
A Formal Specification of G-DTD:

A Conceptual Model to Describe XML Documents

Zurinahni Zainol
*,^

, Bing Wang
*

*
Department of Computer Science

University of Hull
UK

^
School of Computer Sciences

Universiti Sains Malaysia

Penang, Malaysia

z.zainol@2007.hull.ac.uk, b.wang@hull.ac.uk

Abstract – This paper provides a formal specification in Z of

a conceptual model for an XML document called Graph-

Document Type Definition (G-DTD). This model has been

used for describing XML documents at the schema level and

also assists the user to arrange the content of XML

documents. More importantly G-DTD can be used as a tool

to simplify the XML document design in a simple and

precise way. The specification presented here provides a

formal account of the state and operation of this model and a

sound basis for instantiations of the model to be built.

Keywords – XML model and design; graphical notation;

DTD; formal methods

I. INTRODUCTION

 It is well known that XML documents can be

regarded as a new type of database, and such data are

particularly good for information exchange on the

internet. Like relational databases, poorly designed

documents may contain too many unnecessary

redundancies and these redundancies may contain update

anomalies [2, 7, 14, 15]. Data redundancies and anomalies

can occur in XML documents if the schema that is DTD

(Document Type Definition) [11] or XML Schema [13] is

not well defined. In order to avoid these problems, it is

very important to have a well defined schema for XML

documents. To achieve this aim, a conceptual model

Graph Document Type Definition (G-DTD) [16] is

proposed to describe XML documents at the schema

level. G-DTD has richer syntax and structure which

incorporates attribute entity, simple data types, complex

element data types, relationship types, hierarchical

structure, cardinality, sequence and disjunctions between

elements or attributes. The benefit of the G-DTD data

model is that, it can be used to capture the syntax and

semantics of XML documents in a simple but precise

way. Having G-DTD as a tool helps the user to arrange

the content of XML documents in order to give a better

understanding of DTD structures, improves XML design

and assists the normalization process as well. The

conceptual model G-DTD is a first layer of an XML

document design system which we have formally

constructed.

 The benefits of having such a formal specification are

firstly, to make a precise description of the complete G-

DTD model at the conceptual level in order to remove

ambiguity that may arise from its graphical

representation. Secondly, to make G-DTD itself a

modelling notation so that it can be used as the basis for a

rigorous tool for XML design and finally, to eliminate

inconsistencies in XML design at a schema level. This

formal specification is used to describe a fundamental

framework of what the system can do and also as an

abstraction of a full complete system which can serve as a

reliable blueprint for those who want to implement the

program later. This formal specification is important

before the implementation of the real system is developed,

as its allows a designer to understand the big picture of

the system and helps to discover error early in the

development process.

 There is a related work by Anutariya et al. [1], which

has proposed a formal data model for an XML database

using XML Declarative Description (XDD) theory.

However, the most related work using a formal method to

present formally a data model for semistructured data

called Object Relational Atribute for Semistructured

(ORA-SS) is done by Lee et al. [8,9]. They used different

types of formal method languages to present the syntax

and semantics of the model. For instance, Lee at al [8]

used Z formal language to validate the syntax and

semantics of the ORA-SS model. They also validated the

model to check the correctness of ORA-SS at both

schema and instance levels. Similar to this work, the

formalization of ORA-SS using OWL was presented to

338

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

improve verification performance. Recently, Lee et al [9]

have used a different approach to define a formal

specification for ORA-SS using Prototype Verification

System (PVS) language. However, to the best of our

knowledge, no formal specification has been developed to

define an XML document design system. This paper

describes the first layer of the system.

 The rest of the paper is organized as follows: Section

II provides background knowledge on G-DTD notations,

structure and operations. Section III presents the Z formal

specification of G-DTD. In Section IV, we demonstrate

the formal specification of G-DTD operations defined in

Section II. We conclude the paper with our future work in

Section V.

II. BACKGROUND

 DTD is commonly represented as textual

representation. In practice, it often causes difficulties

when designing even a simple XML document. More

importantly, in DTD, the semantic constraints and

relationship between the elements in the XML document

cannot be represented precisely and clearly. For instance,

as shown in Figure 1, the relation between course and

student is not defined explicitly. The semantic relation

between the elements presents only one-to-many

relationships, while other relationships such as many-to-

many or many-to-one relationships cannot be defined.

However, G-DTD overcomes the above problems by

using a graphical notation to visually represent an XML

document structure at the schema level. This notations

are shown clearly in the example provided in Figure 2. In

this way, we believe the user can have a better

understanding of XML document structure. Indeed, Mok

and Embley [10] make the argument that “the graphical

conceptual modelling languages offer one of the best

human–oriented ways of describing an application”

 Representation of G-DTD is slightly different from

the DTD. Firstly, we distinguish explicitly the difference

between complex elements, simple element and attribute.

We emphasise that a simple element is an element with no

child elements, while an attribute is a key or candidate

key of a complex element. The reason for this is to make

the normalization process easier. Secondly, we present

the G-DTD structure as a hierarchical structure of

elements which is similar to XML document structure, to

provide an accurate picture of the XML document. The

advantages of G-DTD over DTD are: it allows users to

define explicitly the structure of attribute nodes, simple

element nodes and complex element nodes in a

hierarchical way and also allows the user to determine the

relationship dependency between the nodes.

A. Syntax and Semantics of G-DTD

 Some of the notations of G-DTD have been adopted

and improved upon from the current data model ORA-SS

[5] notations and conventional ER model [4]. G-DTD [15]

consists of six basic components:

(1) Complex element node. A complex element node

is used to represent an ‘ELEMENT‟ in DTD. The complex

element node is illustrated as a labelled rectangular box.

This notation is adopted from the ER model [4] which is

similar to entity. The label is written in the rectangle as a

tuple <name, level>, where name represents the name of

the node and level represents the depth of the node in G-

DTD.

(2) Simple element node. A simple element node is

used to represent an ‘ELEMENT‟ associated with

#PCDATA or #CDATA. It is illustrated as a labelled

rounded rectangular box with the form <name,level,type>

where name is the name of the simple element, level is the

depth of the node in the G-DTD and type represents

PCDATA or CDATA or string 'S' . All simple element

nodes are assumed to be mandatory and single valued,

unless the node contains the symbol „?‟ which signifies it

is single valued and optional, or + which signifies that it is

multi-valued and required, or an * which shows that it is

optional and multi-valued. This notation is similar to

ORA-SS [6]. The symbol is written in front of the tuple

<name, level, type> to differentiate among them

accordingly.

(3) Attribute node. An attribute node is used to

represent an attribute defined in ATTLIST. The attribute

node is an identifier for a complex element node. It is

represented as an ID which is unique and mandatory

among the instances of complex elements. Attributes can

be classified as single attributes and composite attributes.

A single identifier attribute has an atomic value and

composite attributes have more than one identifier

attributes. A single identifier attribute is represented as an

oval and a composite attribute as a double oval.

(4) Set relationship type. Three types of relationship

are used in G-DTD: Hierarchical link, part_of link and

has_a link. The Hierarchical link is a relationship between

complex element nodes. This link shows the relationship

between parent node to child node or ancestor node to

descendant node. For Hierarchical link, a relationship

dependency, which is indicated by the connectivity

between complex element occurrences, is important. Basic

constructs for connectivity are: one-to-one (unary or

binary relationship), one-to-many (unary or binary

relationship), many-to-one and many-to-many (unary or

binary relationship). All these types of relationship are

indicated by directional arrows. The notation is presented

as (name, d, cp, cc) where name represents the name of the

relationship, d is the degree of relationship, cp and cc are

cardinality constraints for parent and child respectively.

This notation is similar to ORA-SS [6]. The degree can be

two, three or n-ary. The cardinality of cp and cc in a

relationship is represented as 2 tuple (min: max). The

constraint (0:N), (0:1)and (1:N) is represented as the

339

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

operators *, ? and + respectively, except the cardinality

constraint (1:1) is presented as 1. For instance, the

diagram in Figure 2 illustrates a binary Hierarchical link

between complex element student and complex element

courses, where a student can take zero or many courses

while many courses can be taken by zero or many

students. Part_of link is a relationship between a complex

element node and an attribute node. It is illustrated as a

bold double arrow. Has_a link is a relationship between

complex element node and a simple element node. It is

illustrated as a single double arrow.

(5) Semantic constraint between set relationships.

There are two types of set relationships: First, sequence

between a set of child element nodes. We emphasize in

our notation that the attribute node(s) must be located in

the first position in the sequence. To express such ordering

in a G-DTD, we draw a directed upwardly curving arrow

labelled with {sequence} across all the set of relationships

involved. Second, is disjunction between the set of sibling

nodes. To illustrate this, we draw a line labelled with

{XOR} across all the set of relationships involved.

(6) Root node. A root node is used to represent

DOCTYPE. Its notation is similar to complex element

notation, as it is a special case of a complex element node

and its level is always zero.

Figure 2 shows a G-DTD describing the structure of an

XML document corresponding to the DTD in Figure 1.

The root node Department has a binary hierarchical link

with the complex element node course. The semantic

relationship between them reveals that the Department can

have one-to-many courses at one time. The complex

element course has a sequence of attribute cno, simple

element node title and complex element node student.

<!DOCTYPE department[

 <!ELEMENT department(course*)>

 <!ELEMENT course(title, student*)>

 <!ATTLIST course cno ID #REQUIRED>

 <!ELEMENT title (#PCDATA)>

 <!ELEMENT student(fname|lname?,lecturer)>

 <!ATTLIST student Sno ID #REQUIRED

 <!ELEMENT fname(#PCDATA) >

 <!ELEMENT lname(#PCDATA) >

 <!ELEMENT lecturer (tname)>

 <!ATTLIST lecturer tno ID #REQUIRED>

 <!ELEMENT tname (#PCDATA)>

]>

Figure 1. A DTD for the university database

The part-of link attribute is a mandatory relationship

where the attribute node cno is required and unique for

every course in the XML document. The simple element

node title is part-of the complex element courses. One

course can be taken by many students while the complex

element student consists of a sequence of attribute node

sno, simple elements fname, lname and complex element

lecturer. Attribute node sno is required for the complex

element student. Complex element node student requires

only one of its subelements, either fname or lname, to

appear in the XML document while the simple element

lname is optional. The semantic relationship between

course, student and lecturer is indicated as a ternary

relationship since each student is assigned to a lecturer

who is teaching the course.

 As shown in Figure 2, the semantic relationships

between the complex element nodes have been added at

the hierarchical link to present more semantics at the

schema level. The reason we add this type of semantics is

to make the relationship between the nodes more explicit,

which will help during the normalization process.

Figure 2. G-DTD

(CS,2,*,*)

cno,2,ID

Department,0

(DC,2,1,*)

title,2,S

fname,3,S
?lname, 3,S

tname,4,S

course,1

student,2

lecturer,3

tno,4,ID

sno,3,ID

(CST,3,1,*)

340

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. G-DTD Operations

 The operations of the G-DTD model describe the

dynamic properties of the model. G-DTD model

operations are classified into five main parts. Query

Operations, Insert Operations, Delete Operations,

Searching Operations, and Update operations. An

operation to determine the root and leaves of the G-DTD

is also required. Later, these operations will be used in

normalizing the G-DTD into normal forms. In the

following description, we will conceptually discuss the

semantic connection of these operations according to this

classification.

(1) Query Operations

 Query operations allow the user to query the node

types and information, related nodes and links

information defined in G-DTD.

 (a) Query a Node Type and Information

 The operations of querying node types allow the user

to query different types of node stored in G-DTD such as

complex element, simple element or attribute nodes. The

user can also query information of a particular node, such

as name, level and node type. If the queried node does not

exist, an error message is given.

 (b) Query a Related Node

 Since the structure of G-DTD is like a tree structure,

the query operations allow the user to query the related

node that links to a particular node using a path through

an existing link such as a Hierarchical, Part_of or Has_A

link. For instance, the user can detect the parent of a

complex element node by using the hierarchical link

between two complex element nodes. Another example,

the simple element for a particular complex element node

can be determined through the has-a link.

 (c) Query a Hierarchical Link

 Hierarchical links are the most important links in G-

DTD. This operation allows the user to query the instance

of a hierarchical link, such as name of link, degree of

relations and parent and child constraint.

 (2) Insert Operations

 Insert operations allow the user to add new nodes to

the G-DTD. When a new node is being inserted in the G-

DTD model, the following situations are possible:

 A new node of type complex element node,

simple element node or attribute node is created

 A new hierarchical link is built between the

complex element node and created complex

element node

 A new has-a link is built between the created

complex element node and a simple element node

 A part-of link is built between the created

complex element node and an attribute node

 To ensure the new node is not redundant with any

node in the given G-DTD, it must be checked whether the

node already exists. Then the proper location of the new

node needs to be determined before it can be inserted into

the G-DTD. More importantly, it must satisfy the data

integrity constraint of the given G-DTD.

 (a) Inserting a Node

 In this case a new node is inserted into the G-DTD.

Whether the new node is a complex element, simple

element or attribute node, the properties of the inserted

node such as ID, level and types are inserted and stored

together in the G-DTD. The operation implies that when

the node is inserted, related nodes such as parent node or

child node should be reported to the user since the

structure of the G-DTD is changed. If the newly inserted

node is a complex element node, the position of the new

complex element node is based on the rules provided in

the normalization procedure [17]. In such a situation, a

hierarchical link is created with its parent node. In this

case, the parent node may be a root node or another

complex element node based on the normalization rules

provided. However if the created node is a simple element

or an attribute node, a Part_of link or Has_A link is built

between it and the parent node, which is a complex

element node.

 (b) Inserting an Instance of a Hierarchical Link

 Inserting an instance of a hierarchical link means that

the semantic relation between two complex element nodes

has to be created. The user needs to know the semantic

relationships before he/she can insert them to the G-DTD.

The user can make links and insert the corresponding link

information such as name, degree, parent constraint and

child constraint. In contrast, for a Part_of link or Has-A

link, the user is not required to put any instance for the

links.

(3) Delete Operations

 Delete operations result in the corresponding data

being removed from the G-DTD. Since the structure

defined in the G-DTD is a tree structure, deleting will

affect the location of the existing nodes in the G-DTD,

especially the parent node and child node. The delete

operation in G-DTD must satisfy the conditions and

constraints given in the normalization rules [17]. In the

following, we will discuss the different situations of

delete operations in the G-DTD.

 (a) Deleting a Complex Element Node

 Deleting a complex element node is a complex

deletion process in G-DTD. This is because every

complex element node is related to its parent node and

child node. Before the deletion process of a complex

341

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

element node is started, it is important for the user to find

its related nodes such as its parent node and child nodes.

Eventually, by deleting a complex element node, its

attribute and simple element nodes with the relevant,

Part_of and Has_A links are automatically deleted as

well. Then, new links are built up with its new parent

node and child node.

 (b) Deleting a Hierarchical Link type and its Instance

According to the hierarchical link type definition, each

instance of a hierarchical link type represents a semantic

relationship between two complex element nodes. When

such an instance is deleted, the specific relationship

between the two nodes has no further semantic link

between them.

(4) Update Operations

 Update operations change the location of the current

node. A complex element node or simple element node

can be moved around from one location to another. In the

process of moving a node, all the related nodes including

complex element nodes and simple element nodes should

be notified if the moving node has a relationship with

them. The only case we consider here is moving a

complex element node. It may be necessary to move a

complex element node up to another level when there

exists dependency between an attribute node and simple

element node of a complex element node. In this

situation, it is not necessary to create a new element node

but rather to restructure the G-DTD by moving up the

complex element node at level n (nn) to level n-1 (nn-1)

along with its corresponding children.

(5) Determine the root node and last node

 This operation will determine the root node and last

node (last level) in the G-DTD. The last node may be a

simple element node or attribute node. These operations

are very important because in order to avoid duplication,

we need to move the corresponding node to a position as

close as possible to the root node.

III. THE SPECIFICATION OF G-DTD

 In this paper we provide a formal specification of the

G-DTD which represents a formal, concise and readable

definition of the G-DTD and its operations. The

specification can be used as the basis for implementation,

as well as a framework for further XML document design.

We choose the language Z [11] to formalise our model for

a number of reasons. First, the language is based upon

primitive mathematical notation such as set theory and

first order predicate logic, making it accessible to

researchers from variety of different backgrounds.

Second, it is expressive enough to allow consistent,

formal and unified representation of a system and its

associated operations. Third, it is model oriented [3]. A

model-oriented specification language seems more

appropiate to specify an XML design model and it is

easier to understand. Finally, in particular, we have found

that Z is an established language, widely accepted and

appropiate for building formal frameworks [9]. A

specification written in Z is a mixture of formal

mathematical statements and informal explanatory text.

Both have their importance: the formal part gives a

precise definition of the system being specified, while the

informal text makes the specification more

comprehensive and readable, linking the abstract

definition of the system to the real world. In this paper

we present only some basic components and operations,

due mainly to space limitations; other results will be

published in a forthcoming paper.

A. Basic types

 We use the basic types [ID, Element_Name,

Attribute_Name, Relation_Name] as a given set which

will be used in the later schema definition. ID represents

each nodes identifier, which is unique; both

Element_Name and Attribute_Name are used to represent

the set of all possible XML element nodes and attribute

nodes respectively. Relation_Name is a set for

relationship names.

B. The Data Structure of G-DTD

 As described in Section II(A), we captured the

characteristics of each type of node such as simple

element, complex element and attribute nodes using the

following schema type. There is no constraint we need to

add in each of the declarations

(1) Simple Element Node

 The type definition for a simple element is defined as

follows:

Simple_Element_Type::=singlevalue| multivalue| op_singlevalue|
op_multivalue

 SimpleElementNode
identity:ID

name:Element_Name

level:ℕ

elemType: Simple_Element_Type

(2) Attribute Node

 The AttributeNode schema captures the properties of

an attribute node as follows:

Attribute_Type::= composite| required|reference

 AttributeNode
identity:ID

name: Attribute_Name

level:ℕ

AttType: Attribute_Type

 (3) Complex Element Node

The ComplexElementNode schema represents the

properties of a complex element node with its identity,

name and level.

342

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 ComplexElementNode
identity:ID

name: Element_Name

level:ℕ

(4) Parent for Complex Element Node, Simple Element

Node and Attribute Node

 Because the structure of the G-DTD is a tree

structure, it is important to define a parent for each

complex element node, simple element node and attribute

node to describe precisely the relationship between them.

The functions parent_ce, parent_se and parent_att are

defined using the axiomatic function as a total function

because every complex element node, simple element

node and attribute node must have its own parent node

and no node can have more than one parent.

parent_ce: ComplexElementNode →ComplexElementNode

parent_se: SimpleElementNode →ComplexElementNode

parent_att:AttributeNode →ComplexElementNode

∀ce1,ce2: ComplexElementNode ⦁

 ce1↦ce2 ∈ parent_ce ⇔ (ce1 ≠ ce2 ∧

 ce2.level < ce1.level ∧

 ce2.level −ce1.level = 1) ∨

 (∀se:SimpleElementNode; ce: ComplexElementNode ⦁

 se↦ce ∈ parent_se ⇔ (ce.level < se.level ∧

 se.level −ce.level = 1)) ∨

 (∀att:AttributeNode; ce: ComplexElementNode ⦁

 att↦ce ∈ parent_att ⇔ (ce.level < att.level ∧
 att.level −ce.level = 1))

 In the state invariant, it is stated that complex element

ce1 ↦ ce2 ∈ parent_ce means that ce2 is the parent of ce1

if and only if ce1 is not the same as ce2 and the level

position of ce2 must always be less than the level position

of ce1 by one level difference only. The same meaning is

applied for the second and third predicates associated with

the parent for a simple element node and parent for an

attribute node, respectively.

(5) Relationship

 We define three types of relationship which are

Hierarchical_Link, Part_of_Link, and HasA_Link using

the following schemas.

 (a) Hierarchical_Link

 The Hierarchical_Link schema consists of a relation

hierarchical_link which is used to define a homogeneous

relation between complex element nodes. The first and

second predicates of the schema state that an ordered pair

of complex element nodes ce1↦ce2 is an element of

hierarchical_link if and only if ce2 is an immediate parent

of ce1 or ce2 is a hierarchical parent of ce1, ce1↦ce2 ∈

hierarchical_link
 +

,

that to say, it is a transitive closure

relation. The third predicate of the schema defines that the

child complex element should not be the same set as the

parent complex element node and finally the relation must

be cycle free, which means no complex element node is

mapped to itself. This is defined using transitive closure

to capture the idea of some complex element nodes

(homogeneous binary relation) can be directly reached in

the same link. The relation hierarchical_link is known as

a homogeneous relation [4] since the complex elements

are from the same set. One of the benefist of this relation

is that it can be composed among such links themselves.

Thus, we can form the relation

hierarchical_link;hierarchical_link. This can also be

written as hierarchical_link
2
. The hierarchical_link can

be repeated as many times as desired. The constraint

relationship on the hierarchical_link must be a positive

number. The properties of the schema also consist of

name, degree of relationship, parent cardinality and child

cardinality constraints.

 Hierarchical_Link
hierarchical_link:ComplexElementNode↔ComplexElementNode
degree:ℕ1

parentconstraint: ℕ..ℕ1

childconstraint: ℕ..ℕ1

name: Relation_Name
(∀ce1: ComplexElementNode ; ce2: ComplexElementNode
⦁ ce1↦ce2∈ hierarchical_link
⇔ parent_ce (ce1) = ce2
 ∧ ce1↦ce2 ∈ hierarchical_link +
 ∧ ce1≠ ce2
 ∧ (∃ce:ComplexElementNode ⦁
 ce ↦ ce ∉ hierarchical_link +))
 ∧ (∀ n1,n2 : name ⦁ n1≠ n2)
 ∧ (∀ d: degree ⦁ ≠ d ≥ 2)
 ∧ (∀ card : ℕ..ℕ1 ⦁ second(card) ≥ first(card))

 (b) Part_of Link

 The Part_of link is a binary relationship rather than n-

ary relationship. It consists of Attribute_key function and

Composite_key relation. The Attribute_key function is a

total and injective type because each complex element

node has a unique attribute node. The Composite_key

relation is a relation between a complex element and

attributes. In the first predicate, ce ↦att ∈ Attribute_key

if and only if the attribute type is required. The second

predicate states that, ce↦attcom ∈ Composite_key if and

only if the attribute type is composite. The last predicate

indicates that the domain for the Attribute_key function

and Composite_key relation is a member of a complex

element node.

 Part_of
Attribute_key:ComplexElementNode↣AttributeNode
Composite_key:ComplexElementNode ↔AttributeNode

∀ce:ComplexElementNode;att: AttributeNode ⦁
(ce↦att) ∈Attribute_key ⇔ att.attType = required ∧ parent_att (att)
= ce
∀ce:ComplexElementNode;attcom: AttributeNode ⦁
(ce↦attcom)∈ Composite_key ⇔ attcom.attType =composite
∧ parent_att (attcom) = ce
dom Attribute_key ∪ dom Composite_key ∈ComplexElementNode

(c) Has_A Link

 The schema Has_A consists of a has_a relation which

describes that a complex element node has a relation with

a simple element node where a simple element can be a

single value, multivalue, optional single value or optional

multivalue and must have a complex element node as a

parent.
 Has_A

has_a:ComplexElementNode ↔SimpleElementNode

∀ce:ComplexElementNode; se: SimpleElementNode ⦁
(ce↦se) ∈ has_a ⇔ se.seType = singlevalue ∨ se.seType =
multivalue ∨ se.seType=op_singlevalue ∨ se.seType =op_multivalue
∧ parent_se (se) = ce

343

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

C. The State Space of Schema G-DTD

 To finally organize the structure of the G-DTD, all

the above-defined node types and relationship types are

used in the schemaGDTD definition.

The SchemaGDTD consists of seven variables which

include a root node type, set of ComplexElementNode, set

of SimpleElementNode, set of AttributeNode and set of

relation Hierarchical_Link, Has_A and Part_of types.

The first predicate of the SchemaGDTD states that there

must exist one root node. The second, third and fouth

predicates indicate that at any point in time, each complex

element node, simple element node and attribute node

must have a unique name. The last four predicates ensure

that all types of nodes and relationships defined exist in

SchemaGDTD.

SchemaGDTD__________________________________
root:ComplexElementNode
Cnodes: ℙComplexElementNode
Snodes: ℙSimpleElementNode
Attnodes:ℙAttributeNode
HierarhicalLink: ℙHierarchical_Link
HasA:ℙHas_A
Partof: ℙPart_of

∃1root:ComplexElementNode ⦁ root.level = 0
∀ce1,ce2: Cnodes | ce1≠ce2⦁ce1.name ≠ ce2.name
∀se1, se2: Snodes | se1≠se2⦁ se1.name ≠ se2.name
∀att1, att2: Attnodes | att1≠att2⦁att1.name ≠ att2.name
∀ partlink:Partof ⦁ partlink.AttributeKey ≠ ∅
∀ hl:HierarchicalLink ;haslink: HasA ; partlink: Partof ⦁
dom partlink.Attribute_key = dom partlink.Composite_key
∧ ran haslink.hasa = Snodes ∧ ran partlink.Attribute_key = Attnodes

D. Initial State of Schema G-DTD

 Before any operation can be performed on the model,

we must define the initial state of the G-DTD. In our

case, the initial state of the G-DTD refers to the situation

in which there are no elements existing in the schema.

This schema describes the InitialG-DTD in which the sets

of simple element nodes, complex element nodes and

attribute nodes are empty: in consequence, the

HierarchicaLlink, HasA and Partof relations are empty

too. This is characterized by the following schema

definition:

 _InitialG−DTD
ΔSchemaGDTD

Snodes =∅
Cnodes =∅
Attnodes =∅
Partof = ∅
HasA = ∅
HierarchicalLink =∅

IV. OPERATIONS SPECIFICATION IN G-DTD

The operations defined in schema G-DTD describe the

behaviour or state change of the G-DTD during editing

and manipulating nodes. We present some of the

operations which are query operations, create, insert and

delete operations. However, before we present these

operations we must first define the following functions.

(1) Create Complex Element Node

Create_NewComplexElementNode:(ID×Element_Name×ℕ)
→ComplexElementNode

∀newid:ID; newname: Element_Name; l: ℕ1; schema:
SchemaGDTD ⦁ (∃ce, newnode:ComplexElementNode;
schema′:SchemaGDTD|
newnode = ce ⦁

 (ce.identity = newid ∧ ce.name = newname ∧ ce.level=l)∧
 newnode ∉ schema.Cnodes ∧
 schema′.Cnodes = schema.Cnodes ∪ {newnode}
 ⇒ Create_NewComplexElementNode
 (newid,newname,l) = newnode)

The first predicate of the function assigns an instance of a

new complex element node. The second predicate gives a

pre-condition for the success of the operation. The new

complex element to be added must not already be one of

the members of complex element nodes in G-DTD. This

is because only one unique complex element is allowed in

the G-DTD schema. If this condition is satisfied, the new

complex element node is added to the set of complex

element nodes.

(2) Create Attribute Node

 The description of the Create_AttributeNode function

is similar to the Create_ComplexElementNode function

Create_AttributeNode: (ID×Attribute_Name×ℕ1× Attribute_Type)
→AttributeNode

∀newid:ID;newname:Attribute_Name;l:ℕ1;type: Attribute_Type;
schema:SchemaGDTD ⦁
(∃att, newnode: AttributeNode; schema′:SchemaGDTD|
newnode = att ⦁
 (att.identity = newid ∧ att.name = newname ∧
 att.level=l ∧att. attType = type) ∧
 newnode ∉ schema. Attnodes ∧
 schema′.Attnodes = schema.Attnodes ∪ {newnode}
 ⇒Create_AttributeNode(newid,newname,l,type)= newnode)

(3) Create Has_a link

 Create_Has_a_Link is a function to create a new

HasA link between a complex element node and a simple

element node. The first predicate of the function maps

both of the given complex element node and simple

element node and assigns between them a new has link.

Then the new has link is added to the set of new has links

in SchemaGDTD.

create_Has_a_Link: (ComplexElementNode ×
SimpleElementNode)→ HasA

∀ ce:ComplexElementNode; se: SimpleElementNode;
schema:SchemaGDTD ⦁
(∃new_Haslink, newlink: HasA; schema′:SchemaGDTD|
new_Haslink = newlink ⦁
 ce↦se ∈ newlink.has_a
 ∧ schema′.HasA = schema.HasA ∪ { new_Haslink}
 ⇒ create_Has_a_Link (ce,se) = new_Haslink)

 Create_Hierarchical_Link is a function to create a

new Hierarchical_Link between two complex element

nodes. The first predicate of the function maps both of

given complex element node and complex element node

and assigns between them a new Hierarchical_Link if and

only if it is satisfied that the relation of these complex

element nodes is not a cyclic one. The remaining

predicate is used to assign a new relation name, new level,

parent constraint and child constraint to the new

Hierarchical_Link. The last predicate ensures that the

new has link is added to the set of new Hierarchical_Link

in SchemaGDTD.

344

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 (4) Create Hierarchical link

Create_Hierarchical_Link: (ComplexElementNode ×
ComplexElementNode) → HierachicalLink

∀ ce1,ce2:ComplexElementNode; schema: SchemaGDTD ⦁
(∃new_HierarchicalLink, newlink: HierarchicalLink; level: ℕ1;
pc, cc : ℕ×ℕ1;
newname: Relation_Name; schema′:SchemaGDTD|
new_HierarchicalLink = newlink ⦁
 ce1↦ce2 ∈ newlink. hierarchical_link ⇔
 (ce1 ↦ ce2 ∉ newlink. hierarchical_link +
 ∧ ce2 = parent_ce(ce1)
 ∧ name (newlink) = newname
 ∧ degree (newlink =level
 ∧ parentconstraint (newlink.hierarchical_link) = pc
 ∧ childconstraint (newlink.hierarchical_link) = cc)
 ∧ schema′.Hierarchical_Link=
 schema.Hierarchical_Link ∪
 { new_HierarchicalLink }
 ⇒ Create_Hierarchical_Link (ce1,ce2) =
 new_HierarchicalLink)

(5) Create Partof link

 The function Create_partof_Link is used to create

part-of links between complex element nodes and

attribute nodes. The argument of this function is a relation

between a complex element node and attribute node and

return a partof link. The new part_of link can be either

Attributekey or Compositekey and the parent of the

attribute node must be a complex element node. Finally,

a new partof link is added to the set of partof links in

SchemaGDTD.

create_Partof_Link: (ComplexElementNode×AttributeNode)
→partof

∀ce: ComplexElementNode; att: AttributeNode; new_partoflink ,
partoflink: partof; schema: SchemaGDTD ⦁
 ∃ schema′: SchemaGDTD |
 new_partoflink = partoflink⦁
 ce↦att ∈ partoflink.AttributeKey ⇔
 att.attType = required ∧ parent_att(att) = ce
 ∨ ce↦att ∈ partoflink .CompositeKey ⇔
 att.attType = composite ∧ parent_att(att) = ce
 ∧ schema′.Partof= schema.Partof ∪{new_partoflink }
 ⇒ create_Partof_Link(ce, att) =new_partoflink

A. Query Operations

 Before manipulating the structure of any complex

element node in the G-DTD, we should be aware of its

related nodes. Since the structure of the G-DTD is like a

tree structure, a child or descendants and parent or

ancestor of a given complex element node needs to be

queried in some cases. The status of a queried node is

defined using a set of messages. It is defined by

enumeration type

Report::= Existence| Nonexistence| Inserted| Created

 Based on this set, we define the following schema

Success to output a confimatory message that the

operation being performed has been succesfully

completed.

 Success
report! Report

report! = Existence

 The following Get_AttributeKey shows how to get an

attribute key of complex element node using the part_of

link

 Get_AttributeKey
ΞSchemaGDTD
ce?: ComplexElementNode
attkey!: AttributeNode

∀part_of: Partof ⦁
attkey! = part_of.AttributeKey (ce?)

 Get_SimpleElement schema captures how to get a

simple element node by using has_a link

 Get_SimpleElementNode
ΞSchemaGDTD
ce?: ComplexElementNode
se!: ℙSimpleElementNode

∀has_link: HasA ⦁
se! = has_link.hasa ⦇{ce?}⦈

 Each operation can only go wrong if the complex

element ce? is not in SchemaGDTD. This case is captured

by means of the schema UnknownNode.

 UnknownNode
ΞSchemaGDTD
ce?: ComplexElementNode
report!: Report

ce? ∉ dom has_link.hasa ∨
 ce? ∉ dom HierarchicalLink.hierarchical_link
report!= Nonexistence

 Based on the schema definition above, we can finally

define the following schemas, which describe the state in

which a simple element node or attribute node has been

successfully queried.

Do_Query_AttributeKey ≙ Get_AttributeKey ∧ Success ∨
UnknownNode

Do_Query_SimpleElementNode ≙ Get_SimpleElementNode ∧ Success ∨
UnknownNode

The following schema is used to capture the query

operation for a complex element node. This schema

means that the existing complex element node whose

name is equal to the input name is found.

 Get_ComplexElementNode
Ξ SchemaGDTD
ce_name?:Element_Name
ce!: ComplexElementNode
found_ce: Element_Name ⇸ ComplexElementNode

∃ce: ComplexElementNode ⦁
ce.name =ce_name? ⇒ found_ce ce_name? = ce!

Do_Query_ComplexElementNode ≙ Get_ComplexElementNode ∧
Success ∨ UnknownNode

A query about the ancestor or descendants of complex

element node can be made by using a Hierarchical_Link.

We achieve this by forming the transitive closure of

Hierarchical_Link

 Anchestors
ΞSchemaGDTD
ce?: ComplexElementNode
anchestor_ce!:ℙ ComplexElementNode

∀hl: HierarchicalLink ⦁
anchestor_ce! = (hl. hierarchical_link+)∼⦇{ce?}⦈

 Do_Query_AnchestorNode ≙ Ancestors ∧ Success

 Descendants
ΞSchemaGDTD
ce?: ComplexElementNode
descendant_ce!:ℙ ComplexElementNode

∀hl: HierarchicalLink ⦁
descendant_ce! = (hl. hierarchical_link+)⦇{ce?}⦈

 Do-Query_Descendants ≙ Descendants ∧ Success

B. Insert Operation

 Insert_NewComplexElement_Node schema is used to

insert a new complex element node into G-DTD. In the

345

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

signature of the schema, the declaration ΔSchemaGDTD

alerts the user to the fact that the schema is describing a

state change. The functions Create_New_ComplexElement

and Create_Hiearachical_Link are used to create a new node

and create a new link respectively. Before the node can be

inserted, a pre-condition is given to check whether its

exists already. The new complex element to be inserted

must not already be one in the G-DTD. This is because

only one unique complex element is allowed in the G-

DTD schema. If this condition is satisfied, the new

complex element node is inserted and a hierarchical link

is created between the new node and its parent node.

When the operation is successful, the output will take a

value inserted.

 Insert_NewComplexElement_Node
ΔSchemaGDTD
level?: ℕ
newname?: Element_Name
newid?:ID

∀newnode : ComplexElementNode ; newlink: HierarchicalLink⦁
 newnode=
Create_New_ComplexElement(newid?,newname?,level?) ∧
 newlink =
Create_Hierarchical_Link(newnode,parent_ce(newnode))

 The schema success just outputs a confirmatory

message that the operation being performed has been

successfully completed.

 Success

rep!: Report

rep! = Inserted

 To capture the condition where the simple element

node is already a member of G-DTD, the following

schema is used:

 AlreadyExisted
Ξ SchemaGDTD
se_name?: Element_Name
se!: SimpleElementNode
found_se: Element_Name ⇸ SimpleElementNode
report! = Report

∃se: SimpleElementNode ⦁se.name=se_name?
⇒found_se se_name? = se! ∧ report! = Existed

 To perform Do_Insert_NewComplexElementNode

operation the following is used.

Do_InsertNewComplexElementNode ≙

Insert_NewComplexElementNode ∧ Success ∨ AlreadyExisted

C. Delete Operation

 The operation to delete a simple element node from

the G-DTD is specified by the following schema:

 Delete_SimpleElements_Node
ΔSchemaGDTD
Get_SimpleElementNode
se?: ℙSimpleElementNode

se? ∈ Snodes
∃parent: complexElementNode; link: hasa |
parent_se= link∼⦇{se?}⦈ ⦁
delete_partoflink(parent_se,link,schema)
Snodes′ = Snodes ∖{ se?}

 Before the node can be deleted, it must be checked

that the given node is a member of simple element nodes

in the G-DTD and the parent of the simple element node

needs to be determined. The node can be deleted from the

G-DTD if the input node is present in the G-DTD. If this

pre-condition is not satisfied, then this will be captured by

the following schema:

 UnknownNode
ΔSchemaGDTD
se?: ℙSimpleElementNode
report!:Report

se? ∉ Snodes
report! = Nonexistence

 The complete specification of the operation to delete

a simple element node from SchemaGDTD is given by the

schema:

Do_DeleteSimpleElementNode ≙ Delete_SimpleElement ∧ success ∨
UnknownNode

V. CONCLUSION

 We have presented a formal specification of a G-

DTD model using Z notation style which gives precise,

mathematical meaning to basic conceptual structures.

The formalization of the G-DTD model is required for a

deeper understanding of modelled syntax, structure, and

semantics of model properties. The use of formal

specification techniques contributes to the clarity and

conciseness of the model, and enables formal derivation

of model properties to be performed easily. Obviously,

this paper has reported only the beginning of formal

development of an XML document design model, since it

includes just a description of the G-DTD model structure

and its basic operation. Currently we have constructed a

complete formal specification for an XML document

design model using G-DTD by applying those functions

and schemas (defined in Sections III and IV). This

specification includes finding of various functional

dependencies, checking the G-DTD normal forms and

normalization procedure operation. However, these results

will be the subject of another paper.

REFERENCES

[1] Anutariya, C., Wuwongse, V., Nantajeewarawat, E., and

Akama, K., "Towards a Foundation for XML Document

Database, Electronic Commerce and Web Technologies",

LNCS, Springer, Vol. 1875, pp. 324 -333 (2000).
[2] Arenas, M. and Libkin, L., "A Normal Form for XML

Documents", ACM Transaction on Database System, Vol.

29(1), pp. 195-232 (2004).
[3] Bottaci, L., and Jones, J. "Formal Specification using Z".

London: International Thomson Publishing Inc(1995).

[4] Chen, P. P., "The entity-relational model: Towards a

unified view of data", ACM transaction on Database

System, 14 (1976).

[5] Diller, A. Z., "An Introduction to Formal Methods",

England, John Willey (2001).

[6] Dobbie, G., Xiaoying, W., Ling. T.W. and Lee, M.L.,

"ORA-SS: An Object-Relationship-Attribute Model for

Semi-Strucured Data". Technical Report, Department of

Computer Science, National University of Singapore

(2000).

[7] Kolahi, S., "Dependency-preserving normalization of

relational and XML data", Journal of Computer and

System Sciences, pp. 636-647 (2007).

346

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[8] Lee, S.J., Sun, J., Dobbie, G., and Groves, L., "Formal

Verification of Semistructured Data in PVS", Journal of

Universal Computer Science, Vol. 15(1), pp. 241-272

(2009).

[9] Lee, S.J, Sun, J., Dobbie, G. and Li, Y.F. "A Z Approach

in Validating ORA-SS Data Models", Electronic Notes in

Theoretical Computer Science, Elsevier, Vol. 157, pp. 95-

109 (2006).

[10] Mok, W.Y., Ng Y., Embley, D.. A Normal Form for

Precisely Characterizing Redundancy in Nested Relations.

ACM Transaction on Database System, 21(1), pp. 77-

106(1996)

[11] Powell, G., "Beginning XML databases", Inidianapolis,

Indiana, Willey Publishing (2007).

[12] Spivey, J., "Understanding Z". Cambridge: University

Press, Cambridge (1988).

[13] Tompson, H. S., Beech, D., Moloney, and Meldensohn,

Noah, "XML Schema W3C Recommendation". Retrieved

on January 7, 2011 Accessed http://www.w3.org/TR/

xmlschema-1 (2011).

[14] Wang, J. and Topor, R., "Removing XML data

redundancies using functional and equality-generating

dependencies", 16th Australasian Database Conference,

pp. 65-74 (2005).

[15] Yu, C. and Jagadish, J.H., "XML schema refinement

through redundancy detection and normalization", The

VLDB Journal, pp. 203-22 (2008).

[16] Zainol, Z. and Wang, B., "GN-DTD: Graphical Notation

for Describing XML Documents", In Preceeding of 2nd

International Conference on Advances in Databases,

Knowledge, and Data Applications, DBKDA, IEEE, pp.

214-221 (2010).

[17] Zainol, Z. and Wang, B., "XML Document Design via

GN-DTD", European Journal of Scientific Research, Vol.

44(2), pp. 314-336 (2010).

347

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1

