
Formal Parsing Analysis of Context-Free Grammar using Left Most Derivations

Khalid A. Buragga
College of Computer Sciences and I. T.

King Faisal University
Hofuf, Saudi Arabia

Email: kburagga@kfu.edu.sa

Nazir Ahmad Zafar
Department of Computer Science

King Faisal University
Hofuf, Saudi Arabia

Email: nazafar@kfu.edu.sa

Abstract—Formal approaches are useful to verify the
properties of software and hardware systems. Formal
verification of a software system targets the source program
where semantics of a language has more meanings than its
syntax. Therefore, program verification does not give
guarantee the generated executable code is correct as described
in the source program. This is because the compiler may lead
to an incorrect target program due to bugs in the compiler
itself. It means verification of compiler is important than
verification of a source program to be compiled. In this paper,
context-free grammar is linked with Z notation to be useful in
the verification of a part of compiler. At first, we have defined
grammar, then, language derivation procedure is described
using the left most derivations. In the next, verification of a
given language is described by recursive procedures. The
ambiguity of a language is checked as a part of the parsing
analysis. The formal specification is analyzed and validated
using Z/Eves tool. Formal proofs of the models are presented
using powerful techniques, that is, reduction and rewriting of
the Z/Eves.

Keywords-parsing analysis; context-free language; formal
specification; Z notation; verification.

I. INTRODUCTION
Formal methods are mathematical-based approaches used

for specifying, proving and verifying properties of software
and hardware systems [1]. The process of formal verification
means applying the mathematical techniques to verify the
properties ensuring correctness of a system. Formal
verification of software systems targets the source program
where the semantics of the programming language gives a
precise meaning to the programs to be analyzed. On the other
hand, program verification does not give guarantee that the
generated executable code is correct as described by the
semantics of the source program. This is because the
compiler may lead to an incorrect target program because of
bugs in the compiler and it can invalidate the guarantees
obtained by formal methods to source program. It means the
verification of compiler is more important than verification
of source program to be compiled.

The design, construction and exploitation of a fully
verifying compiler will remain a challenge of twenty first
century in the area of computer science. The main
functionality of compiler is to translate a source code
understandable by programmers to an executable machine
code correctly and efficiently. Although compiler is a mature

area of research but it needs further investigation, as
mentioned above, because bugs in the compiler can lead to
an incorrect machine code generated from a correct source
program. That is why design and construction of a bug free
compiler is an open area of research. Further, as executable
code generated by the compiler is tested and if bugs are
detected it might be due to the source program or compiler
itself. This has led to verification of compiler that proves
automatically that a source program is correct before
allowing it to be run.

In this paper, parsing analyzing of language is presented
using Z notation by left most derivations, which will be
useful in our ongoing project on verification of compiler.
Another objective of this research is linking context-free
grammar with formal techniques to be useful in development
of automated computerized systems. Currently, it is not
possible to develop a complete software system using a
single formal technique and hence integration of approaches
is required. Although integration of approaches is a well-
researched area [2] [3] [4] [5] [6] [7] [8], but there does not exist
much work on formalization of context-free languages. Dong
et al. [9] [10] have described the integration of Object Z and
timed automata. Constable has proposed a constructive
formalization of some important concepts of automata using
Nuprl [11] [12]. A relationship is investigated between Petri-
nets and Z in [13]. An integration of B and UML is presented
in [14][15]. W. Wechler has introduced some algebraic
structures in fuzzy automata [16]. A treatment of fuzzy
automata and fuzzy language theory is discussed in [17].
Some important concepts of algebraic theory and automata
are given in [18].

In [19], preliminary results of this research were
presented by linking context-free grammar and Z notation. In
this paper, first, formal definition of context-free grammar is
given. Then a derivation procedure is described by replacing
non-terminal with a string of terminal and non-terminals.
The derivation procedure is extended to a sequence of
derivations to derive a string form a given string using
production rules of the context-free grammar. Then parsing
analysis is described for word by left most derivations
resulting a parsing tree. The parsing analysis for a language
is specified by introducing recursion using derivations used
in generation of a word. Next, ambiguity of a word is
checked by specifying if there exists more than two left most
derivation trees for a given words. The same concept is
formalized for the language to check if it is ambiguous. The

251

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

mailto:kburagga@kfu.edu.sa
mailto:kburagga@kfu.edu.sa
mailto:@ucp.edu.pk

formal specification is analyzed and validated using Z Eves
tool set. The major objectives of this research are:

• Identifying and proposing an integration of context-
free grammar and formal methods to be useful in
verification of the compiler

• Providing a syntactic and semantic relationship
between Z and context-free grammar

• Proposing and developing an approach for
supporting an automated tools development

Rest of the paper is organized as: in Section 2, an
introduction to formal methods is given. In Section 3, an
overview of context-free grammar and its applications is
provided. Formal construction of models of context-free
grammar is given in Section 4. Formal analysis for validating
the models is presented in Section 5. Finally, conclusion and
future work are discussed in Section 6.

II. FORMAL METHODS
Formal methods are approaches based on mathematical

techniques and notations used for describing and analyzing
properties of software and hardware systems. These formal
techniques are based on discrete mathematics such as sets,
logic, relations, functions, graphs, automata theory and
higher order logic. Formal methods may be classified in
terms of property and model-oriented methods [20].

Property oriented methods are used to describe software
in terms of properties, constraints or invariants that must be
true. Model-oriented methods are used to construct a model
of a system [21]. Formal methods are being applied
successfully to improve quality by means of describing and
specifying software systems in a well-precise and structured
manner. Although there are various tools, techniques and
notations of formal methods but at the current stage of their
development, it needs an integration of formal techniques
and traditional approaches for the complete design,
description and construction of a system.

Z notation is a popular specification language in formal
methods used at an abstract level. The Z is a model-oriented
approach based on set theory and first order predicate logic
[22]. Usually, it is used for specifying behavior of sequential
programs of systems by abstract data types. In this paper, Z
is selected to be linked with context-free language because of
a natural relationship which exists between both of these
approaches. The Z is based upon set theory including
standard set operators, for example, union, intersection,
comprehensions, Cartesian products and power sets. On the
other hand, the logic of Z is formulated using first order
predicate calculus. The Z is used in our research because it
allows organizing a system into its smaller components
known as schemas. The schema defines a way in which the
state of a system can be described and modified. A
promising aspect of Z is its mathematical refinement that is a
verifiable stepwise transformation of an abstract
specification into an executable code. Once formal
specifications in Z are written, it can be refined into
implemented system by a process of series of stepwise
mathematical refinements.

III. APPLICATIONS OF CONTEXT-FREE GRAMMAR
The context-free grammar (CFG) is important in design

and description of a programming language and its compiler.
Initially, formalism of CFG was developed by Chomsky who
described linguistics in a grammatical form and converted
into mathematical models providing a precise and simple
mechanism of description of languages. The context-free
grammars allow a simple and an efficient way of parsing the
algorithms. Using the grammar, it can be determined
whether a particular pattern can be generated and the way of
generation is also determined.

Inclusion of empty string is always required for
completeness of a language. All context-free grammars
cannot generate the empty string. If a grammar generates the
empty string then it is needed to include some rules
generating the empty string. Every context-free grammar
without null production has an equivalent grammar in
Chomsky Normal Form (CNF). Here by equivalence we
mean that both the grammars generate the same language.
The CNF grammar is important both in theoretical and
practical point of view, it can be constructed from a given
context-free grammar. By using CNF, it can be decided for a
given string if it can be accepted in polynomial time
algorithm. Context-free grammars contain both the decidable
and un-decidable problems. Deciding for a grammar that it
accepts the language of all the strings is an example of un-
decidable problem which can be proved by reduction by
linking it with the Turing machine. Deciding whether two
context-free grammars describe the same language is another
example of the un-decidability.

On the other hand, context-free languages have their own
limitations. Some of the operators which are well-defined in
many other models of automata theory do not behave well in
case of the context-free grammar. For example, the
intersection of two context-free languages, in general, is not
context-free. Similarly, the complement of a context-free
language is not context-free one. However, union,
concatenation and Kleene star operators produce context-free
languages when applied to it.

Context-free grammar can be applied to many areas of
diversity, for example, robotics, speech recognition, software
engineering, and software maintenance [23]. The
applications of CFG in the area of pattern recognition
increase the accuracy of patterns to be recognized. This is
because it can provide a higher level of abstraction by
defining the semantics of patterns as compared to its other
counterparts of specification, for example, strings and
regular expressions. This semantic analysis can be used to
reduce the false identification of the patterns [24]. Further,
the applications of pattern matching can be observed
everywhere from language processing to networks.

In automatic speech recognition system, the spoken
words can be generated by a context-free grammar using
dynamic programming algorithms. As an example of
application of CFG in the area software engineering, the
components in a source code are recognized and re-
generated using context-free grammar [25]. As the output of
parsing are larger and less-ambiguous and have meaning of

252

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://en.wikipedia.org/wiki/Compiler

the structures in a sentence, therefore, for question answering
and interactive voice response systems, the use of context-
free grammar can highly be effective and useful in such kind
of systems and applications [26][27].

IV. FORMAL ANALYSIS OF CONTEXT-FREE GRAMMAR
Context-free grammar is a 4-tuple (V, ∑, R, S) where:
• V is a finite set of non-terminal called variables

representing different types of clauses in a sentence.
• The ∑ is a finite set of terminals and final contents

of a string or sentence are based on it.
• The third one R is the start variable used to represent

the whole string or a sentence.
• The last one S is a relation consisting of set of all the

productions or rules of the grammar.
Every production is of the form: S → t, where S is a non-

terminal consisting of a single character or symbol and t is a
string which may contain only terminals or non-terminals or
combination of both. Further, t might me an empty string.
The notations, S → t, are called productions or rules which
are applied one after other producing a parse tree. The tree
ends with terminals called leaves and each internal node is a
non-terminal which produces one or more further nodes. The
left hand side of a production rule of a context-free grammar
is always a single non-terminal. Because all rules only have
non-terminals on the left hand side and it can easily be
replaced with the string on the right hand side of this rule.

Further the context in which the symbol occurs is
therefore not important and hence the grammar is called
context-free grammar. It is to be noted that context-free
grammar is always recognized by finite state machines
having a single infinite taps. For keeping track of nested
units, the current parsing state is pushed at the start of the
unit and it is recovered at the end.

In this section, formal analysis of CFG is presented using
Z notation. We start with the definition of context-free
grammar which is a 4-tuple as defined above. R in the tuple
is a relation from V to (V ∪ ∑)* such that ∃ w ∈ (V ∪ ∑)*,
S ∈ V and (S, w)∈ R. The symbol * represents to any
combination of characters of V and ∑.

In the specification of CFG, we define the sets of non-
terminal by V and terminal by Sigma. The set of terminals
and non-terminals together denoted by vandt and alphabets
of the grammar are of type seq X. The sequence of elements
of X, seq X, denotes the set of all sequences containing
terminals and non-terminals. The notation for rules is defined
by the relation between V and seq X. The production rules
are defined by the relation denoted by rules. Further there
exists exactly one rule, (s0, w) ∈ rules where s0 is the start
non-terminal and w is string s of type seq X. With these
definitions, a formal definition of context-free grammar is
given in terms of a schema CFG. The variables are given in
first part and constraints are defined in the second part of
schema. The V, X and Sigma are defined as sets at an
abstract level of specification.

[X]; V X;

Sigma X

CFG
variables:  V
terminals:  Sigma
vandt:  X
rules: V  seq X
s0: V

variables  terminals = 
vandt = variables  terminals
dom rules  variables
s: seq X s  ran rules ran s  vandt
s0  variables
w: seq X w  ran rules s0 w  rules


Invariants:

• The terminals and non-terminals are disjoint sets.
• The entire set of alphabets is union of terminals and

non-terminals.
• The domain of rules relation is a subset of variables.
• The set of elements in the range of rules relation are

defined based on members of alphabets.
• The variable s0 must be an element of variables.
• There exists at least one rule which contains start

variable on the left hand side of it.

A. Producing Left Most Derivations
In this section, we describe the formal left derivations

procedure using the production rules. The substitution can be
performed recursively to derive new string from a given
string of terminal and non-terminal. First, we specify the
process of generating a string using a single production by
the schema LeftDerivation given below. In the specification,
s1 and s2 are two strings of type seqX. We say s1 yields s2
if ∃ a∈V and b, s3, s4∈ seq X such that s1 = s3  a  s4
and s2 = s3  b  s4. It is to be noted that a is an element in
set of variables, the ranges of sequences b, s3, s4 are subsets
of vandt, (a, b) is a production rule.

LeftDerivation 
CFG
drives: seq X  seq X

s1, s2: seq X ran s1  vandt  ran s2  vandt
 s1 s2  drives  a: V; b: seq X; s3, s4: seq X
 a  variables  ran b  vandt
  a b  rules  ran s3  terminals
  ran s4  vandt s1 = s3  a  s4  s2 = s3  b  s4


Now, we describe a sequence of left derivations using the
approach of single left derivation defined above. The
derivation procedure is described below and is denoted by
the schema LeftDerivations which is an extension of schema

253

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://en.wikipedia.org/wiki/Nonterminal
http://en.wikipedia.org/wiki/Nonterminal
http://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols
http://en.wikipedia.org/wiki/Parse_tree
http://en.wikipedia.org/wiki/Pushdown_automaton

LeftDerivation. It describes the generation from a string of
terminals or non-terminals to another string of the same type.
In the specification, two strings are considered denoted by s1
and s2 as in the schema which uses the LeftDerivation
recursively by introducing a sequence s3 of sequences
representing an order of the derivations.

LeftDerivations
LeftDerivation
drivess: seq X  seq X

s1, s2: seq X ran s1  vandt  ran s2  vandt
 s1 s2  drivess
  s3: seq seq X
 1  # s3  ss: seq X ss  ran s3 ran ss  vandt
 s1 s3 1  drives
  i:  i  2 .. # s3 s3 i - 1 s3 i  drives
  s3 # s3 s2  drives


B. Verification of Language Generated From CFG
In this section, verification of a language generated from

a context-free grammar is done. First, verifying procedure of
a word is defined then it is extended to the whole language.
For this purpose, the formal procedure is described in the
schema WordLeftDerivation given below. The schema
LeftDerivations and a word are given as input to the schema
and it is checked if the word can be generated from the CFG
using the procedure WordLeftDerivation defined above. The
symbol, ?, is used to represent that word is an input variable.
In the predicate part of the schema, first, it is checked that all
alphabets of the word must be from the set of terminal of
CFG. Secondly, it is verified that in the derivation of the
word the first production used contains the start variable
(non-terminal) on the left hand side of the production.

WordLeftDerivation 
LeftDerivations
word?: seq Sigma

ran word?  terminals
s0 word?  drivess


To verify a language, the approach of word verification is
used. In the schema LanguageLeftDerivation described
below, the schema LeftDerivations and language are given
as input and is checked if the language can be generated
from the CFG by using universal quantifier.

LanguageLeftDerivation 
LeftDerivations
language?:  seq Sigma

w: seq Sigma w  language? ran w  terminals
w: seq Sigma w  language? s0 w  drivess


C. Checking Ambiguity of Language
In this section, ambiguity of a context-free language is

verified. The language is ambiguous if there is a word for
which there exists at least two parsing trees based on
leftmost derivations. First, verification procedure for a word
is defined if it is ambiguously generated using the schema
AmbiguousWord given below. The schema takes
LeftDerivations and a word as input and checks if the word
has more than one left most derivations.

AmbiguousWord
LeftDerivations
word?: seq Sigma

ran word?  terminals
s0 word?  drivess  s3, s4: seq seq X s3  s4
  1  # s3  1  # s4  ran s3  ran rules
  ran s4  ran rules s0 s3 1  drives
  i:  i  2 .. # s3 s3 i - 1 s3 i  drives
  s3 # s3 word?  drives  s0 s4 1  drives
  i:  i  2 .. # s4 s4 i - 1 s4 i  drives
  s4 # s4 word?  drives


To verify if the language is ambiguous, the verification
procedure of a word is reused. In the schema
AmbiguousLanguage described below, it is checked if there
exists any word having more than one derivations by using
the universal quantifier. If this is the case the given language
is ambiguous.

AmbiguousLanguage
LeftDerivations
language?:  seq Sigma

w: seq Sigma w  language? ran w  terminals
w: seq Sigma w  language? s0 w  drivess
  s3, s4: seq seq X s3  s4  1  # s3  1  # s4
  ran s3  ran rules  ran s4  ran rules s0 s3 1  drives
  i:  i  2 .. # s3 s3 i - 1 s3 i  drives
  s3 # s3 w  drives  s0 s4 1  drives
  i:  i  2 .. # s4 s4 i - 1 s4 i  drives
  s4 # s4 w  drives


V. MODEL ANALYSIS
There does not exist any computer tool which may

guarantee about complete correctness of a computer model.
Therefore, even the specification is written using any of the
formal languages it may contain potential hazardous or
errors. It means an art of writing a formal specification never
assures that the developed system is consistent, correct and
complete. On the other hand, if the specification is checked
and analyzed with the computer tool support it certainly
increases the confidence over the system to be developed by

254

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

identifying the potential errors, if exist, in syntax and
semantics of the formal description. The Z/Eves is one of the
most powerful tools which can be used for analyzing the
formal specification written by Z notation. A snapshot of the
formal specification using Z/Eves tool is presented in Figure
1. The first column on left most of the figure shows a status
of the syntax checking and the second one presents the status
of proof correctness. The symbol ‘Y’ shows that
specification is correct syntactically and proof is correct
while the symbol ‘N’ stands that errors are identified. In
schemas, it is checked that specification is correct in syntax
and has a correct proof.

Figure 1. Snapshot of the Model Analysis.

The results of the formal specification are presented in
the Table 1. The schema name represents the name of the
schemas described for specification. These schemas are
analyzed by using the model exploration techniques provided
in the Z/Eves tool. The symbol “Y” in column 2 indicates
that all the schemas are well written and proved
automatically. Similarly, domain checking, reduction and
proof by reduction are represented in column 3, 4 and 5,
respectively. The symbol “Y*” describes that the schemas
are proved by performing reduction on the predicates to
make the specification meaningful.

TABLE I. RESULTS OF MODEL ANALYSIS

Schema Name
Syntax
Type

Check

Domain
Check Reduction Proof

CFG Y Y Y Y
LeftDerivation Y Y Y* Y
LeftDerivations Y Y Y* Y
WordLefDerivation Y Y Y Y
LanguageLefDerivation Y Y Y Y
AmbiguousWord Y Y Y* Y
AmbiguousLanguage Y Y Y* Y

VI. CONCLUSION AND FUTURE WORK
An efficient and correct translation from a programming

language to machine language is an open issue in the area of
computer science and this task is usually done by compilers.
Errors in the compiler can lead to incorrect machine code
from a source program even the source is correct and
verified. Therefore, design and construction of correct
compiler is more important than verifying the source
programs. If the compiler is formally verified it gives
guarantee that the executable code generated behaves exactly
as described in the source program. In this paper, formal
procedure of identification and analysis of ambiguities is
done which is a real challenge in parser development. We
know it is an un-decidable problem but this exercise is useful
for applying it to a simple compiler for academic purpose,
which can be extended to formally verify the compiler.

Both regular expressions and context-free grammars are
widely used in construction of the compiler. Regular
expressions are not powerful enough and are used to identify
token from the source program while syntax is checked by
the context-free grammar. The design of a complier can be
benefited by transforming context-free grammar to Z
specification because Z notation being abstract in nature and
having computer tool support enhances reliability and
correctness providing a context in which important
properties of the system can be formally analyzed and
verified. Further, formal specification helped us to make it
possible describing precise, unambiguous and easier to
understand the resultant model.

An approach is developed by linking context-free
grammar with Z notation defining a relationship between
fundamentals of these techniques. It is observed that a
natural relationship exists between these approaches. This
linkage will be useful in verification of compiler in addition
to many other applications. At first, we have described the
structures of CFG using Z then formal description of
derivation process from a sequence of terminals and non-
terminals is presented. Further, a procedure of derivations is
described by identifying the productions to be used in this
process. Then formal models are defined to check the
generation of the words and language from the context-free
grammar. Finally, ambiguity of the language is verified by
using the left most derivations. Formal proofs of the
relationship are presented under certain assumptions. The
specification is verified and validated using Z/Eves tool.

An extensive survey of existing work was done and
explored before initiating this research. Some interesting
work [28][29][30][31][32][33] [34][35][36] was found but
our work and approach are different because of conceptual
and abstract level integration of Z and CFG. Few of the
benefits of Z are listed as follows. Every object is assigned a
unique type providing useful programming practice. Several
type checking tools exist to support the specification. The
Z/Eves is a powerful tool to prove and analyze the
specification used in this research. The rich mathematical
notations made it possible to reason about behavior of a
specified system more rigorous and effectively.

255

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Formalization of some other concepts, useful in compiler
verification, is under progress and will appear soon in our
future work. Further, we have taken some assumptions for
simplicity of construction. In future work, a more generic
formal integration will be proposed after relaxing such
assumptions.

REFERENCES
[1] C. J. Burgess, "The Role of Formal Methods in Software

Engineering Education and Industry," Technical Report,
University of Bristol, UK, 1995.

[2] H. Beek, A. Fantechi, S. Gnesi, and F. Mazzanti,
"State/Event-Based Software Model Checking," Integrated
Formal Methods, Springer, vol. 2999, pp. 128-147, 2004.

[3] O. Hasan and S. Tahar, "Verification of Probabilistic
Properties in the HOL Theorem Prover," Integrated Formal
Methods, Springer, vol. 4591, pp. 333-352, 2007.

[4] F. Gervais, M. Frappier, and R. Laleau, "Synthesizing B
Specifications from EB3 Attribute Definitions," Integrated
Formal Methods, Springer, vol. 3771, pp. 207-226, 2005.

[5] K. Araki, A. Galloway, and K. Taguchi, "Integrated Formal
Methods," Proceedings of the 1st International Conference on
Integrated Formal Methods, Springer 1999.

[6] B. Akbarpour, S. Tahar, and A. Dekdouk, "Formalization of
Cadence SPW Fixed-Point Arithmetic in HOL," Integrated
Formal Methods, Springer, vol. 2335, pp. 185-204, 2002.

[7] J. Derrick and G. Smith, "Structural Refinement of Object-
Z/CSP Specifications," Integrated Formal Methods, Springer,
vol. 1945, pp. 194-213, 2000.

[8] T. B. Raymond, "Integrating Formal Methods by Unifying
Abstractions," Springer, vol. 2999, pp. 441-460, 2004.

[9] J. S. Dong, R. Duke, and P. Hao, "Integrating Object-Z with
Timed Automata," pp 488-497, 2005.

[10] J. S. Dong, et al., "Timed Patterns: TCOZ to Timed
Automata," The 6th International Conference on Formal
Engineering Methods, pp 483-498, 2004.

[11] R. L. Constable, P. B. Jackson, P. Naumov, and J. Uribe,
"Formalizing Automata II: Decidable Properties," Technical
Report, Cornell University, 1997.

[12] R. L. Constable, P. B. Jackson, P. Naumov, and J. Uribe,
"Constructively Formalizing Automata Theory," Foundations
of Computing Series, MIT Press, 2000.

[13] M. Heiner and M. Heisel, "Modeling Safety Critical Systems
with Z and Petri nets," International Conference on Computer
Safety, Reliability and Security, Springer, pp. 361–374, 1999.

[14] H. Leading and J. Souquieres, "Integration of UML and B
Specification Techniques: Systematic Transformation from
OCL Expressions into B," Asia-Pacific Software Engineering
Conference, pp. 495-504, 2002.

[15] H. Leading and J. Souquieres, "Integration of UML Views
using B Notation," Proceedings of Workshop on Integration
and Transformation of UML Models, 2002.

[16] W. Wechler, "The Concept of Fuzziness in Automata and
Language Theory," Akademic-Verlag, Berlin, 1978.

[17] N. M. John and S. M. Davender, "Fuzzy Automata and
Languages: Theory and Applications," Chapman & HALL,
CRC, 2002.

[18] M. Ito, "Algebraic Theory of Automata and Languages,"
World Scientific Publishing Co., 2004.

[19] N. A. Zafar, S. A. Khan, and B. Kamran, "Formal Procedure
of Deriving Language from Context-Free Grammar,"
International Conference on Intelligence and Information
Technology, vol. 1, pp. 533-536, 2010.

[20] M. Brendan and J. S. Dong, "Blending Object-Z and Timed
CSP: An Introduction to TCOZ," Proceedings of 20th
International Conference on Software Engineering, pp. 95,
IEEE Computer Society, 1998.

[21] J. M. Spivey, "The Z Notation: A Reference Manual,"
Englewood Cliffs, NJ, Printice-Hall, 1989.

[22] J. M. Wing, "A Specifier, Introduction to Formal Methods,"
IEEE Computer, vol. 23 (9), pp. 8-24, 1990.

[23] J. A. Anderson, "Automata Theory with Modern
Applications," Cambridge University Press, 2006.

[24] H. C. Young, J. Moscola, and J. W. Lockwood, "Context-Free
Grammar based Token Tagger in Reconfigurable Devices,"
Proceedings of International Conference of Data Engineering
(ICDE/SeNS), pp. 78, 2005.

[25] M. v. d. Brand, A. Sellink, and C. Verhoef, "Generation of
Components for Software Renovation Factories from
Context-Free Grammars," Conference on Reverse
Engineering, pp. 144-153, 2001.

[26] M. Balakrishna, D. Moldovan, and E. K. Cave, "Automatic
Creation and Tuning of Context-Free Grammars for
Interactive Voice Response Systems," Proceedings of IEEE
NLP-KE ’05, pp. 158 – 163, 2005.

[27] L. Pedersen and H. Reza, "A Formal Specification of a
Programming Language: Design of Pit," Second International
Symposium on Leveraging Applications of Formal Methods,
Verification and Validation, pp. 111-118, 2008.

[28] D. P. Tuan, "Computing with Words in Formal Methods,"
Technical Report, University of Canberra, Australia, 2000.

[29] S. A. Vilkomir and J. .P. Bowen, "Formalization of Software
Testing Criterion," South Bank University, London, 2001.

[30] A. Hall, "Correctness by Construction: Integrating Formality
into a Commercial Development Process," Praxis Critical
Systems Limited, Springer, vol. 2391, pp. 139-157, 2002.

[31] B. A. L. Gwandu and D. J. Creasey, "Importance of Formal
Specification in the Design of Hardware Systems," School of
Electron & Electr. Eng., Birmingham University, 1994.

[32] D. K. Kaynar and N. Lynchn, "The Theory of Timed I/O
Automata," Morgan & Claypool Publishers, 2006.

[33] D. Jackson, I. Schechter, and I. Shlyakhter, "Alcoa: The Alloy
Constraint Analyzer," Proceedings of The 22nd International
Conference of Software Engineering (ICSE'2000), pp. 730-
733, 2000.

[34] D. Aspinall and L. Beringer, "Optimisation Validation,"
Electronic Notes in Theoretical Computer Science, vol. 176,
pp. 37–59, 2007.

[35] S. Briaisa and U. Nestmannb, "A Formal Semantics for
Protocol Narrations," Theoretical Computer Science, vol. 389,
pp. 484–511, 2007.

[36] L. Freitas, J. Woodcock, and Y. Zhang, "Verifying the CICS
File Control API with Z/Eves: An Experiment in the Verified
Software Repository," Science of Computer Programming,
vol. 74, pp. 197-218, 2009.

256

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://hvg.ece.concordia.ca/Publications/Confrences/IFM%2707.pdf
http://hvg.ece.concordia.ca/Publications/Confrences/IFM%2707.pdf
http://www.itee.uq.edu.au/~smith/ifm2000-2.pdf
http://www.itee.uq.edu.au/~smith/ifm2000-2.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5475

	I. Introduction
	II. FORMAL METHODS
	III. Applications of Context-Free Grammar
	IV. Formal Analysis of Context-Free Grammar
	A. Producing Left Most Derivations
	B. Verification of Language Generated From CFG
	C. Checking Ambiguity of Language

	V. Model Analysis
	VI. Conclusion and future work
	References

