
Performance Evaluation of a Generic Deployment

Infrastructure for Component-

based S/W Engineering

Abdelkrim BENAMAR

Department of computer sciences

University of Abou Bekr Belkaid

Tlemcen, Algeria

a_benamar@mail.univ-tlemcen.dz

Noureddine BELKHATIR

Adele S/W Eng. Team,

LIG Laboratory

University of Grenoble, France

Noureddine.Belkhatir@imag.fr

Abstract—We present a generic deployment infrastructure for

distributed component-based applications. This infrastructure

is based on OMG’s deployment and configuration specification

and model driven architecture paradigm. Even though our

approach is experimented for enterprise Java beans model, it

can be extended to other specific models. We suggest the use of

a classical measurement method in decision making for the

proposed generic deployment platform of component-based

applications. This method is based on graph theory and k-

median algorithm. It allows optimization of the cost of any

transaction in component deployment planning.

Keywords-deployment and configuration specification; model

driven architecture; computer network graph.

I. INTRODUCTION

Software deployment [6] is a very complex and
important process covering many activities. This complexity
becomes more significant with the evolution of networks and
component based systems. Many component based systems
[13] are used both by industries and academics. We illustrate
our approach on currently used industrial component
systems, such as Enterprise Java Beans (EJB), Microsoft
corporation .Net and OMG‟s CORBA Component Model
(CCM).

In the following, we present a generic deployment
infrastructure for distributed component-based applications.
Furthermore, we layout a general method to design made-to-
measure distances for any given deployment transactions.
The optimal distances are computed with classical graph
algorithms such as, k-median and contribute to the
improvement of the decision making process for deployment
of component-based applications.

The remainder of this paper is structured as follows:
section II presents the state of the art on deployment of
component-based systems. Section III focuses on the state of
the practices. In section IV we synthesize our previous work
[3] [17] on defining a generic deployment framework for
component-based applications. In Section V, the main
approaches to assessing the performance of distributed
applications are reviewed. They are followed by a
measurement method we apply to the deployment
specifically for deployment planning. Finally the main

achievements and perspectives are summarized in the
concluding section.

II. STATE OF THE ART

Recently, due to the availability of high-speed networks
and advances in packaging and interface technologies, there
has been considerable interest in building deployment
platforms for component-based applications [8] and
evaluating the performance of distributed applications [9].

A. Building Deployment Platforms

Hnětynka [13] introduces the Deployment Factory (DF)
and model-oriented environment, based on Deployment and
Configuration (D&C) specification for deploying software
components. Since the DF is based on a plug-in thought, the
deployment of the existing component technologies becomes
more easer.

Merle and Belkhatir [17] propose a distributed
environment called ORYA, for deploying ordinary
applications. In fact, ORYA supports the basic stages of
deployment process, such as install, configure, reconfigure
and uninstall. Nevertheless, the planning stage of ORYA is
very simple, because it supports only the deployment of
ordinary applications.

Deng et al. [7] introduce a deployment engine called
DAnCE based on D&C specification. This environment is
now under construction and supports just the deployment of
CCM components. However, it does not provide
functionalities of D&C specification.

III. STATE OF THE PRACTICE

In this section we survey the main deployment platforms
for component-based applications (e.g., EJB, .Net and CCM)
developed by industrials and used in practice. The complete
comparative study presented in our previous work [3] proves
the robustness of these models and therefore the rationality
of selecting only them.

A. Corba Component Model (CCM)

CCM [20] is a component specification proposed by the
international consortium called OMG. The objective of CCM
is to facilitate the development of heterogeneous distributed

380

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

components. In fact, the first specification of Corba was
entirely oriented towards interoperability, so that all features
related to the deployment were omitted. Nevertheless, the
CCM 4.0 standard supports all the functionalities of software
deployment and distribution. Precisely, this specification
includes four models that are summarized hereafter:

 Abstract model: it designs the component interfaces
and their interactions.

 Programming model: it designs the component code
sources and their non-functional properties (e.g.,
transaction, persistence and security).

 Deployment model: it defines the component system
assemblies.

 Execution model: it is represented by containers.

B. Enterprise Java Bean (EJB)

The EJB [18] is a framework developed by Sun
Microsystems. The purpose of EJB is to allow the
development of distributed and object-oriented applications
in the Java language. Components in EJB are called beans.
The bean interface is directly implemented in Java language.
Each bean has two interfaces (e.g., remote, home). The
remote interface allows performing the component business.
The home interface allows the production of a novel
component, or getting an existing component. Unlike CCM,
the EJB specification includes two models that are
summarized above:

 Abstract model: It represents the specification of
component interfaces.

 Deployment model: It allows to assemble a
component-based application, pack it into a package,
and install it on selected sites.

C. Microsoft’s .Net

The .Net is a framework developed by Microsoft
Corporation. The objective of this framework is to provide
the development of distributed applications. The .NET
framework is based on the concept of class that is also called
component. The class code is developed in classical
programming languages (e.g., C#, visual Basic, Java…).
The manifest file is created thanks to the classes‟
compilation process. All these files are packaged into
another file called assembly that is manually deployed
through network. In fact, the concept of assembly was
introduced by Microsoft. They try to determine the
versioning and deployment problems that were cause by the
DLLs. Those one were known as DLL hell. The versioning
problem appears like when a new application installs a new
version of a shared component that is not backward
compatible with the version already installed on the machine.

IV. TOWARD A GENERIC DEPLOYMENT PLATFORM

Although there are many environments for making
unified the deployment of software component. None of
them is generic sufficiently, and they do not perform
automatically the deployment of heterogeneous applications.
Furthermore, we suggest to use a generic methodology that
makes unified the deployment component systems. More
precisely, this methodology is based on a model

transformation approach that employs suitable Platform
Independent Model (PIM) and Platform Specific Model
(PSM).

A. Model Transformation Overview

There are several projects aiming to make generic the
deployment of software component. None of them fulfills
completely the required features (e.g., release, install,
activate, update, adapt) [6]. OMG contributes to the
resolution of this problem with its D&C specification [19].
This specification matches the Model Driven Architecture
(MDA) paradigm. This paradigm proposes a methodology to
software development through modeling and transformation
of models to code implementations. Among other
approaches to model transformation, providing tools, we can
mention VIATRA [23], Tefkat [10], AMW [5], ATL [14][4],
Kent [1], and C-SAW [12].

B. Implementation

We outline in this section some implementation details.
The prototype we developed relies on the D&C application
meta models as PIM and EJB meta model as PSM. We use
the Eclipse SDK,

In the following, we summarize the main tools (see
Figure 1) used in the prototype. More details are given in [3]

 The Eclipse Modeling Framework (EMF) is used to
develop the main project named „EJB2DnC‟.

 The Atlas Transformation Language (ATL) is EMF
plug-in that is used for mapping meta models of EJB
to D&C application.

 The Eclipse Web Tools Platform (WTP) is used to
develop a specific EJB application named stock
management.

 The Ant Build Tool (ABT) is tool used in EMF to
run java applications.

Figure 1. Project explorer view.

381

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V. PERFORMANCE EVALUATION

This section highlights the currently used measurements
to determine the performance of generic deployment
platform. It proposes to use a classical measurement
methodology for component-based applications, and proves
the utility in decision making for deployment planning.

A. Motivation

As stated in [3] [6] [13], the deployment is a complex
process constituted of many steps and activities, starting with
the installation stage. Generally, the component is inserted
into the target site (i.e, repository). The configuration stage
succeeds the installation stage, and provides several
configurations for further utilizations. During this stage, no
deployment decisions (i.e, optimal placement and instance
number) for components are performed. Naturally, these
decisions are achieved in the planning stage. Therefore, we
will contribute in planning stage by using measurement
methodology in decision making for component deployment.
Within the scope of this methodology, several decisions are
carried out:

 Which component instance will be used?

 How many component instances will be deployed ?

B. Related works

There are several projects aiming to use end-to-end
distances to achieve decision-making in computer networks.
Nevertheless almost these works represent the end-to-end
distance thanks to raw network metrics measurement. In
below, we survey briefly some relevant examples:

Wolski et al. [25] present the Network Weather Service

(NWS), which capture the condition of both network and
hosts. It can provide the raw measurements of the classical
metrics (e.g., bandwidth, latency, connection time, CPU
availability) as well as forecasts based on aggregations of the
set of raw measurements.

In AppLes project, Berman et al. [2] assume that each
application is integrated with its own AppLes agent, which
uses the performance model and dynamic information
regarding resources to predict the run-time of its application
on a given set of resources. Among a set of available
possible candidate schedules, AppLes agent selects the one
that is predicted to provide the best performance.

In Network Measurements Working Group (NMWG),
Lowekamp et al. [16] highlight the used measurements to
determine network performance for grid applications. They
focus on a set of indicators as bandwidth, latency, throughput
and CPU availability. They present also the characteristics of
several measurement methodologies.

Seymour et al. [22] build a NetSolve infrastructure for
providing domain-specific high-end network services.
NetSolve provides a complete run-time infrastructure, as
well as server management tools and client interfaces to
languages as C, Fortran, Java, and MATLAB.

Karlsson and Mahalingam [15] present an illustration of

using raw metric (e.g., latency and number of hops) for
decision-making. More precisely, they propose an evaluation

framework for replication algorithms. Moreover, they
present a survey on replica placement algorithms with
comparison study. Nevertheless, the used raw metrics seem
to be quite irrelevant for monitoring the performances of
high-level applications.

Qiang Xu [21] presents a use case of other raw metrics
(e.g., latency and Round Trip Time) in grid environment.
Furthermore, he proposes an approach for automatic hosts
clustering, by mapping them to a geometric space. Even
though the used raw metrics have advantages which are their
stability and easiness of its measurement, they appear to be
insufficient to supervise the performance of computer
networks.

Gossa and Pierson [11] propose a novel technique to
represent derived distances (e.g., computation task cost and
data transfer cost) for any transaction in pervasive grid
environment. The computation of these distances is based on
the measurement of different raw metrics (e.g., latency and
bandwidth) that can be provided by any monitoring systems.
This work is set apart because it uses the derived metrics
which are hard and expensive to measure. They appear to be
pertinent on the topic of to data transfer concerns. In
addition, the metric computation has been implanted in a grid
service, called Network Distance Service (NDS) and
developed with Globus Toolkit 4.

Therefore, we were very motivated by the last work [11]
because authors use a derived distances which are well-
suited with decision making for deployment planning.

C. Overview of Measurement Representation

Since networks are constituted of hosts and links, they
can be represented in graph form. We define a network as a

graph G = (,) where:

 is a set of vertices representing the hosts.

 is a set of edges representing paths between
vertices that are labeled with measurements from
source to destination hosts.

According to Lowekamp et al. [16], a metric is a quantity
corresponding to the performance of computer networks.
There are kinds of measurements (e.g., raw or derived). Raw
measurements are something that can be measured easily
such as measuring latency using pings. Derived
measurements might be an aggregation on a set of low-level
measurements. The main useful metrics are:

 the bandwidth (BW) in Megabits/second,

 the latency (L) in Milliseconds,

 the CPU availability (CPUa) in percents,

 the free memory space (RAM) in Megabytes.
These observations can be represented by matrices called

BW, L, CPUc, CPUa and RAM. We note mi,j the
measurement of the metric m from the host i to the host j.

Here, we assume that: BWi,i = and Li,i = 0 (i.e, the cost of
local data transfer is null).

D. Experimentation

The objective of this section is to take the best decision
for components placement related in the generic deployment
platform (presented in the previous section). More precisely,
our experimentations are made on a test network which is

382

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

composed of four hosts (e.g., H1, H2, H3 and H4) and that is
shown in Figure 2. We have evaluated our proposition on a
classic planning scenario of component deployment. We
forecast the effect of component data size with respect to
their locations. Therefore, we consider different component
sizes increasing from 1 (or 10

0
) to 10

10
 with multiplier factor

equal to 10.

Figure 2. Deployment infrastructure.

Besides, we will assume that:

 all network hosts (e.g., H1, H2, H3 and H4) undertake
the deployment of components,

 the component software is deployed on three hosts
(e.g., H1, H2, and H3)

These hypotheses are illustrated in Figure 3.

Figure 3. Graph of deployment infrastructure.

In order to optimize the time of component deployment,
we only opt for transfer time. Thus, we use a compound
metric called the Data Transfer Cost (DTC) [9], and
represented by the formula:

)LL3(
BW

dataSize
)dataSize(DTC i,jj,i

j,i

j,i

We use two measurement matrices corresponding to
bandwidth (BW) and latency (L) (as shown in the Table 1)
for computing the matrices DTC with respect to component
sizes (as shown in the Table 2).

TABLE I. MEASUREMENT MATRICES

87.193.243.44

87.683.273.36

3.143.175.37

2.172.481.56

 BW

00.615.710.0

15.2015.79.8

15.215.6016.5

9.510.016.50

L

TABLE II. REPRESENTATIVE RESULTS OF DTC CONPUTATION.

0.0470.0920.058

00.0930.059

0.09300.099

0.0590.0990

DTC(1)

0.0470.0950.060

00.0960.061

0.09600.100

0.0620.1040

)DTC(103

0.0560.3390.291

00.3380.297

0.34600.247

0.3810.6110

)DTC(105

0.96424.7823.31

024.5523.86

25.33014.99

32.3151.380

)DTC(107

917.582469123255

02446423809

25236014897

32258512820

)DTC(1010

We will present distance computation which is based on

graph algorithm, in addition of that, we will implement the
classical algorithm to solve the k-median problem. The k-
median problem (its implementation is designed in the
subsequent Algorithm) is simply stated as:"Given a graph

G=(,), find k such that |k|=k, where k may either be
variable or fixed, and that the sum of the shortest distances

from the vertices in {/k} to their nearest vertex in k is
minimized".

Algorithm kmedians (k, , , d): best_solution

383

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Input data
k: integer (number of hosts)

: set of source vertices

: set of destination vertices

Pk(): sub-set of source vertices such that |Pk()| = k

d: matrix of ||| | real (DTC in our case)

Ouput data
best_solution: set of vertices (k best locations)

Method
best_criterion ← ∞

for all solution Pk() do
criterion ← 0

for all hs = 1 to || do
min_dist ← ∞
for all hd = 1 to k do

if d(hs, solution(hd)) < min_dist then
min_dist ← d(hs, solution(hd))

end if
end for
criterion ← criterion + min_dist

end for
if criterion < best_criterion then

best_criterion ← criterion
best_solution ← solution

end if
end for
return best_solution

E. Synthesis

The optimal values of DTC related to component
deployment are computed using the k-median algorithm,
then we forecast their variations according component
locations (see Figure 4).

Here are some observations based on these graphs:

 The performances should be as expected improved
with more instances of components.

 If we want to limit the network to a single host, H3
appears to be the best location for components.

 The DTC with k=2 is roughly the half of the DTC
for k=1. But the value with k=3 corresponds to a real
improvement.

 If we consider all the sizes together, a real impact of
DTC appears from 107. This is obvious because the
cost of the transfer of very small data is negligible
face to the cost of a large data transfer.

Therefore, we decide to place the component on the three
hosts H1, H2 and H3, since it is the best solution to ensure
good performances of the generic deployment platform.

Figure 4. Variation of Component DTC According to their Locations.

0

0,5

1

1,5

2

2,5

3

Ho st s

D T C

size =

size =

size =

size =

size =

size =

10
5

10
4

10
3

10
2

10

1

 {H1} {H2} {H3} {H1,H2} {H1,H3} {H2,H3} {H1,H2,H3}

0

20

40

60

80

100

120

Ho st s

D T C

size =

size =

10
7

10
6

 {H1} {H2} {H3} {H1,H2} {H1,H3} {H2,H3} {H1,H2,H3}

0

2000

4000

6000

8000

10000

12000

Ho st s

D T C

size =

size =

10
9

10
8

 {H1} {H2} {H3} {H1,H2} {H1,H3} {H2,H3} {H1,H2,H3}

0

20000

40000

60000

80000

100000

120000

Ho st s

D T C

size = 10
10

 {H1} {H2} {H3} {H1,H2} {H1,H3} {H2,H3} {H1,H2,H3}

384

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

VI. CONCLUSION

With the evolution of networks and software component,
the deployment process becomes more complex and must
cover the classical deployment activities (e.g., release,
install, activate, update, adapt, de-install, de-release). Many
component systems (e.g., EJB, .Net and CCM) currently
exist. Therefore, a generic deployment model that wraps all
these component systems would be indispensable. The main
contributions of this study are twofold:

 Proposing a generic deployment infrastructure based
on D&C specification and MDA approach. The
proposed approach is tested with EJB model, but it
can be obviously extended to other specific model.

 Applying a method designed to define made-to-
measure distances for any given transaction network.
The relevance of this provided distance is clearly
enhanced by using graph algorithm.

Actually, experimentation is made by testing and
evaluating the performance of EJB model deployment.
Future research can be performed in various viewpoints.

We selected the most interesting ones:

 Integration of new component software and
application architectures such as (e.g., CCM, service
oriented architecture…).

 A

 Extending to others performance parameters such as
Computation Task Cost (CTC) which take into
account the complexity of the computation
according to the request data size, the provider
capacity and load.

REFERENCES

[1] D. H. Akehurst and S. J. H. Kent, “A Relational Approach to
Defining Transformations in a Metamodel”, Proc. Unified Modelling
Language (UML 05), Springer Berlin/Heidelberg, 2005, pp. 243-258.

[2] F. Berman, “Adaptive Computing on the Grid using AppLes, ” IEEE
Transactions on parallel and distributed systems, vol. 14, 2003, pp.
369-82.

[3] A. Benamar, N. Belkhatir, and F. T. Bendimerad, “A Proposition of
Generic Deployment Platform for Component-based Applications, ”
Journal of Software Engineering, Academic Journals Inc, vol. 2,
2008, pp. 23-38.

[4] J. Bézivin and F. Jouault, “Using ATL for checking models,” Proc.
Graph and Model Transformation (GraMoT 06), 2006, pp. 69-81.

[5] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez, “Modelling in
the Large and Modelling in the Small,” Proc. MDA Workshops
Foundations and Applications (MDAFA 04), Springer
Berlin/Heidelberg, 2004, pp. 33-46.

[6] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. Van der
Hoek, and A. L. Wolf, “A Characterization Framework for Software
Deployment Technologies, ” Technical Report CU-CS-857-98,
University of Colorado, 1998.

[7] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and A.
Gokhale, “DAnCE: A QoS-enabled Component Deployment and
Configuration Engine, ” Proc. Component Deployment (CD 05),
Springer Berlin/Heidelberg, 2005, pp. 67-82.

[8] M. Dibo and N. Belkhatir, “Defining an Unified Meta Modeling
Architecture for Deployment of Distributed Components-based
Software Applications, ” Proc. International Conference on Enterprise
Information Systems, (ICEIS 10), SciTePress, vol. 1, 2010, pp. 316-
321.

[9] M. Faerman, A. Su, R. Wolski, and F. Berman, “Adaptive
Performance Prediction for Distributed Data-Intensive Applications, ”
Proc. High Performance Networking and Computing (HPNC 99),
ACM/IEEE, 1999.

[10] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood, “
Transformation, the Missing Link of MDA, ” Proc. Graph
Transformation (GT 02), Springer Berlin/Heidelberg, 2002, pp. 90-
105.

[11] J. Gossa and Jean-Marc Pierson, “End-To-End Distance
Computation In Grid Environment by NDS, the Network Distance
Service, ” Proc. European Conference on Universal Multiservice
Networks (ECUMN 07), IEEE Computer Society, 2007, pp. 210-222.

[12] J. Gray, Y. Lin, and J. Zhang, “Automating Change Evolution in
Model-Driven Engineering, ” Special issue on Model-Driven
Engineering, IEEE Computer Society, vol. 39, 2006, pp. 51-58.

[13] P. Hnětynka, “Making Deployment of Distributed Component-based
Software Unified, ” Proc. Automated Software Engineering (ASE
04), Computer Society, 2004, pp. 157-161.

[14] F. Jouault and I. Kurtev, “Transforming Models with ATL, ” Proc.
Model-Driven Engineering Languages and Systems (MoDELS 05),
Springer Berlin/Heidelberg, 2005, pp. 128-138.

[15] M. Karlsson and M. Mahalingam, “We Need Replica Placement
Algorithms in Content Delivery Networks? ” Proc. Web Content
Caching and Distribution Workshop (WCW 02). Boulder Editions,
2002, pp. 117-128.

[16] B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones, T.
Kielmann, and M. Swany, “A Hierarchy of Network Performance
Characteristics for Grid Applications and Services, ” Proposed
Recommendation Global Grid Forum (GGF), Network Measurement
Working Group (NMWG), 2004.

[17] N. Merle and N. Belkhatir, “Open Architecture for Building Large
Scale Deployment Systems, ” Proc. Software Engineering Research
and Practice (SERP 04), 2004, pp. 930-936.

[18] R. Monson-Haefel and B. Burke, Enterprise JavaBeans 3.0, O'Reilly
Media, Inc, 5th Edition, USA, 2006

[19] OMG, “Deployment and Configuration of Component-based
Distributed Applications Specification, ” 2004,
http://www.omg.org/docs/ptc/04-08-02.pdf

[20] OMG, “CORBA Component Model: CCM version 4.0, ” 2006,
http://www.omg.org/spec/CCM/4.0/PDF

[21] J.S. Qiang Xu, “Automatic Clustering of Grid Nodes, ” Proc. Grid
Computing (GC 05), IEEE/ACM, 2005, pp. 227-233.

[22] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra, NetSolve:
Grid Enabling Scientific Computing Environments, Grid Computing
and New Frontiers of High Performance Processing, Lucio
Grandinetti eds., Elsevier, Advances in Parallel Computing, vol. 14,
2005.

[23] D. Varró, G. Varró, and A. Pataricza, “Designing the automatic
transformation of visual languages, ” Science Computing
Programming, vol. 44, 2002, pp. 205-227.

[24] A. J. A. Wang and K. Qian, Component-oriented Programming, 1st
edition, John Wiley and Sons Inc., Chichester, UK, 2005.

[25] R. Wolski, N. T. Spring, and J. Hayes, “The Network Weather
Service: a Distributed Resource Performance Forecasting Service for
Meta-computing, Future Generation, ” Computer Systems, vol. 15,
1999, pp.757-768.

385

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

