
Software Cache Eviction Policy based on Stochastic Approach

Stoyan Garbatov and João Cachopo
Software Engineering Group

Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento, INESC-id
Lisbon, Portugal

stoyangarbatov@gmail.com and joao.cachopo@ist.utl.pt

Abstract — This work develops an innovative approach for
guiding high-level software caches’ eviction policy. The
decision on which data to keep in the cache is made according
to a stochastic analysis over the application data access
behaviour. This approach shows it is possible to achieve high
cache hit ratios with a reduced cache size. The effectiveness of
the policy is tested and validated through the execution of two
distinct benchmarks – the TPC-W and the oo7 benchmarks.
The newly developed approach is flexible enough to be applied
to any high-level software cache in an object-oriented system.

Keywords-software cache; stochastic approach;
performance; data access.

I. INTRODUCTION

A cache is a small, high-performance memory-buffer
abstraction used to store temporarily data that is deemed to
be important for whatever operations may be taking place
currently or in the near future. Most of the time, the data held
by the cache originates from a (much) larger and (several
orders of magnitude) slower medium, which is either the
source or provides storage for the whole range of existing
data. As a result, caches provide increased system
performance by offering shorter access times to data,
keeping the available processing units busy with work. The
most common restriction of a cache, however, is that it
cannot hold all the existing data. This may happen for
several reasons – the cache may be physically unable to
provide enough storage space for all the available
information, or, even if there is enough space, it may be
better to keep the size of the cache to a minimum because a
bigger volume of data (being held in cache) usually leads to
slower execution times of the lookup operations.

The success of caching mechanisms results from the
“principle of locality”, which was first introduced by
Denning [1]. The principle of locality, also known as locality
of reference, has two basic variants, temporal and spatial.
Over short periods of time, a program distributes its memory
references non-uniformly over its address space, but the
portions of the address space that are favoured remain
largely the same for long periods of time. Temporal locality
implies that the information that will be in use in the near
future is likely to be already in use. Spatial locality states that
the portions of the address space that are in use consist of a
small number of individually contiguous segments of that
address space. As a consequence, locality of space denotes

that the referenced locations of the program in the near future
are likely to be near the currently referenced locations.

Optimizing the design of a cache revolves around four
aspects: maximizing the probability of finding a piece of data
in the cache (the hit ratio), minimizing the access time to
information already in the cache (access time), minimizing
the delay due to a cache miss, and minimizing the overheads
of cache management, such as propagating modifications to
the means that backs the cache, or dealing with consistency
protocols (cache coherence).

The principles upon which the concept of caching is
based are present in many contexts and situations. This
makes it possible to employ them in a variety of different
contexts to improve the system performance. Caching
mechanisms can be divided into two main categories, namely
hardware caching and software caching. Given that the main
purpose of this work is to improve the hit ratios of a high-
level software cache, hardware caches are not considered
here.

Significant research has been carried out in software
caching. As has been pointed out, the four major
characteristics upon which a cache can be improved are its
hit ratio, access times, speed at which update propagations
are performed, and coherence. If we group existing research
according to affinity with these four aspects, a trend becomes
apparent – namely, most cache-related work concentrates on
coherence, as can be seen in [2], [3], and [4]. At the same
time, the hit ratio is an important property, especially for
software caches. It has been systematically identified as
being the main reason leading to poorer performance of
software cache approaches, in comparison with their
hardware counterparts, as has been reported in [4] and [5].

Bennet et al. [6] identified and classified several classes
of shared data accesses, in the context of distributed shared
memory systems. They proposed a number of memory
coherence approaches tailored for these access categories
and demonstrated that specialized approaches can
significantly outperform general ones, whenever the
expected type of access behaviour manifests itself in a
consistent fashion.

Dash and Demsky [7] presented an innovative distributed
transactional memory system that mitigates the effects of
network latency by prefetching and caching domain objects.
The authors developed several extensions to the Java
programming language with the goal of allowing the use of a
distributed transactional memory within any application that
employs their system.

227

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The objective of this work is to develop an innovative
stochastic approach for guiding high-level software caches. It
consists in using a guided cache policy to decide which data
to keep in memory and which data may be discarded. The
cache policy is guided because it adapts to the behaviour
displayed by the application, and its goal is to provide the
highest possible cache hit ratio, while keeping in memory
(cache) the minimum amount of data.

The article has the following structure. Section II
describes the system. Section III presents the results obtained
through the benchmark execution and evaluates the system
effectiveness. Finally, Section IV derives the concluding
remarks.

II. SYSTEM DESCRIPTION

The system is composed of two parts: a stochastic access-
prediction module and a high-level software cache. The
access-prediction module is responsible for analysing the
behaviour of the underlying application and in identifying
the most common data access patterns performed. This
information is subsequently used to guide the cache policy
with the aim of improving its performance (at the level of its
hit ratio). The software cache consists in a transparent data-
storage component, responsible for supplying with data any
request issued by the overlaying application, with the goal of
improving the performance of an application.

A. Stochastic Behaviour Analysis

The stochastic behaviour analysis module is made up of
three sub-modules: a code-injection module, a data-
acquisition module, and a data-analysis module. An
overview of their functionality is given here, while a detailed
discussion of their implementation and behaviour may be
found in [8], [9] and [10]. The model of Bayesian Updating,
first presented in [8], is employed here for the stochastic
behavioural analysis of the target application. An alternative
model, based on discrete-time Markov Chains, may be seen
in [9], whilst [10] deals with an Importance Analysis model.

The code-injection module is responsible for
transforming the code of the target applications to inject the
calls to the functionality present in the other modules. This
code injection is performed in a completely automatic
fashion by the system. It avoids the need for the application
programmers themselves to perform any modifications
whatsoever to their applications.

The data-acquisition module is responsible for acquiring
behavioural data from the target application. This data
describes how the application behaves, with regard to the
data accesses that it performs. This module records which
(application-domain) data is read and/or written, and in
which contexts (methods, services, etc) this takes place.

Finally, the data-analysis module contains the
implementation of the Bayesian Updating Inference model.
This model corresponds to a stochastic approach for
modelling the behaviour of the target application. The model
uses as input the information collected by the data-
acquisition module, about which domain data has been
accessed by the application, and in which contexts. Initially,
the input information is split into two sets of data. The first

of these data sets is designated as prior and contains
information about the target system behaviour observed in
the past. The second set is called current and includes more-
recent behavioural information. It covers the time period
defined between the moment at which the prior set ends, to
the current point in time. Once these two sets have been
established, the Bayesian Inference model uses the current
data to "update" the posterior, generating thus a third set,
called posterior. The posterior set corresponds to the
prediction generated by the model. It describes the expected
behaviour of the application, in the near future, in terms of
the domain data that it is going to access. This is presented in
terms of the probabilities of reading and writing domain data,
depending on the contexts through which the application
passes during its execution.

B. Software Cache

This section describes the implementation of the high-
level software cache and its policy. It should be noted that
the term “high-level” is used here in the sense that the
objects being cached correspond to actual domain object
instances, rather than a derivate of an SQL result set or some
other lower-level abstraction. The mapping from the format
used by the underlying persistence layer to the domain object
instances manipulated by the application is taken care by the
fenix-framework (Fernandes and Cachopo [11]).

The software cache implements the identity map design
pattern, Fowler [12]. This pattern prevents duplicate loading
of objects from the persistence layer. Consequently, if a
requested datum has already been loaded from the
persistence layer, then the identity map returns the same
instance of the already instantiated object. If it has not been
loaded yet, then the object is retrieved and stored in the map,
before being returned to the request that demanded it.

This cache is implemented on top of Java’s soft
references. A normal Java reference, also known as a strong
reference, guarantees that any object that is reachable
through a chain of strong references is not eligible for
garbage collection (GC). On the other hand, an object that is
only weakly reachable is going to be discarded at the
following cycle of the garbage collect. Soft references are
not required to behave differently from weak references, but,
in practice, softly-reachable objects are generally retained (in
memory) provided that there is enough free space available
to keep them there.

Continuing on to the implementation details, the high-
level software cache keeps two collections into which it
stores the loaded domain object instances. The first
collection keeps soft references to all of its elements. This
collection contains all the instances present in the cache.
From the definition of a softly-referenced object, if the
application does not hold a strong reference to them, the GC
may discard them at will, if it deems it necessary to do so.
However, they are usually kept in memory as long as it is not
strictly necessary to evict them.

The second collection holds strong references to its
elements, and guarantees that these can never be garbage
collected, provided they remain in this collection. Objects
being loaded into the cache are selectively added to the

228

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

strongly-referenced collection. The main idea behind this
collection is to keep only object instances considered to be
important for the execution of the application, and that
should be kept in memory even when they are not currently
being used. The decision of adding an element to this
collection belongs to the caching policy, implemented as
follows.

The cache policy manager considers, on an instance-by-
instance basis, if a given datum should be placed in the
strongly-referenced collection. It employs the results
generated by the stochastic behaviour analysis module to
infer how strongly referenced these should be. The main
criterion is to consider the access probability of the type of
data (class) to which an instance belongs. If this probability
exceeds a certain threshold, then the datum is deemed critical
for the application operation and is inserted into the strongly-
referenced collection, besides being added to the softly-
referenced collection. This approach may be complemented
to take into account further restrictions, such as the available
free memory, space limitations that the software cache
should not exceed, or proportions of different domain data
types kept in memory, among others.

Additionally, due to the fact that the stochastic analysis
model is dynamic, it reveals any behavioural change that
may eventually come to pass within the target application.
This would bring about an updating of the expected
application domain data access probabilities. Furthermore, it
would lead to a change in the data types considered critical
by the cache policy manager, which would be reflected in the
contents of the strongly-referenced collection, resulting,
ultimately, in a caching policy that can adapt itself to deal
adequately with any behavioural patterns the application may
exhibit during its life cycle.

III. RESULTS AND EVALUATION OF THE SYSTEM

For the validation of the system presented in this paper,
we used two distinct benchmarks. The first of these is the
TPC-W benchmark, which was introduced originally by
Smith [13]. This benchmark specifies an e-commerce
workload that simulates the activities of a retail store
website, where emulated users can browse and order
products from the website. The main evaluation metric is the
WIPS – web interactions per second that can be sustained by
the system under test. The TPC-W benchmark execution is
characterised by a series of input parameters that control its
behaviour. Among these is the type of workload simulated
by the benchmark emulated browser clients. The results
presented in the article are associated with the "Shopping
Mix" workload, which is composed of 80% read operations
and 20% write operations. Regarding the main control
parameters, they are as follows: number of emulated
browsers - 10; ramp-up time - 600sec; measurement interval
- 1200 sec; ramp-down time - 300sec; number of items in the
database - 100 000; think time - 0.01 (this value ensures that
the emulated browsers wait between 0.07 sec and 0.007 sec
before making a new request to the server). The emulated
browsers and the benchmark application server were run on
the same physical machine.

The second benchmark is the oo7, firstly presented by
Carey et al. [14]. This benchmark is often used to assess the
performance of object-oriented persistence mechanisms. It
strives to present a broad set of operations, allowing the
building of a comprehensive performance profile. The oo7
benchmark was designed to boast properties common to
different CAD/CAM/CASE applications, although in its
details it does not model any specific application. A run of
the benchmark executes a series of traversals, updates, and
query operations over the underlying object model, and the
performance metric used is the time that these operations
take to execute.

The results obtained with our proposed approach to
implement a cache policy shall be presented next. We omit a
more thorough analysis of the correct behaviour and
precision of the predictions of the stochastic behaviour
analysis module, because this has already been performed in
[8]. There, it is demonstrated that the module is capable of
predicting with high precision the types of data being
accessed by the target application in the contexts through
which it passes during its execution. The term context can be
defined to correspond to a procedure, service, or any other
abstraction deemed appropriate to describe the scope within
which the current operation is taking place. Moreover, the
module is capable of predicting not only the type of data
(domain classes) that is most likely to be accessed in a given
situation, but also the effectively accessed object fields. For
the discussion presented here, only access probabilities at the
level of domain class shall be considered.

As has been explained in Section II.B, whenever a
domain object instance is loaded into cache, it is always
added to the softly-referenced collection. Additionally, the
cache policy manager uses the stochastic access prediction
module to determine what is the global (at the level of the
whole application) access probability of the type of object
being loaded. If the access probability exceeds a certain
threshold, then the object instance is also added to the
strongly-referenced collection, ensuring that it cannot be
garbage collected. This policy shall be referred to as the
DAP (data access pattern) policy for the reminder of this
article.

Due to the fact that it is through the strongly-referenced
collection that the cache policy effectively controls which
objects are kept in memory longer than their actual use by
the application, all cache hit and miss ratio results presented
next are computed based on the contents of the strongly-
referenced collection only.

For evaluating the effects of employing the DAP policy,
the resulting cache hit ratios are compared with those
obtained by the use of three alternative cache policies.

The first of the alternative policies decides whether to
insert a given domain object in the strongly referenced
collection as a function of a randomly generated number.
The random generator employs a uniform distribution.

The second policy adds objects to the strongly referenced
collection whenever they are first loaded by the application
into the cache – the first objects to be loaded into the cache
are the first to be made strongly reachable (this policy shall

229

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

be henceforth referred to as “first load, first strongly
referenced” – FLFSR).

The third alternative corresponds to an LRU (least-
recently used) policy. Its implementation is based on a
synchronized and thread-safe version of the LRUMap
structure of the Apache Commons Collections library.
Because of the significantly different behaviour of an LRU
policy, its comparison against the DAP policy shall be
performed separately.

Furthermore, regardless of which policy is used, the
strongly-referenced collection has an enforced maximum
capacity. As such, for the Random and FLFSR policies,
objects are inserted only if this capacity has not been
reached. Generally, the dynamic nature of the DAP and LRU
policies allows them to change the contents of the cache
without exceeding the above threshold.

The results obtained from the execution of the oo7
benchmark for the DAP, Random, and FLFSR policies are
shown in Fig. 1. The x-axis of the chart indicates the
percentage of objects allowed to be strongly referenced in
the cache, as a function of the total number of domain
objects loaded into the cache during an execution of the
benchmark. It has to be pointed out that due to the fact that
both benchmarks access all of their domain objects during
their operation, all of the existing persistent domain data
ends up being accessed and cached during a single
benchmark execution. The y-axis indicates the overall cache
hit ratio achieved by a certain cache policy when the cache
size is restricted to the value on the x-axis. Each of the dots
presented in the graphs corresponds to the weighted average
resulting from the measurements extracted from ten
independent executions of a benchmark, for a given strongly-
referenced cache size restriction.

As the results of the oo7 benchmark show, the DAP
cache policy achieves better hit rate than both the Random
and FLFSR cache policies, for the whole range of cache
sizes. In particular, with only 3.6% of the total volume of
domain data, the DAP policy achieves a hit rate of
approximately 53%, whereas the Random and FLFSR

policies require caching 76% and 84%, respectively, of the
total volume of existing data to achieve a similar hit rate.

An interesting observation regarding the results from the
DAP policy is that the data considered as important
according to the stochastic analysis module (and thus
suitable to be placed in the strongly referenced collection in
the cache) corresponds to 3.6% of the total volume of
existing domain data. This explains two peculiarities of the
results observed for this policy. The first of these is the high
cache hit ratio achieved for the relatively low volume of
cached data (3.6%). It confirms the belief that the most
frequently used data for a given application corresponds to a
relatively small set of data. The second is the lack of
measurements in the range of 3.7% to 99% along the x-axis.
According to the behaviour prediction module, besides the
3.6% of data considered very important for the operation of
the application, there is no other domain data that is even
closely as likely to be needed by the application.
Consequently, the cache policy cannot place any additional
information in the strongly referenced part of the cache.

The results for the DAP (uninterrupted curves) and LRU
(dotted curves) policies are shown in Fig. 2. The x-axis of
the chart corresponds to a logic time scale, where a single
unit corresponds to the realization of 10,000 lookup
operations in the cache. The y-axis indicates the accumulated
cache hit ratio up to a given point in the logical time scale.
We chose a logic time scale instead of a real time scale
because even though the benchmark is deterministic and
performs all operations in the same order, differences in the
execution time from one benchmark run to another would
cause the different sampled curves to compress or expand
with regards to one another, resulting into a rather deformed
diagram. With a logical time scale, all curves are in synch
with one another.

Fig. 2 presents five sample curves plotted for the DAP
and LRU policies. Each of these is associated with a
different cache size, corresponding to 0.6%, 1.2%, 1.8%,
2.4%, and 3% of the total volume of domain data. This
relatively low percentage of domain data is due to the fact

DAP

Random

FLFSR

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Cache Size (%)

H
it

 R
at

io
 (

%
)

Figure 1. DAP, Random, and FLFSR policies - oo7

LRU 0.6%

LRU 1.2%

LRU 1.8%

LRU 2.4%

LRU 3%

DAP 0.6%

DAP 1.2%

DAP 1.8%

DAP 2.4%

DAP 3%

0

10

20

30

40

50

60

0 25 50 75 100 125 150 175 200 225 250 275

Logic time, [1/10,000]

C
a

ch
e

 h
it

ra
te

, [
%

]

Figure 2. DAP and LRU policies - oo7

230

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

that only a very small part of the domain data is highly likely
to be accessed in run-time. This domain data accounts for a
maximum of 3% of all existing domain data. The results
show that the LRU cache policy presents a better cache hit
ratio for the great majority of cases,. The differences in
average hit ratios between the two policies vary from 1.13%
for 1.2% cache size up to 5.03% for 3% cache size, all in
favour of the LRU policy. The weighted average of all
measurements is 2.55% cache hit ratio difference in favour
of the LRU policy. Regarding the effect on overall
benchmark performance, there were no observable
differences between the DAP and LRU policies.

The results achieved from the execution of the TPC-W
benchmark are discussed next. The hit ratio measurements
for the DAP, Random and FLFSR cache policies can be seen
in Fig. 3. The remarks to be made about these results are
similar to the ones for the oo7 case, namely, the DAP cache
policy presents cache hit ratios that are significantly better
than the ones provided by the Random or FLFSR policies for
any configuration.

Analysing the results of the DAP policy, we observe a
practically linear growth in the hit ratio, starting from a hit
ratio of 4.44% for cache size of 1.47% up to a hit ratio of
97.58% when the cache size corresponds to 30.42% of the
domain data. The lack of measurements in the range of 30%
to 100% of the cache size result from the same reasons
presented for the oo7 benchmark – the domain data
evaluated as important for the operation of the application
corresponds to 30% of all of the existing domain objects; the
remaining 70% of domain data are practically irrelevant, as
they correspond to the remaining 2.42% of cache hit rate.

Considering the results for the uninformed caching
policies, we are faced with a phenomenon not present in the
oo7 benchmark results. This phenomenon consists in the
existence of “plateaus” in the hit rate values achieved for a
given range of cache sizes. For the Random policy, instances
of this are the 30% hit rate in the range of 18% to 30% cache
size and the 65% hit rate for 45% to 60% cache size. For the
FLFSR policy, similar remarks are applicable to the 0% hit

rate in the range of [0%, 15%] cache size and the 99% hit
rate for the range of [59%, 100%] of cache size. These
plateau phenomena may be explained by the caching of
domain data that is practically irrelevant, from the point of
view of the application needs. This leads to an increase in the
volume of cached data without any significant increase in hit
rate, which is what the plateaus effectively correspond to.

The final set of results, comparing the DAP and the LRU
policies, are shown in Fig. 4. In this case, the x-axis
corresponds to a real time scale where the unit corresponds
to 20 seconds, whilst the y-axis indicates the accumulated
cache hit ratio observed up to a given point in the benchmark
execution. There are three curves for each of the two
policies, corresponding to cache sizes of 9%, 12%, and 15%.
For the TPC-W benchmark, the LRU policy displays an even
more accentuated advantage over the DAP policy, with
regards to the hit ratio they achieve. In terms of differences
between average hit ratios, the LRU policy leads with 9.2%
for the 9% cache size, 13.8% for the 12% size, and 9.8% for
the 15% size. This leads to an overall average hit ratio
advantage of 10.9% in favour of the LRU policy. Yet, even
though the average values give a clear advantage to the LRU
policy, the observed behaviour for the LRU hit ratio is rather
irregular, at least when compared to that of the DAP policy,
whose results are very close to flat horizontal lines.

The most-significant difference between the two
approaches in the case of the TPC-W benchmark (unlike
what was seen for the oo7 benchmark) is the performance
variations observed between the versions running with the
DAP and the LRU policy. These variations are due only to
the performance of the policy itself, rather than, for example,
to the contents of the cache, because the contents of the real
cache, which dictates the overall benchmark performance, is
the same for both versions. Only the contents of the strongly-
referenced collections are distinct and it is against those that
the hit ratios are measured.

A comparison of the benchmark’s performance when
using the DAP and the LRU policies is shown in Fig. 5. The
x-axis indicates the number of emulated browsers (EBs)

LRU 15%

LRU 12%

LRU 9%

DAP 15%

DAP 12%

DAP 9%

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Time, [*20sec]

C
ac

h
e

h
it

 r
at

e,
 [

%
]

Figure 4. Using DAP and LRU policies with TPC-W

DAP

Random

FLFSR

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00

Cache Size (%)

H
it

 R
at

io
 (

%
)

Figure 3. DAP, Random, and FLFSR policies - TPC-W

231

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

employed for a given benchmark run and the y-axis shows
the relative throughput gain achieved for a given number of
EBs. The values shown correspond to the speedup relative to
executing the benchmark version with LRU cache policy
with 1 EB. These results show that both versions perform
approximately the same amount of work for 2 EBs, which is
approximately 100% more than the LRU version with 1 EB.
However, as the number of EB increases, the results show a
growing discrepancy in the benchmark performance between
the LRU and the DAP policy versions. For four EBs, the
LRU benchmark version performs approximately 210%
more work than the baseline, whereas the DAP version
manages over 310%. This difference is even more
accentuated for 10 EBs, where the performance of the
benchmark with the LRU policy has remained practically the
same as the one from the 4 EBs configuration, whilst the
DAP version has grown up to over 560%.

The most reasonable explanation for this phenomenon is
that the synchronization present in the LRU policy
implementation causes a bottleneck in multithreaded
scenarios, leading to the poor performance gains observed in
the results. Assuming this is the case, then the DAP policy
would be the preferred alternative for situations where
multithreading is common, while the LRU would be more
appropriate for single threaded configurations.

IV. CONCLUSIONS

This paper presented a new approach for guiding the
cache policy of a high-level software cache. This new
approach employs a stochastic analysis based on Bayesian
Updating Inference, which is responsible for predicting the
behaviour of the target application, regarding its domain data
needs. Based on the generated predictions, the cache policy
is capable of deciding which domain objects are to be
cached, leading to high cache hit rates with relatively low
volumes of cached domain data.

The effectiveness of this approach was tested with two
very different benchmarks – the TPC-W and the oo7 – by

comparing it against three different cache policies. The
results illustrate the usefulness of employing dynamic
adaptive approaches for guiding high-level software caches,
by taking into consideration the behaviour of the target
application.

ACKNOWLEDGMENT

This work was partially supported by FCT (INESC-ID
multiannual funding) through the PIDDAC Program funds
and by the Specific Targeted Research Project (STReP)
Cloud-TM, which is co-financed by the European
Commission through the contract no. 257784. The first
author has been funded by the Portuguese FCT (Fundação
para a Ciência e a Tecnologia) under contract
SFRH/BD/64379/2009.

REFERENCES
[1] Denning, P. J. and Schwartz, S. C., 1972, Properties of the working-

set model, Commun. ACM, 15, (3), pp. 191-198.

[2] Sandhu, H. S., Gamsa, B. and Zhou, S., 1993, The shared regions
approach to software cache coherence on multiprocessors, SIGPLAN
Not., 28, (7), pp. 229-238.

[3] Lilja, D. J. and Yew, P.-C., 1991, Combining hardware and software
cache coherence strategies, Proceedings of the 5th international
conference on Supercomputing, Cologne, West Germany, ACM, pp.
274-283.

[4] Adve, S., Adve, V., Hill, M. and Vernon, M., 1991, Comparison of
hardware and software cache coherence schemes, SIGARCH
Comput. Archit. News, 19, (3), pp. 298-308.

[5] Chen, T., Zhang, T., Sura, Z. and Tallada, M., 2008, Prefetching
irregular references for software cache on cell, Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation and
optimization, Boston, MA, USA, ACM, pp. 155-164.

[6] Bennett, J., Carter, J. and Zwaenepoel, W., 1990, Adaptive software
cache management for distributed shared memory architectures, 17th
Annual International Symposium on Computer Architecture, pp. 125-
134.

[7] Dash, A. and Demsky, B., Integrating Caching and Prefetching
Mechanisms in a Distributed Transactional Memory, To Appear in
IEEE Transactions on Parallel and Distributed Systems.

[8] Garbatov, S., Cachopo, J. and Pereira, J., 2009, Data Access Pattern
Analysis based on Bayesian Updating, Proceedings of the First
Symposium of Informatics (INForum 2009), Lisbon, Paper 23.

[9] Garbatov, S. and Cachopo, J., 2010, Predicting Data Access Patterns
in Object-Oriented Applications Based on Markov Chains,
Proceedings of the Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, pp. 465-470.

[10] Garbatov, S. and Cachopo, J., 2010, Importance Analysis for
Predicting Data Access Behaviour in Object-Oriented Applications,
Computer Science and Technologies, 1, pp. 37-43.

[11] Fernandes, S. and Cachopo, J. A New Architecture for Enterprise
Applications with Strong Transactional Semantics. Lisbon: INESC-
ID / IST, 2011.

[12] Fowler, M., 2003, Patterns of enterprise application architecture:
Addison-Wesley Professional.

[13] Smith, W. TPC-W: Benchmarking An Ecommerce Solution. Intel
Corporation, 2000.

[14] Carey, M., Dewitt, D. and Naughton, J., 1993, The OO7 benchmark,
ACM SIGMOD International Conference on Management of Data,
pp. 12-21.

LRU

DAP

0%

100%

200%

300%

400%

500%

600%

1 2 3 4 5 6 7 8 9 10
Emulated Browsers

R
el

at
iv

e
T

h
ro

u
g

h
p

u
t

Figure 5. DAP and LRU throughput comparison, TPC-W

232

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

