 + —=(i110) + [01))z5] (17

V2 V2
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The mean photon numbers at the output are 1/4 each:

p2 = 5 11002001 = 5[0}2(11+ = |a0] +
FL (1] + 210)20]] — iy = i = +
5 9 5 2 Ng = N3 = 4

The combination of super-

(18)

6) Input 7= (0)o + [1)0)[1)1:
position with |1) gives

(|0>o +ho)[) =

(1+ad)al]00); —55—

smx

2
- \[[ \f( i[10) +101))23 + \[(|20> +102))23] =
= |¥) . (19)

The output state is a mixture of an output state resulting
from single photon input and an output state resulting from
the Hong-Ou-Mandel-effect. The mean photon number is,
therefore, 3/4:

pas = [V}

P2 TT3 (P23) =

1 [11)2(1] + [1)2(2 + 0)2(0] +

+ [2)2(1] + [2)2(2] + 10)2(0]] —
— Ng =Nz = % (20)

7) Input |1)|c)1: This input is described and discussed
in the literature relating to the Mach-Zehnder interferometer
using the Wigner function [29][30]. Here, we only consider
the action of a BS with intent to create random numbers.

Immediately, we realize that the total number of input
photons is (1 + |a|?), of course. At the output ports 2 and
3 we expect therefore 1 (1+ |a|?) each. This is proved below.

Initially, the output state |1)),,; is calculated as follows:

[Lola) =&o+f)1( )[00)0; —P5—
1 .
(a2 +ia )

— 7 ‘\[> |\f> = |¢>out . 2D

Only for a weak coherent state |«) random numbers are
possible:

1

—1]10) 44|01 +
75110} 4410123
20y +il02) s 22)
— i

o) 23

Now, an exact calculation of mean photon number ns is
executed using |t¢),.:. Again, the density operators po3 and

po are necessary in order to determine ngy using the particle
number operator 7o:

P23 = |V)out (Y| , P2 = Try(pana) (23)

The trace-operation is executed by using the completeness
relation of Fock states: 1 = >~ [n)(n|. We obtain

la? <1 = |h)og =~

+

=Tr3(p23) , N2

L af1 2%y, O‘>3+z|f> a7 |

|’l/)>out = ﬁ 5 \@

%> 5] (24)
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o1 Ll
p2 = {|\f><\f|2|\[><\f|( )
sat1 e G o ,a* o o
It can be shown that Try(p2) = 1. For the mean particle

number 7o in output 2, we get
o1 dofnad |O‘| 2
ng = 2{ <\/»|22 |\/>>2+( )‘\/"
— ia(|hndf )
V2 V2"’ \f
i 2<ﬁ|d2ﬁ2‘ﬁ>2}:
= %(ulal?)- (26)

In the last step, the property of the trace Tr(ABC) =
TT(BCA) = ... has been used. Moreover, one has to consider
explicitely that # = a*a. The result in (26) is exactly what
we expected. This outcome is valid for arbitrary parameters c.

8) Input 1), = +(la)olB)1 +18)ola)1): This input is a
so-called Entangled Coherent State (ECS). It is described and
discussed in [28][31][32].

From normalization (Y|}, = 1 we obtain
N = /2(1+e-le=F?) taking account of (Bla) =
e—lal®/2=1817/2+aB” In case of a = B — N = 2.

The input state can be written as

[¥)in = —[Do(a)D1(8) + Do(B) D1 ()] [00)01 . (27)

Initially, we discuss the mean photon number of the input. The
necessary density operators are

por = |V)in(¥|, po =Tri(por) —
po = wztladolal + [B)o(Bl + eIl /218172
x [IBYolele®® +|a)o(Ble* P} (28)

Here > |(n|a)|?* = 1 and (n|a) = a;e"o‘|2/2 have been
used. It can easily be shown that T'r(gy) = 1.

The mean number of input-photons 7 is obtained after
some manipulation :

ng = T’I‘(/)Aoﬁ) =

= % {la)® +|B]% + e lal =B +aB +a" B
[aB™+a"B]}. (29)
An equivalent expression is obtained for n;. For « = § —
o = [a*, [$)in = |aa)or.

Now, the output is considered. From (27) one gets directly
(using the BS-process —7%— ) the normalized output state
i+ 3

)2| 7 )3+
za—i—B a+if

taking into account the Baker-Champbell-Hausdorff-theorem.

X

1 a+ip

|w>out = N H \f
)2

+
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b= —i«x

Special case :

|w>out -

N =

= [IV20)210)s + [0)alVZa)s] |

2(1 + e—2lel?) | 31)

This is a coherent state |v/2c) in equal superposition of being
in either one of two possible paths 2 or 3. This expression can
be used in order to create random numbers. We calculate mean
photon numbers:

P23 = |V)out(V], p2 = Trs(p23) —
pr = allV3a)s(VEol +
+10)2(0] + e~ [10)2 (V20| +[v2a)2(0]]} (32)

As before: Tr(p2) = 1.

= Tr(pyn) = (=n3) . 33)

(o <1 = ng ~ |a?/2, |a> > 1 = ny ~ |af?.)
Putting [ to be —i« already at the input, one obtains 79 = 79
of course (see (29)).

9) Input |)or = [Box; (I8)1 + | — B)1): This input
means that we have a mixture of a coherent state |3)( in mode
0 with a CSS (Coherent Superposition State [28][32]-[34]) in
mode 1. The normalization of the wave function yields

01 <¢|w>01 =1— NB = 2(1 + 6_2|f8|2) . (34)
Now, we apply a BS which operates with the well-known
Hadamard-transformation H:

(ﬁ) :\2(} —11)<Z(1)> =H<Z(1)>(35)

This transformation means transmission from the back side
with phase —1 = €™, that is to say (see Figure 1):

N 1 . . 1 N
al = —=(ad +af), af = —=(ag —ad) . (36)

V2

The input state is easily transformed and the output becomes
a coherent state |v/23) entangled with the vacuum |0):

- 1

[¥)o1 = Do(ﬁ)m [D1(8) 4+ D1(—5)]]00)01 , 37

_\BS(H) _,

)25 = =J\}[3[|\/§ﬁ>2|0>3+|0>2|\/56>3] (38)

Differently expressed, we have a coherent state |v/2/3) in equal
superposition of being in either one of two possible paths 2 or
3. This is the same result we have obtained in (31) denoting
8 by «a, however a Hadamard transformation is used for the
BS.
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III. CONCLUSION

In this paper, we provide insights into the complexity

of generating true random numbers with Beam Splitters for
cryptographic devices. Moreover, we investigate pre-defined
input configurations and adopt mathematical procedures for a
50:50 Beam Splitter to derive true random data sets inside of
a Hardware Security Module. The variants of the inputs are
proposed, each of which are obtaining varying outputs.

As a result, we show the capability to use 50:50 Beam

Splitters as quantum random number generators. We believe
that the demonstrated input configurations of the quantum
random number generator provide a suitable alternative to de-
terministic random number generators and increase the security
of cryptographic devices and particularly of HSMs.
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