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Abstract—Formal approaches are useful to verify the 
properties of software and hardware systems. Formal 
verification of a software system targets the source program 
where semantics of a language has more meanings than its 
syntax. Therefore, program verification does not give 
guarantee the generated executable code is correct as described 
in the source program. This is because the compiler may lead 
to an incorrect target program due to bugs in the compiler 
itself. It means verification of compiler is important than 
verification of a source program to be compiled. In this paper, 
context-free grammar is linked with Z notation to be useful in 
the verification of a part of compiler. At first, we have defined 
grammar, then, language derivation procedure is described 
using the left most derivations. In the next, verification of a 
given language is described by recursive procedures. The 
ambiguity of a language is checked as a part of the parsing 
analysis. The formal specification is analyzed and validated 
using Z/Eves tool. Formal proofs of the models are presented 
using powerful techniques, that is, reduction and rewriting of 
the Z/Eves. 

Keywords-parsing analysis; context-free language; formal 
specification; Z notation; verification. 

I.  INTRODUCTION 
Formal methods are mathematical-based approaches used 

for specifying, proving and verifying properties of software 
and hardware systems [1]. The process of formal verification 
means applying the mathematical techniques to verify the 
properties ensuring correctness of a system. Formal 
verification of software systems targets the source program 
where the semantics of the programming language gives a 
precise meaning to the programs to be analyzed. On the other 
hand, program verification does not give guarantee that the 
generated executable code is correct as described by the 
semantics of the source program. This is because the 
compiler may lead to an incorrect target program because of 
bugs in the compiler and it can invalidate the guarantees 
obtained by formal methods to source program. It means the 
verification of compiler is more important than verification 
of source program to be compiled.  

The design, construction and exploitation of a fully 
verifying compiler will remain a challenge of twenty first 
century in the area of computer science. The main 
functionality of compiler is to translate a source code 
understandable by programmers to an executable machine 
code correctly and efficiently. Although compiler is a mature 

area of research but it needs further investigation, as 
mentioned above, because bugs in the compiler can lead to 
an incorrect machine code generated from a correct source 
program. That is why design and construction of a bug free 
compiler is an open area of research. Further, as executable 
code generated by the compiler is tested and if bugs are 
detected it might be due to the source program or compiler 
itself. This has led to verification of compiler that proves 
automatically that a source program is correct before 
allowing it to be run. 

In this paper, parsing analyzing of language is presented 
using Z notation by left most derivations, which will be 
useful in our ongoing project on verification of compiler. 
Another objective of this research is linking context-free 
grammar with formal techniques to be useful in development 
of automated computerized systems. Currently, it is not 
possible to develop a complete software system using a 
single formal technique and hence integration of approaches 
is required. Although integration of approaches is a well-
researched area  [2] [3] [4] [5] [6] [7] [8], but there does not exist 
much work on formalization of context-free languages. Dong 
et al.  [9] [10] have described the integration of Object Z and 
timed automata. Constable has proposed a constructive 
formalization of some important concepts of automata using 
Nuprl  [11] [12]. A relationship is investigated between Petri-
nets and Z in  [13]. An integration of B and UML is presented 
in [14][15]. W. Wechler has introduced some algebraic 
structures in fuzzy automata [16]. A treatment of fuzzy 
automata and fuzzy language theory is discussed in [17]. 
Some important concepts of algebraic theory and automata 
are given in [18]. 

In [19], preliminary results of this research were 
presented by linking context-free grammar and Z notation. In 
this paper, first, formal definition of context-free grammar is 
given. Then a derivation procedure is described by replacing 
non-terminal with a string of terminal and non-terminals. 
The derivation procedure is extended to a sequence of 
derivations to derive a string form a given string using 
production rules of the context-free grammar. Then parsing 
analysis is described for word by left most derivations 
resulting a parsing tree. The parsing analysis for a language 
is specified by introducing recursion using derivations used 
in generation of a word. Next, ambiguity of a word is 
checked by specifying if there exists more than two left most 
derivation trees for a given words. The same concept is 
formalized for the language to check if it is ambiguous. The 
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formal specification is analyzed and validated using Z Eves 
tool set. The major objectives of this research are: 

• Identifying and proposing an integration of context-
free grammar and formal methods to be useful in 
verification of the compiler 

• Providing a syntactic and semantic relationship 
between Z and context-free grammar 

• Proposing and developing an approach for 
supporting an automated tools development 

Rest of the paper is organized as: in Section 2, an 
introduction to formal methods is given. In Section 3, an 
overview of context-free grammar and its applications is 
provided. Formal construction of models of context-free 
grammar is given in Section 4. Formal analysis for validating 
the models is presented in Section 5. Finally, conclusion and 
future work are discussed in Section 6. 

II. FORMAL METHODS 
Formal methods are approaches based on mathematical 

techniques and notations used for describing and analyzing 
properties of software and hardware systems. These formal 
techniques are based on discrete mathematics such as sets, 
logic, relations, functions, graphs, automata theory and 
higher order logic. Formal methods may be classified in 
terms of property and model-oriented methods [20].  

Property oriented methods are used to describe software 
in terms of properties, constraints or invariants that must be 
true. Model-oriented methods are used to construct a model 
of a system [21]. Formal methods are being applied 
successfully to improve quality by means of describing and 
specifying software systems in a well-precise and structured 
manner. Although there are various tools, techniques and 
notations of formal methods but at the current stage of their 
development, it needs an integration of formal techniques 
and traditional approaches for the complete design, 
description and construction of a system. 

Z notation is a popular specification language in formal 
methods used at an abstract level. The Z is a model-oriented 
approach based on set theory and first order predicate logic 
[22]. Usually, it is used for specifying behavior of sequential 
programs of systems by abstract data types. In this paper, Z 
is selected to be linked with context-free language because of 
a natural relationship which exists between both of these 
approaches. The Z is based upon set theory including 
standard set operators, for example, union, intersection, 
comprehensions, Cartesian products and power sets. On the 
other hand, the logic of Z is formulated using first order 
predicate calculus. The Z is used in our research because it 
allows organizing a system into its smaller components 
known as schemas. The schema defines a way in which the 
state of a system can be described and modified. A 
promising aspect of Z is its mathematical refinement that is a 
verifiable stepwise transformation of an abstract 
specification into an executable code. Once formal 
specifications in Z are written, it can be refined into 
implemented system by a process of series of stepwise 
mathematical refinements. 

III. APPLICATIONS OF CONTEXT-FREE GRAMMAR  
The context-free grammar (CFG) is important in design 

and description of a programming language and its compiler. 
Initially, formalism of CFG was developed by Chomsky who 
described linguistics in a grammatical form and converted 
into mathematical models providing a precise and simple 
mechanism of description of languages. The context-free 
grammars allow a simple and an efficient way of parsing the 
algorithms. Using the grammar, it can be determined 
whether a particular pattern can be generated and the way of 
generation is also determined.  

Inclusion of empty string is always required for 
completeness of a language. All context-free grammars 
cannot generate the empty string. If a grammar generates the 
empty string then it is needed to include some rules 
generating the empty string. Every context-free grammar 
without null production has an equivalent grammar in 
Chomsky Normal Form (CNF). Here by equivalence we 
mean that both the grammars generate the same language. 
The CNF grammar is important both in theoretical and 
practical point of view, it can be constructed from a given 
context-free grammar. By using CNF, it can be decided for a 
given string if it can be accepted in polynomial time 
algorithm. Context-free grammars contain both the decidable 
and un-decidable problems. Deciding for a grammar that it 
accepts the language of all the strings is an example of un-
decidable problem which can be proved by reduction by 
linking it with the Turing machine. Deciding whether two 
context-free grammars describe the same language is another 
example of the un-decidability. 

On the other hand, context-free languages have their own 
limitations. Some of the operators which are well-defined in 
many other models of automata theory do not behave well in 
case of the context-free grammar. For example, the 
intersection of two context-free languages, in general, is not 
context-free. Similarly, the complement of a context-free 
language is not context-free one. However, union, 
concatenation and Kleene star operators produce context-free 
languages when applied to it. 

Context-free grammar can be applied to many areas of 
diversity, for example, robotics, speech recognition, software 
engineering, and software maintenance [23]. The 
applications of CFG in the area of pattern recognition 
increase the accuracy of patterns to be recognized. This is 
because it can provide a higher level of abstraction by 
defining the semantics of patterns as compared to its other 
counterparts of specification, for example, strings and 
regular expressions. This semantic analysis can be used to 
reduce the false identification of the patterns [24]. Further, 
the applications of pattern matching can be observed 
everywhere from language processing to networks. 

In automatic speech recognition system, the spoken 
words can be generated by a context-free grammar using 
dynamic programming algorithms. As an example of 
application of CFG in the area software engineering, the 
components in a source code are recognized and re-
generated using context-free grammar [25]. As the output of 
parsing are larger and less-ambiguous and have meaning of 
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the structures in a sentence, therefore, for question answering 
and interactive voice response systems, the use of context-
free grammar can highly be effective and useful in such kind 
of systems and applications [26][27]. 

IV. FORMAL ANALYSIS OF CONTEXT-FREE GRAMMAR 
Context-free grammar is a 4-tuple (V, ∑, R, S) where: 
• V is a finite set of non-terminal called variables 

representing different types of clauses in a sentence. 
• The ∑ is a finite set of terminals and final contents 

of a string or sentence are based on it. 
• The third one R is the start variable used to represent 

the whole string or a sentence. 
• The last one S is a relation consisting of set of all the 

productions or rules of the grammar. 
Every production is of the form: S → t, where S is a non-

terminal consisting of a single character or symbol and t is a 
string which may contain only terminals or non-terminals or 
combination of both. Further, t might me an empty string. 
The notations, S → t, are called productions or rules which 
are applied one after other producing a parse tree. The tree 
ends with terminals called leaves and each internal node is a 
non-terminal which produces one or more further nodes. The 
left hand side of a production rule of a context-free grammar 
is always a single non-terminal. Because all rules only have 
non-terminals on the left hand side and it can easily be 
replaced with the string on the right hand side of this rule.  

Further the context in which the symbol occurs is 
therefore not important and hence the grammar is called 
context-free grammar. It is to be noted that context-free 
grammar is always recognized by finite state machines 
having a single infinite taps. For keeping track of nested 
units, the current parsing state is pushed at the start of the 
unit and it is recovered at the end. 

In this section, formal analysis of CFG is presented using 
Z notation. We start with the definition of context-free 
grammar which is a 4-tuple as defined above. R in the tuple 
is a relation from V to (V ∪ ∑)* such that ∃ w ∈ (V ∪ ∑)*, 
S ∈ V and (S, w)∈ R. The symbol * represents to any 
combination of characters of V and ∑.   

In the specification of CFG, we define the sets of non-
terminal by V and terminal by Sigma. The set of terminals 
and non-terminals together denoted by vandt and alphabets 
of the grammar are of type seq X. The sequence of elements 
of X, seq X, denotes the set of all sequences containing 
terminals and non-terminals. The notation for rules is defined 
by the relation between V and seq X. The production rules 
are defined by the relation denoted by rules. Further there 
exists exactly one rule, (s0, w) ∈ rules where s0 is the start 
non-terminal and w is string s of type seq X. With these 
definitions, a formal definition of context-free grammar is 
given in terms of a schema CFG. The variables are given in 
first part and constraints are defined in the second part of 
schema. The V, X and Sigma are defined as sets at an 
abstract level of specification.  

[X]; V X;  

Sigma X 
 
CFG
variables:  V 
terminals:  Sigma 
vandt:  X 
rules: V  seq X 
s0: V 

variables  terminals = 
vandt = variables  terminals 
dom rules  variables 
s: seq X s  ran rules ran s  vandt 
s0  variables 
w: seq X w  ran rules s0 w  rules 


Invariants: 

• The terminals and non-terminals are disjoint sets. 
• The entire set of alphabets is union of terminals and 

non-terminals. 
• The domain of rules relation is a subset of variables. 
• The set of elements in the range of rules relation are 

defined based on members of alphabets. 
• The variable s0 must be an element of variables. 
• There exists at least one rule which contains start 

variable on the left hand side of it. 

A. Producing Left Most Derivations 
In this section, we describe the formal left derivations 

procedure using the production rules. The substitution can be 
performed recursively to derive new string from a given 
string of terminal and non-terminal. First, we specify the 
process of generating a string using a single production by 
the schema LeftDerivation given below. In the specification, 
s1 and s2 are two strings of type seqX.  We say s1 yields s2 
if ∃ a∈V and b, s3, s4∈ seq X such that s1 = s3  a  s4 
and s2 = s3  b  s4. It is to be noted that a is an element in 
set of variables, the ranges of sequences b, s3, s4 are subsets 
of vandt, (a, b) is a production rule.  
 

LeftDerivation 
CFG 
drives: seq X  seq X 

s1, s2: seq X ran s1  vandt  ran s2  vandt 
   s1 s2  drives   a: V; b: seq X; s3, s4: seq X 
           a  variables  ran b  vandt 
              a b  rules  ran s3  terminals 
              ran s4  vandt s1 = s3  a  s4  s2 = s3  b  s4


Now, we describe a sequence of left derivations using the 
approach of single left derivation defined above. The 
derivation procedure is described below and is denoted by 
the schema LeftDerivations which is an extension of schema 
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LeftDerivation. It describes the generation from a string of 
terminals or non-terminals to another string of the same type. 
In the specification, two strings are considered denoted by s1 
and s2 as in the schema which uses the LeftDerivation 
recursively by introducing a sequence s3 of sequences 
representing an order of the derivations. 
 
LeftDerivations
LeftDerivation 
drivess: seq X  seq X 

s1, s2: seq X ran s1  vandt  ran s2  vandt 
   s1 s2  drivess 
      s3: seq seq X
           1  # s3  ss: seq X ss  ran s3 ran ss  vandt
           s1 s3 1  drives 
              i:  i  2 .. # s3 s3 i - 1 s3 i  drives
              s3 # s3 s2  drives
 

B. Verification of Language Generated From CFG 
In this section, verification of a language generated from 

a context-free grammar is done. First, verifying procedure of 
a word is defined then it is extended to the whole language. 
For this purpose, the formal procedure is described in the 
schema WordLeftDerivation given below. The schema 
LeftDerivations and a word are given as input to the schema 
and it is checked if the word can be generated from the CFG 
using the procedure WordLeftDerivation defined above. The 
symbol, ?, is used to represent that word is an input variable. 
In the predicate part of the schema, first, it is checked that all 
alphabets of the word must be from the set of terminal of 
CFG. Secondly, it is verified that in the derivation of the 
word the first production used contains the start variable 
(non-terminal) on the left hand side of the production.  
 

WordLeftDerivation 
LeftDerivations 
word?: seq Sigma 

ran word?  terminals 
s0 word?  drivess 
  

To verify a language, the approach of word verification is 
used. In the schema LanguageLeftDerivation described 
below, the schema LeftDerivations and language are given 
as input and is checked if the language can be generated 
from the CFG by using universal quantifier. 
 
LanguageLeftDerivation 
LeftDerivations 
language?:  seq Sigma

w: seq Sigma w  language? ran w  terminals 
w: seq Sigma w  language? s0 w  drivess 
 

C. Checking Ambiguity of Language 
In this section, ambiguity of a context-free language is 

verified. The language is ambiguous if there is a word for 
which there exists at least two parsing trees based on 
leftmost derivations. First, verification procedure for a word 
is defined if it is ambiguously generated using the schema  
AmbiguousWord given below. The schema takes 
LeftDerivations and a word as input and checks if the word 
has more than one left most derivations.  
 
AmbiguousWord
LeftDerivations 
word?: seq Sigma 

ran word?  terminals 
s0 word?  drivess  s3, s4: seq seq X s3  s4 
         1  # s3  1  # s4  ran s3  ran rules 
         ran s4  ran rules s0 s3 1  drives 
         i:  i  2 .. # s3 s3 i - 1 s3 i  drives
         s3 # s3 word?  drives  s0 s4 1  drives 
          i:  i  2 .. # s4 s4 i - 1 s4 i  drives
          s4 # s4 word?  drives


To verify if the language is ambiguous, the verification 
procedure of a word is reused. In the schema 
AmbiguousLanguage described below, it is checked if there 
exists any word having more than one derivations by using 
the universal quantifier. If this is the case the given language 
is ambiguous. 

 
AmbiguousLanguage
LeftDerivations 
language?:  seq Sigma

w: seq Sigma w  language? ran w  terminals 
w: seq Sigma w  language? s0 w  drivess 
  s3, s4: seq seq X s3  s4  1  # s3  1  # s4 
  ran s3  ran rules  ran s4  ran rules  s0 s3 1  drives 
  i:  i  2 .. # s3 s3 i - 1 s3 i  drives
  s3 # s3 w  drives  s0 s4 1  drives 
  i:  i  2 .. # s4 s4 i - 1 s4 i  drives
  s4 # s4 w  drives
 

 

V. MODEL ANALYSIS 
There does not exist any computer tool which may 

guarantee about complete correctness of a computer model. 
Therefore, even the specification is written using any of the 
formal languages it may contain potential hazardous or 
errors. It means an art of writing a formal specification never 
assures that the developed system is consistent, correct and 
complete. On the other hand, if the specification is checked 
and analyzed with the computer tool support it certainly 
increases the confidence over the system to be developed by 
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identifying the potential errors, if exist,  in syntax and 
semantics of the formal description. The Z/Eves is one of the 
most powerful tools which can be used for analyzing the 
formal specification written by Z notation. A snapshot of the 
formal specification using Z/Eves tool is presented in Figure 
1. The first column on left most of the figure shows a status 
of the syntax checking and the second one presents the status 
of proof correctness. The symbol ‘Y’ shows that 
specification is correct syntactically and proof is correct 
while the symbol ‘N’ stands that errors are identified. In 
schemas, it is checked that specification is correct in syntax 
and has a correct proof.  
 

 
 

Figure 1. Snapshot of the Model Analysis. 
 

The results of the formal specification are presented in 
the Table 1. The schema name represents the name of the 
schemas described for specification. These schemas are 
analyzed by using the model exploration techniques provided 
in the Z/Eves tool. The symbol “Y” in column 2 indicates 
that all the schemas are well written and proved 
automatically. Similarly, domain checking, reduction and 
proof by reduction are represented in column 3, 4 and 5, 
respectively. The symbol “Y*” describes that the schemas 
are proved by performing reduction on the predicates to 
make the specification meaningful. 

 

TABLE I.  RESULTS OF MODEL ANALYSIS 

Schema Name 
Syntax 
Type 

Check 

Domain 
Check Reduction Proof 

CFG Y Y Y Y 
LeftDerivation Y Y Y* Y 
LeftDerivations Y Y Y* Y 
WordLefDerivation Y Y Y Y 
LanguageLefDerivation Y Y Y Y 
AmbiguousWord Y Y Y* Y 
AmbiguousLanguage Y Y Y* Y 

 

VI. CONCLUSION AND FUTURE WORK 
An efficient and correct translation from a programming 

language to machine language is an open issue in the area of 
computer science and this task is usually done by compilers. 
Errors in the compiler can lead to incorrect machine code 
from a source program even the source is correct and 
verified. Therefore, design and construction of correct 
compiler is more important than verifying the source 
programs. If the compiler is formally verified it gives 
guarantee that the executable code generated behaves exactly 
as described in the source program. In this paper, formal 
procedure of identification and analysis of ambiguities is 
done which is a real challenge in parser development. We 
know it is an un-decidable problem but this exercise is useful 
for applying it to a simple compiler for academic purpose, 
which can be extended to formally verify the compiler.  

Both regular expressions and context-free grammars are 
widely used in construction of the compiler. Regular 
expressions are not powerful enough and are used to identify 
token from the source program while syntax is checked by 
the context-free grammar. The design of a complier can be 
benefited by transforming context-free grammar to Z 
specification because Z notation being abstract in nature and 
having computer tool support enhances reliability and 
correctness providing a context in which important 
properties of the system can be formally analyzed and 
verified. Further, formal specification helped us to make it 
possible describing precise, unambiguous and easier to 
understand the resultant model.  

An approach is developed by linking context-free 
grammar with Z notation defining a relationship between 
fundamentals of these techniques. It is observed that a 
natural relationship exists between these approaches. This 
linkage will be useful in verification of compiler in addition 
to many other applications. At first, we have described the 
structures of CFG using Z then formal description of 
derivation process from a sequence of terminals and non-
terminals is presented. Further, a procedure of derivations is 
described by identifying the productions to be used in this 
process. Then formal models are defined to check the 
generation of the words and language from the context-free 
grammar. Finally, ambiguity of the language is verified by 
using the left most derivations. Formal proofs of the 
relationship are presented under certain assumptions. The 
specification is verified and validated using Z/Eves tool.  

An extensive survey of existing work was done and 
explored before initiating this research. Some interesting 
work [28][29][30][31][32][33] [34][35][36] was found but 
our work and approach are different because of conceptual 
and abstract level integration of Z and CFG. Few of the 
benefits of Z are listed as follows. Every object is assigned a 
unique type providing useful programming practice. Several 
type checking tools exist to support the specification. The 
Z/Eves is a powerful tool to prove and analyze the 
specification used in this research. The rich mathematical 
notations made it possible to reason about behavior of a 
specified system more rigorous and effectively.  
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Formalization of some other concepts, useful in compiler 
verification, is under progress and will appear soon in our 
future work. Further, we have taken some assumptions for 
simplicity of construction. In future work, a more generic 
formal integration will be proposed after relaxing such 
assumptions. 
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